

Institut für Mechanik

Prof. Dr.-Ing. W. Ehlers

www.mechbau.uni-stuttgart.de

Ergänzung zur Vorlesung

Technische Mechanik I

Formelsammlung

Stand WS 2013/14

letzte Änderung: 03.09.2013

Grundbegriffe

TEIL I: Mathematische Vorraussetzungen

1 Grundzüge der Vektoralgebra

• vgl. hierzu separates Skript zu Vektorrechnung (www.mechbau.uni-stuttgart.de).

TEIL II: Statik starrer Körper

2 Grundbegriffe

Materieller Punkt, Materieller Körper

Definition: Ein **materieller Punkt** (Massenpunkt) \mathcal{P} ist ein mathematischphysikalisches Objekt mit folgenden Eigenschaften:

- Die Lage von \mathcal{P} ist durch einen Ortsvektor $\mathbf{x}(\mathcal{P})$ eindeutig festgelegt.
- jedem \mathcal{P} ist eindeutig eine Masse $m(\mathcal{P}) > 0$ zugeordnet.

Komponentendarstellung des Ortsvektors:

$$\mathbf{x} = x_i \, \mathbf{e}_i = x_1 \, \mathbf{e}_1 + x_2 \, \mathbf{e}_2 + x_3 \, \mathbf{e}_3$$

 $\min \left\{ \begin{array}{ccc} x_i \, \mathbf{e}_i & : & \text{Komponenten von } \mathbf{x} \\ x_i & : & \text{Koeffizienten der Vektorkomponenten von } \mathbf{x} \end{array} \right.$

 $\begin{tabular}{ll} \textbf{Definition:} & \textbf{Ein materieller K\"{o}rper \mathcal{B} ist eine kontinuierlich verteilte Menge} \\ \end{tabular}$

materieller Punkte \mathcal{P}_i die sich eindeutig auf Gebiete des Anschauungsraums abbilden lässt. Eine solche Abbildung heißt Konfiguration.

Die Kraft

Merke: Eine Kraft ist eine physikalische Größe, die in ihrer Wirkung mit einer

Gewichtskraft (Schwerkraft) äquivalent ist.

Maßeinheit der Kraft: $1 \text{ N} = 1 \text{ kg} \cdot 1 \frac{\text{m}}{\text{s}^2}$.

Am starren Körper ist die Kraft ein linienflüchtiger Vektor.

Kräftesysteme 2

3 Kräftesysteme

3.1 Zentrale Kräftesysteme

Bem.: Beim zentralen Kräftesystem schneiden sich die Wirkungslinien aller Kräfte in einem Punkt.

Die drei Grundaufgaben

1. Grundaufgabe: Reduktion eines Kräftesystems auf eine Einzelkraft:

$$\mathbf{R} = \sum_{i=1}^{n} \mathbf{F}_{i}.$$

2. Grundaufgabe: Zerlegung einer Kraft:

$$\mathbf{F} = (\mathbf{F} \cdot \mathbf{e}_i) \, \mathbf{e}_i = F_1 \, \mathbf{e}_1 + F_2 \, \mathbf{e}_2 + F_3 \, \mathbf{e}_3$$
.

3. Grundaufgabe: Bedingung für Gleichgewicht:

$$\mathbf{R} = \sum_{i=1}^{n} \mathbf{F}_{i} = \mathbf{0}, \quad \mathbf{e}_{i} : R_{i} = \sum_{j=1}^{n} (F_{j})_{i} = 0.$$

3.2 Allgemeine (nichtzentrale) Kräftesysteme

Bem.: Die Wirkungslinien aller Kräfte schneiden sich **nicht** in einem Punkt; die Reduktionsaufgabe ist ohne Benutzung des Momentenbegriffs nicht möglich.

Äquivalente Kräftesysteme

Definition: Zwei Kräftesysteme

$$\mathcal{F} = \{ \mathbf{F}_1, \mathbf{a}_1, \mathbf{F}_2, \mathbf{a}_2, ..., \mathbf{F}_n, \mathbf{a}_n \}$$

$$\overset{*}{\mathcal{F}} = \{ \overset{*}{\mathbf{F}}_1, \overset{*}{\mathbf{a}}_1, \overset{*}{\mathbf{F}}_2, \overset{*}{\mathbf{a}}_2, ..., \overset{*}{\mathbf{F}}_n, \overset{*}{\mathbf{a}}_n \}$$

$$\operatorname{mit} \left\{ \begin{array}{l} \sum_{i=1}^{n} \mathbf{F}_{i} = \sum_{i=1}^{k} \overset{*}{\mathbf{F}}_{i} & \longrightarrow & \mathbf{R} = \overset{*}{\mathbf{R}} \\ \sum_{i=1}^{n} (\mathbf{a}_{i} - \mathbf{b}) \times \mathbf{F}_{i} = \sum_{i=1}^{k} (\overset{*}{\mathbf{a}}_{i} - \mathbf{b}) \times \overset{*}{\mathbf{F}}_{i} & \longrightarrow & \mathbf{M}_{B} = \overset{*}{\mathbf{M}}_{B} \end{array} \right.$$

sind äquivalent, wenn die **Dynamen** $\{\mathbf{R}, \mathbf{M}_B\}$ von \mathcal{F} und $\{\mathbf{R}, \mathbf{M}_B\}$ von \mathcal{F} identisch sind,

