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Deutsche Zusammenfassung

Die vorliegende Arbeit befafit sich mit der theoretischen und numerischen Bestim-
mung von effektiven Materialkonstanten von Stoffen mit heterogener Mikrostruktur. Die
betrachtete Problematik ist fiir viele technische und naturwissenschaftliche Fragestellun-
gen von Bedeutung, genannt seien exemplarisch die Erkundung von Ollagerstitten, Ul-
traschallbehandlungen von menschlichem Gewebe, die Festigkeit von Verbundwerkstoffen
oder die Ausbreitung von Schadstoffen im Boden.

Auf der Mikroskala variieren die Materialeigenschaften derartiger Medien, wihrend sie
auf der Makroskala als homogen betrachtet werden kénnen. Die homogenen Feldgrofien,
die auf der Makroskala auftreten, sind die Mittelwerte der fluktuierenden Felder auf der
Mikroskala. Die effektiven Materialparameter beschreiben die Zusammenhénge zwischen

den makroskopischen Feldgroflen. Beispiele dafiir sind die effektiven elastischen Konstan-
4

ten C, die im Rahmen der geometrischen linearen Elastizititstheorie den Zusammenhang
zwischen dem makroskopischen Dehnungsfeld € und dem makroskopischen Spannungsfeld
T beschreiben. Dabei sind € bzw. T die Mittelwerte des fluktuierenden mikroskopischen

4
Verzerrungsfeldes € bzw. der fluktuierenden mikroskopischen Spannung T = Ce. Die
effektiven Materialparameter geben daher an, wie sich der Kérper im Mittel verhélt.

In dieser Arbeit werden drei ganz unterschiedliche Arten von effektiven makroskopi-
schen Materialkonstanten behandelt, die man aus den mikroskopischen Daten bestimmt.
Die erste Gruppe von Materialkonstanten verkniipft ein divergenzfreies mit einem rotati-
onsfreien Vektorfeld (Laplace-Gleichung). Beispiele dafiir sind die Wiarmeleitfihigkeit, die
reellwertige dielektrische Konstante, die elektrische Leitfahigkeit, die Diffusionskonstante
und die magnetische Suszeptibilitit. Als zweite Gruppe wird die komplexwertige dielektri-
sche Konstante berechnet, die ein dissipatives Medium kennzeichnet (Laplace-Gleichung
im Komplexen). Im dritten Fall werden die elastischen Konstanten ermittelt, z. B. der
Kompressionsmodul K und der Schubmodul G (Gleichgewichtsbeziehung plus Hookesches
Gesetz).

Das zentrale Problem im Rahmen der Theorie der heterogenen Medien ist die Bestim-
mung dieser effektiven Materialparameter. In der Literatur gibt es zu deren Berechnung
eine Vielzahl verschiedener Verfahren oder Modelle zur Berechnung dieser, welche auf
theoretischen oder phinomenologischen Grundlagen basieren. Diese Verfahren kénnen im
wesentlichen in ,exakte“ Berechnungsmethoden und Niherungsmethoden eingeteilt wer-
den.

In dieser Arbeit wird auf beide Wege eingegangen, um verschiedene effektive Mate-
rialparameter zu ermitteln und die verschiedenen Methoden miteinander zu vergleichen