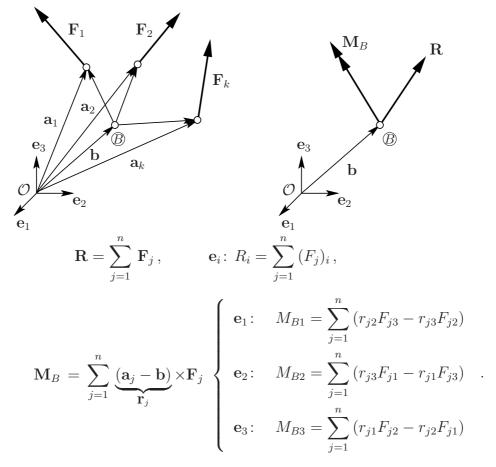
d. h. \mathcal{F} und $\overset{*}{\mathcal{F}}$ führen auf die gleiche Reduktion in B.

Bem.: Die Äquivalenz von Kräftesystemen kann für die Grundaufgaben Reduktion, Zerlegung und Gleichgewicht benutzt werden.

Kräftesysteme 3

Die drei Grundaufgaben

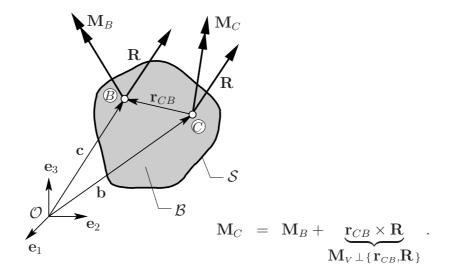
1. Grundaufgabe: Reduktion eines Kräftesystems auf eine Dyname $\{\mathbf{R}, \mathbf{M}_B\}$ in einem beliebigen Punkt B:



Weitere Reduktionen:

A. Der allgemeine Fall:

Reduktion der Dyname $\{\mathbf{R}, \mathbf{M}_B\}$ im Punkt B auf die Dyname $\{\mathbf{R}, \mathbf{M}_C\}$ im Punkt C:



Kräftesysteme 4

B. Sonderfälle

(a) Sonderfall 1: $\mathbf{r}_{CB} \perp \{\mathbf{R}, \mathbf{M}_B\}$

In C liegt \mathbf{M}_V in der \mathbf{R} – \mathbf{M}_V Ebene. \mathbf{r}_{CB} , \mathbf{R} und \mathbf{M}_V bilden ein orthogonales System. Ergebnis: Die Dynamen $\{\mathbf{R}, \mathbf{M}_B\}$ und $\{\mathbf{R}, \mathbf{M}_C\}$ bilden parallele Ebenen.

(b) Sonderfall 2: Reduktion von $\{\mathbf{R}, \mathbf{M}_B\} \parallel \{\mathbf{R}, \mathbf{M}_C\}$ auf eine Kraftschraube.

Reduktion von $\{\mathbf{R}, \ \mathbf{M}_C\}$, so daß $\mathbf{R} \parallel \mathbf{M}_C$ mit gemeinsamer Wirkungslinie (Zentralachse).

$$\mathbf{M}_C = \mathbf{M}_B + \underbrace{\frac{\mathbf{M}_B \times \mathbf{R}}{R^2}}_{\mathbf{r}_{CB}} \times \mathbf{R} \quad \text{bzw.} \quad \mathbf{M}_C = \frac{\mathbf{M}_B \cdot \mathbf{R}}{R^2} \mathbf{R}$$

mit
$$|\mathbf{M}_C| = |\mathbf{M}_B| \cos \langle (\mathbf{R}; \mathbf{M}_B).$$

Ergebnis: Kraftschraube $\{\mathbf{R}, \mathbf{M}_C\}$.

(c) Sonderfall 3: Reduktion der Kraftschraube $\{\mathbf{R}, \mathbf{M}_C\}$ auf eine Einzelkraft $\{\mathbf{R}, 0\}$. Bedingung für eine Einzelkraft (Totalresultierende) ist

$$\mathbf{M}_C = \frac{\mathbf{M}_B \cdot \mathbf{R}}{\mathbf{R}^2} \mathbf{R} = \mathbf{0} \longrightarrow \mathbf{M}_B \cdot \mathbf{R} = 0 \quad \forall \, \mathbf{M}_B.$$

Ergebnis: $\mathbf{M}_C = \mathbf{0}$ gilt für beliebige \mathbf{M}_B nur, wenn $\mathbf{R} \perp \mathbf{M}_B$.

Bem.: Bei Kräftesystemen mit parallelen Kräften und bei ebenen Kräftesystemen ist die Bedingung $\mathbf{R} \perp \mathbf{M}_B$ immer erfüllt, d. h. die Reduktion auf eine Einzelkraft ist immer möglich.

2. Grundaufgabe: Zerlegung einer Kraft im Raum

Bem.: Die Zerlegung einer Kraft im Raum ist eindeutig möglich in

- 3 Richtungen (Wirkungslinien) beim zentralen Kräftesystem,
- 6 Richtungen (Wirkungslinien) beim allgemeinen Kräftesystem.

 $\mathbf{Vor.:}$ Eine eindeutige Zerlegung von \mathbf{R} in 6 vorgegebenen Richtungen ist möglich, wenn

- höchstens 3 Wirkunglinien in einer Ebene liegen und
- sich höchstens 3 Wirkungslinien, die nicht alle in einer Ebene liegen, in einem Punkt schneiden.

3. Grundaufgabe: Gleichgewicht

In einem Gleichgewichtssystem veschwindet die Dyname $\{\mathbf{R}, \mathbf{M}_B\}$ eines gegebenen Kräftesystems \mathcal{F} bezüglich eines beliebigen Punktes B:

$$\mathbf{R} = \mathbf{0}$$
 und $\mathbf{M}_B = \mathbf{0}$.

Schwerpunkt 5

$$\mathbf{R} = \mathbf{0} \begin{cases} \mathbf{e}_1 : & \sum_{i=1}^n F_{i1} = 0 \\ \mathbf{e}_2 : & \sum_{i=1}^n F_{i2} = 0 \end{cases}, \qquad \mathbf{M}_B = \mathbf{0} \begin{cases} \mathbf{e}_1 : & \sum_{i=1}^n M_{B1}(\mathbf{F}_i) = 0 \\ \mathbf{e}_2 : & \sum_{i=1}^n M_{B2}(\mathbf{F}_i) = 0 \end{cases}.$$

$$\mathbf{e}_3 : & \sum_{i=1}^n F_{i3} = 0 \end{cases}$$

$$\mathbf{e}_3 : & \sum_{i=1}^n M_{B3}(\mathbf{F}_i) = 0$$

Gleichgewichtsbedingungen als Koeffizientengleichungen:

Für allgemeine, ebene Kräftesysteme (z. B. \mathbf{e}_1 - \mathbf{e}_3 - Ebene) gilt speziell

bzw.
$$\rightarrow \sum H = 0$$
, $\uparrow \sum V = 0$, $\langle \sum M_B = 0$.

4 Schwerpunkt

Schwerpunkt eines materiellen Körpers

Unter der Voraussetzung paralleler Schwerkräfte, d. h. Schwerpunkt und Massenmittelpunkt fallen zusammen, ermittelt man den Schwerpunkt aus

$$\mathbf{x}_S = \mathbf{x}_M = \frac{1}{m} \int_{\mathcal{B}} \mathbf{x} \, \mathrm{d}m \,.$$

mit der Massendichte ρ und d $m = \rho dv$ sowie d $v = dx_1 dx_2 dx_3$, so dass

$$m = \int \int \int \rho \, \mathrm{d}x_1 \mathrm{d}x_2 \mathrm{d}x_3$$

Volumenmittelpunkt (Volumenschwerpunkt)

Für einen Körper mit homogener Dichte ($\rho=$ konst.) fallen Massenmittelpunkt und Volumenmittelpunkt zusammen. Für den Volumenmittelpunkt gilt

$$\mathbf{x}_V = \frac{1}{V} \int_{\mathcal{B}} \mathbf{x} \, \mathrm{d}v$$

mit
$$V = \int_{\mathcal{B}} dv = \int_{x_3} \int_{x_2} \int_{x_1} dx_1 dx_2 dx_3$$
.

Flächenmittelpunkt (Flächenschwerpunkt)

Die Lage des Flächenmittelpunkts ermittelt sich aus

$$\mathbf{x}_F = \frac{1}{A} \int_{\mathcal{S}} \mathbf{x} \, \mathrm{d}a \,.$$

Für ebene Flächen berechnen sich die Flächenschwerpunktskoordinaten aus

$$x_{1F} = \frac{1}{A} \int_{\mathcal{S}} x_1 \, \mathrm{d}a \quad \text{mit} \quad S_2 := \int_{\mathcal{S}} x_1 \, \mathrm{d}a \,,$$

$$x_{2F} = \frac{1}{A} \int_{\mathcal{S}} x_2 \, \mathrm{d}a \quad \text{mit} \quad S_1 := \int_{\mathcal{S}} x_2 \, \mathrm{d}a \,.$$

Bem.: Darin sind S_1, S_2 Flächenmomente 1. Grades (statische Momente).

Flächenschwerpunkt von zusammengesetzten Flächen

Bei zusammengesetzten ebenen Flächen kann der Flächenschwerpunkt aus den bekannten Teilflächenschwerpunkten berechnet werden:

$$\hat{\mathbf{x}}_F = \frac{\sum_{i=1}^n \hat{\mathbf{x}}_{Fi} A_i}{\sum_{i=1}^n A_i}$$

Bezeichnung der Koordinatenachsen:

 \hat{x}_i : beliebige kartesische Koordinaten,

 x_i : kartesische Koordinaten durch den Schwerpunkt,

 A_i : Teilflächengröße.

Linienmittelpunkt (Linienschwerpunkt)

Die Lage des Linienschwerpunkts erhält man aus

$$\mathbf{x}_L = \frac{1}{L} \int_{\mathcal{L}} \mathbf{x} \, \mathrm{d}l.$$

Darin ist dl ein Linienelement.

5 Verschieblichkeitsuntersuchungen

Eigenschaften von Lagern und Gelenken

Bezeichnung	Symbol	Beweg. mögl.	unabh. Reak.	stat. Wertigkeit
verschiebliches Auflager	<u>\</u>		\	1
festes Auflager	\			2
verschiebliche Einspannung	// <u>//////</u>	// <u>//////</u>	₹	2
feste Einspannung				3
Momenten- gelenk	├─ ०─┤		- ↑	2
Normalkraft- gelenk	\ 	<	(1)	2
Querkraft- gelenk			-(2
"Schnitt"		→	├	3

Statische Bestimmtheit

Definition: Ein Tragwerk ist statisch bestimmt, wenn die Anzahl der zu berechnen-

den Reaktionskräfte mit der Anzahl der zur Verfügung stehenden Glei-

chungen übereinstimmt.

Abzählkriterien für statische Bestimmtheit:

$$f = \begin{cases} 6p - (a + z) & : r \ddot{a}um liche Systeme \\ 3p - (a + z) & : ebene Systeme \end{cases}$$

$$\rightarrow$$
 7 - (s - 1) w

Auswertung der Abzählkriterien:

$$f = \mathrm{i} \left\{ \begin{array}{ll} > 0 & : \mathrm{i\text{-}fach\ verschieblich} \\ = 0 & : \mathrm{statisch\ bestimmt} \\ < 0 & : \mathrm{i\text{-}fach\ statisch\ unbestimmt} \end{array} \right.$$

$$f = i$$
 = 0 : statisch bestimmt

$$f$$
: Anzahl der Freiheitsgrade

ertigkeit der kinematischen Bindungen

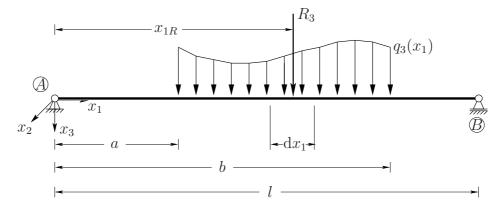
Auflagerreaktionen und Schnittgrößen 6

Ebene Belastung von geraden Stäben und Balken

Es werden nur statisch bestimmt gelagerte und unverschiebliche Systeme behandelt.

- Stäbe: Belastung nur in Längsrichtung (x_1 Richtung): Stabproblem,
- Balken: Belastung nur in Querrichtung (x_2 bzw./und x_3 -Richtung): Balkenproblem,
- allgemeiner Balken: Kopplung des Stab- und des Balkenproblems, d. h. Belastung in Längs- und Querrichtung

Belastung des geraden Balkens durch Linienlasten quer zur Balkenachse:



Resultierende R_3 einer Linienlast:

$$R_3 = \int_a^b dR_3 = \int_a^b q_3(x_1) dx_1.$$

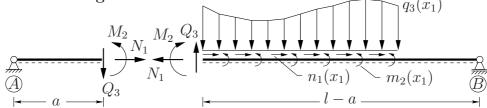
Lage der Resultierende R_3 :

$$x_{1R} = \frac{\int_a^b x_1 q_3(x_1) \, \mathrm{d}x_1}{R_3} \, .$$

Schnittgrößen, Vorzeichendefinition und "gestrichelte Zone"

Merke: Positive Schnittgrößen wirken am positiven (rechten) Schnittufer in positive Koordinatenrichtung und am negativen (linken) Schnittufer in negative Koordinatenrichtung.

Veranschaulichung:

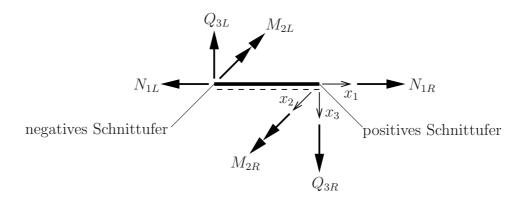


Bem.: An jedem Teilsystem bilden die äußere Belastung, die Auflagerreaktionen und die Schnittgrößen ein Gleichgewichtssystem.

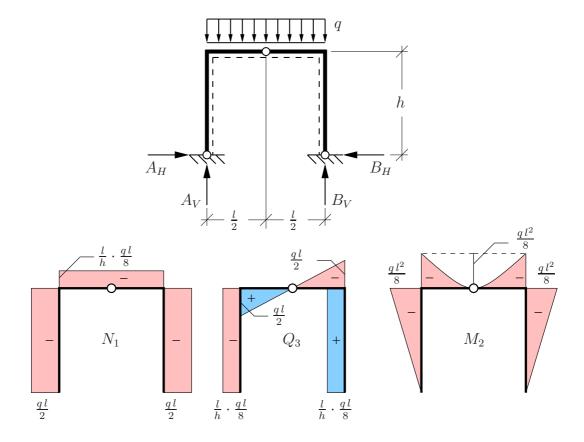
Differentialbeziehung der Schnittgrößen für den geraden Balken:

Normalkraft:
$$\frac{dN_1}{dx_1} = N'_1 = -n_1(x_1)$$
Querkraft:
$$\frac{dQ_3}{dx_1} = Q'_3 = -q_3(x_1)$$
Moment:
$$\frac{dM_2}{dx_1} = M'_2 = -m_2(x_1) + Q_3(x_1)$$

Merke: Liegt die "gestrichelte Zone" unterhalb der Balkenachse, dann sind die kartesischen Schwerpunktskoordinaten des Balken am positiven (rechten) Schnittufer festgelegt.



Beispiel zu Schnittgrößen:



Merke: Schnittgrößen werden folgendermaßen dargestellt:

- positiv (blau): auf der Balkenseite mit der gestrichelten Zone
- negativ (rot) : auf der Balkenseite gegenüber der gestrichelten Zone

Randbedingungen zu	Bestimmung	der Inte	egrationskonstanten	des	Balkenproblems:

Randbedingung	Symbol	Querkraft Q_3	Moment M_2
gelenkiges Auflager	8)	$Q_3 \neq 0$	$M_2 = 0$
freies Ende		$Q_3 = 0$	$M_2 = 0$
Einspannung	}	$Q_3 \neq 0$	$M_2 \neq 0$
Paralellführung	<u></u>	$Q_3 = 0$	$M_2 \neq 0$
Schiebehülse	<u></u>	$Q_3 \neq 0$	$M_2 \neq 0$

Übergangsbedingungen zur Bestimmung der Integrationskonstanten des Balkenproblems:

Übergangsbed.	Symbol	Querkraft Q_3	Moment M_2
Momentengelenk	\ 	$Q_3 \neq 0$	$M_2 = 0$
Querkraftgelenk		$Q_3 = 0$	$M_2 \neq 0$

Zusammenhänge zwischen äußere Belastung, Querkraft und Moment beim Balkenproblem:

Belastung	Symbol	Q_3 -Verlauf	M_2 -Verlauf
$q_3 = 0$	(konstant	linear
$q_3 = \text{konstant}$	<u>, , , , , , , , , , , , , , , , , , , </u>	linear	quadratisch
$q_3 = linear$		quadratisch	kubisch
q ₃ mit Sprung		mit Knick	stetig
Einzelkraft	(mit Sprung	Knick
Einzelmoment		stetig, kein Knick	mit Sprung

Ebene Belastung eines in der Ebene gekrümmten Balkens

Differentialbeziehung der Schnittgrößen für den in der Ebene gekrümmten Balken:

Normalkraft:
$$\frac{\mathrm{d}N_1}{\mathrm{d}\theta^1} = N_1' = -n_1(\theta^1) + \frac{1}{r(\theta^1)} Q_3(\theta^1)$$

Querkraft:
$$\frac{dQ_3}{d\theta^1} = Q_3' = -q_3(\theta^1) - \frac{1}{r(\theta^1)} N_1(\theta^1)$$

Moment:
$$\frac{dM_2}{d\theta^1} = M_2' = -m_2(\theta^1) + Q_3(\theta^1)$$

Bem.: Normalkraft und Querkraft sind gekoppelt.

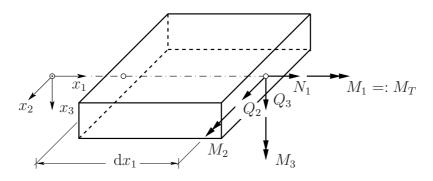
 θ^1 : Bogenlänge

 $r(\theta^1) = \text{konst.}$: Kreisbogenträger $r(\theta^1) = \infty$: gerader Balken

(Entkopplung des Stab- und Balkenproblems)

Räumliche Belastung von geraden Stäben und Balken

Vorzeichendefinition der Schnittgrößen:



Merke: Positive Schnittgrößen weisen am positiven Schnittufer in positive Koordinatenrichtung.

Differentialbeziehung der Schnittgrößen:

Normalkraft:
$$\frac{dN_1}{dx_1} = N'_1 = -n_1(x_1)$$
,
Querkraft: $\frac{dQ_3}{dx_1} = Q'_3 = -q_3(x_1)$, $\frac{dQ_2}{dx_1} = Q'_2 = -q_2(x_1)$,
Moment: $\frac{dM_2}{dx_1} = M'_2 = -m_2(x_1) + Q_3(x_1)$,
 $\frac{dM_3}{dx_1} = M'_3 = -m_3(x_1) - Q_2(x_1)$,
 $\frac{dM_1}{dx_1} = M'_1 = -m_1(x_1)$.

Ebene Fachwerke

7 Ebene Fachwerke

Definition: Fachwerke sind aus geraden Stäben zusammengesetzte Systeme, für die einige idealisierte Annahmen getroffen werden.

Ideales Fachwerk

• Alle Fachwerkknoten (Gelenke) werden als reibungfreie Momentengelenke angenommen.

- Alle Stabachsen (Systemmittellinien) der an den Knoten angeschlossenen Stäbe schneiden sich in einem Punkt.
- Äußere Lasten greifen nur in den Knoten an.
- Alle Fachwerkstäbe sind Pendelstäbe (Zug positiv, Druck negativ).

• Bei **ebenen** Fachwerken liegen alle Stabachsen und die äußere Belastung in einer Ebene.

Verschieblichkeitsuntersuchungen

Vereinfachtes Abzählkriterium für Fachwerke:

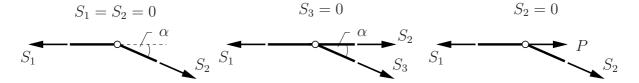
 $f = \begin{cases} 3k - (a + s) & : r \ddot{a} um liche Fachwerke \\ 2k - (a + s) & : ebene Fachwerke \end{cases}$

Auswertung der Abzählkriterien:

 $f = \mathrm{i} \left\{ \begin{array}{ll} > 0 & : \mathrm{i\text{-}fach\ verschieblich} \\ = 0 & : \mathrm{statisch\ bestimmt} \\ < 0 & : \mathrm{i\text{-}fach\ statisch\ unbestimmt} \end{array} \right.$

Reibung 14

Erkennung von Nullstäben:



Fall A:

nicht gleichgerichtete Stäbe eines unbelasteten Knotens mit nur zwei Stabanschlüssen

Fall B:

der dritte Stab eines unbelasteten Knotens mit drei Stabanschlüssen, von denen zwei dieselbe Richtung besitzen

Fall C:

der zweite Stab eines belasteten Knotens mit 2 Stäben, von denen der erste die Richtung der äußeren Kraft hat

Bem.: Durch erkennen von Nullstäben können sich weitere Nullstäbe ergeben.

Berechnung der Stabkräfte mit dem Knotenschnittverfahren

Lösungsweg mit dem Knotenschnittverfahren:

- 1. Überprüfung des Systems auf statische Bestimmtheit und Unverschieblichkeit,
- 2. Bezeichnung aller Stäbe und Knoten,
- 3. Freischneiden aller k Knoten liefert k zentrale Kräftesysteme,
- 4. Berechnung der Stabkräfte über Gleichgewichtsbetrachtungen.

Bem.: Die Berechnung beginnt an einem Knoten mit höchstens zwei unbekannten Stabkräften.

Berechnung der Stabkräfte mit dem Ritterschen Schnittverfahren

Bem.: Das *Ritter* sche Schnittverfahren ist besonders geeignet, wenn nicht alle sondern nur einzelne Stabkräfte berechnet werden sollen.

Lösungsweg mit dem Ritterschen Schnittverfahren

- 1. Herausschneiden eines Teilsystems, so daß höchstens drei unbekannte Stabkräfte freigeschnitten werden, die sich nicht alle in einem Punkt schneiden.
- 2. Berechnung der freigeschnittenen Stabkräfte mit den Gleichgewichtsbedingungen für allgemeine, ebene Kräftesysteme (2×Kräftegleichgewicht und 1×Momentengleichgewicht bzw. Alternativen).

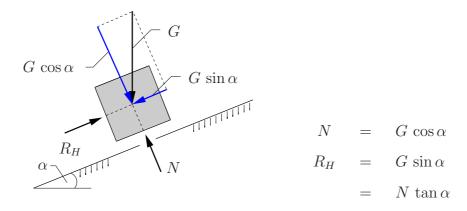
Reibung 15

8 Reibung

Haftreibung und Gleitreibung

(a) Haftreibung

Der Körper bleibt in Ruhe, d. h. es herrscht Gleichgewicht:



Grenzfall der Haftreibung:

$$\alpha \equiv \rho_H \longrightarrow R_H^* = N \tan \rho_H \quad \text{mit } \rho_H$$
: Reibungswinkel

Coulombsche Reibung:

$$\mu_H = \tan \rho_H \longrightarrow R_H^* = N \mu_H \quad \text{mit } \mu_H$$
: Haftreibungskoeffizient

Allgemeiner Fall für die Haftreibung:

$$R_H \leq \stackrel{*}{R}_H = \mu_H N$$

(b) Gleitreibung

Bem.: Nach Überschreiten des Grenzfalls der Haftreibung tritt Gleiten ein $(\mu_H \ge \mu_G)$.

Konstitutivgesetz für die Gleitreibungskraft:

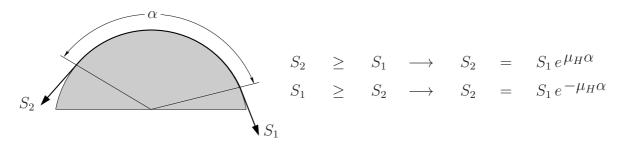
$$R_G = \mu_G N$$
 mit μ_G : Gleitreibungskoeffizient

Merke: Die Reibungskraft wirkt der Bewegungsrichtung (Gleitreibung) bzw. der angestrebten Bewegungsrichtung (Haftreibung) entgegen.

Seilstatik 16

Seilhaft- und Seilgleitreibung

Haftbedingung bei Seilreibung:



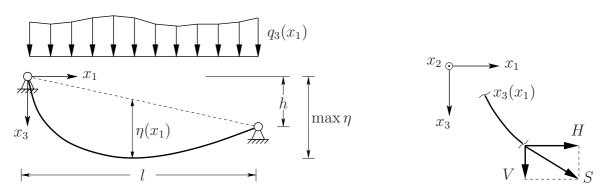
Folgerung:
$$e^{-\mu_H \alpha} \leq \frac{S_2}{S_1} \leq e^{\mu_H \alpha}$$

TEIL III: Seilstatik

9 Seilstatik ebener Systeme

Seile unter kontinuierlicher Vertikalbelastung

Veranschaulichung:



Ermittlung der Seilkraft:

$$H = \text{konst.} \quad ; \qquad S = \sqrt{H^2 + V^2} = H\sqrt{1 + (x_3')^2} \, .$$

Ermittlung der Seilkurve:

Differential gleichung:
$$x_3'' = \frac{1}{H}V' = -\frac{1}{H}q_3(x_1)$$
,

Seilstatik 17

nach zweifacher Integration:

$$x_3 = -\frac{1}{H} \int_0^{x_1} \int_0^{x_1} q_3(\tilde{x}_1) d\tilde{x}_1 d\tilde{x}_1 + C_1 x_1 + C_2$$

mit den Randbedingungen :
$$\begin{cases} x_3(x_1 = 0) = 0 \\ x_3(x_1 = l) = h \end{cases},$$

Durchhangkurve:

$$\eta(x_1) = x_3(x_1) - \frac{h}{l} x_1$$

Konsequenz: Ist der konstante Horizontalzug unbekannt, ist eine zusätzliche Bedingung erforderlich, um ihn zu bestimmen. Mögliche Bedingungen sind:

- 1. maximaler Durchhang $\mathring{\eta}$ vorgeschrieben,
- 2. maximale Seilkraft $\overset{\star}{S}$ vorgeschrieben,
- 3. maximale Seillänge $\overset{\star}{\mathcal{L}}$ vorgeschrieben.

Seile unter konstanter Vertikalbelastung: $q_3(x_1) = q = \text{konst.}$

Ermittlung der Seilkurve:

$$x_3(x_1) = (\frac{h}{l} + \frac{q \, l}{2H}) \, x_1 - \frac{q}{2H} \, x_1^2 \qquad \longrightarrow \qquad x_3'(x_1) = \frac{h}{l} + \frac{q \, l}{2H} - \frac{q}{H} \, x_1 .$$

Ermittlung der Durchhangkurve $\eta(x_1)$:

$$\eta(x_1) = \frac{q}{2H}(lx_1 - x_1^2).$$

Bestimmung des Horizontalzugs:

- 1. $\dot{\eta}$ vorgeschrieben: $H = \frac{q l^2}{8 \dot{\eta}}$,
- 2. $\overset{\star}{S}$ vorgeschrieben: $\overset{\star}{S} = H \sqrt{1 + (\frac{|h|}{l} + \frac{q \, l}{2H})^2}$,
- 3. \mathcal{L} vorgeschrieben: $\mathcal{L} = -\frac{H}{2q} \left[x_3' \sqrt{1 + x_3'^2} + \operatorname{arsinh} x_3' \right]_a^b$,

 mit $a = \frac{h}{l} + \frac{q \, l}{2H}$, $b = \frac{h}{l} \frac{q \, l}{2H}$ und $\begin{cases} a = x_3' \, (0) \\ b = x_2' \, (l) \end{cases}$

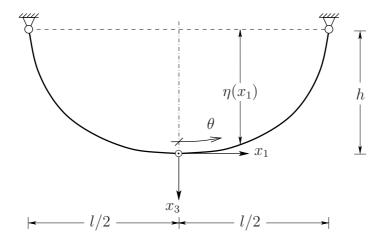
Seilstatik 18

Seil unter Eigengewicht: $q_3(\theta) = \text{konst.}$

Bem.: Beide Seillagerpunkte liegen auf einer Höhe und das Gewicht des Seils ist über die Seillänge konstant verteilt:

$$q_3(\theta)=\nu g$$
 mit $\left\{ egin{array}{ll} {
m Massenbelegung}\ \nu={
m konst.} \\ {
m θ: natürliche Koordinate der Seilkurve} \end{array}
ight.$

Veranschaulichung:



Ermittlung der Belastung $q_3\left(x_1\right)$ für homogene Seile:

$$q_3(x_1) = \underbrace{\nu g}_{q_3(\theta)} \sqrt{1 + (x_3')^2}.$$

Die Seilkurve errechnet sich aus:

$$x_3'' = -\frac{\nu g}{H} \sqrt{1 + (x_3')^2}.$$

Durch zweimaliges Integrieren erhält man die Seilkurve ("Kettenlinie"):

$$x_3(x_1) = \frac{H}{\nu g} \left(1 - \cosh \frac{\nu g x_1}{H} \right)$$

Weitere Größen sind:

- Vertikalkomponente der Seilkraft: $V = Hx_3' = -H \sinh \frac{\nu g x_1}{H}$,
- Seilkraft: $S = H\sqrt{1 + (x_3')^2} = H\cosh\frac{\nu g x_1}{H}$,
- Seillänge: $\mathcal{L} = \int_{-l/2}^{l/2} \sqrt{1 + (x_3')^2} = \frac{2H}{\nu g} \sinh \frac{\nu gl}{2H}$,
- Durchhang: $\eta(x_1) = x_3(x_1) + h$ mit: $h = -x_3(x_1 = l/2)$.

TEIL IV: Arbeitsprinzipe

10 Prinzip der virtuellen Arbeit

Prinzip der virtuellen Verrückungen (PdvV)

Eigenschaften der virtuellen Verrückung (Verschiebung δx , Verdrehung $\delta \varphi$):

- gedacht (virtuell),
- unendlich klein (infinitesimal),
- mit den kinematischen Zwangsbedingungen des Systems verträglich.

Für ein Gleichgewichtssystem muß die Variation der Arbeit A verschwinden:

$$\delta A = \sum_{i=1}^{n} \mathbf{F}_i \cdot \delta \mathbf{x}_i = 0$$

bzw. bei Reduktion des Kräftesystems in (A)

$$\delta A = 0 = (\sum_{i=1}^{n} \mathbf{F}_{i}) \cdot \delta \mathbf{x}_{a} + (\sum_{i=1}^{n} \mathbf{x}_{ai} \times \mathbf{F}_{i}) \cdot \delta \boldsymbol{\varphi}$$
$$= \underbrace{\mathbf{R}}_{\mathbf{0}} \cdot \delta \mathbf{x}_{a} + \underbrace{\mathbf{M}}_{a} \cdot \delta \boldsymbol{\varphi}.$$

Bemerkungen zum PdvV:

- eingeprägte Kräfte leisten virtuelle Arbeit,
- Reaktionskräfte (Statik) und Führungskräfte (Kinetik) leisten keine virtuelle Arbeit,
- Kraftanteil in Richtung von $\delta \mathbf{x} \to \mathbf{F} \cdot \delta \mathbf{x} = \delta A$ leistet virtuelle Arbeit,
- Momentenanteil in Richtung von $\delta \varphi \to \mathbf{M}_a \cdot \delta \varphi = \delta A$ leistet virtuelle Arbeit,
- Kraft in Wegrichtung $\to \delta A$ positiv; Kraft entgegen der Wegrichtung $\to \delta A$ negativ,
- die Berechnung von Reaktionskräften erfolgt durch Lösen der kinematischen Bindung, d. h. durch Einführung in das System als eingeprägte Kräfte.

Stabilität des Gleichgewichts

Untersuchung der Gleichgewichtslage um den Winkel φ im endlich ausgelenktem System.

- Ermittlung der Arbeit, die zwischen Ausgangszustand (φ_0) und Nachbarzustand (φ) geleistet wird.
- Ermittlung von Gleichgewichtszuständen mit dem PdvV:

$$\delta A = \frac{\mathrm{d} A}{\mathrm{d} \varphi} \delta \varphi = 0,$$

• Charakterisierung des Gleichgewichtszustands durch die "Zweite Variation" der Arbeit:

$$\delta^2 A = \left\{ \begin{array}{ll} <0 & : \text{stabiles Gleichgewicht} \\ =0 & : \text{indifferentes Gleichgewicht} \\ >0 & : \text{labiles Gleichgewicht} \end{array} \right.$$

Bem.: Für indifferentes Gleichgewicht ($\delta^2 A = 0$) kennzeichnet die nächst kleinere "nicht verschwindende" Variation die Art der Indifferenz (stabil oder labil). Neutralität liegt nur für $\Delta A = A^* - A = 0$ (Arbeitsunterschied zwischen Nachbarzustand (·)* und Ausgangszustand) vor.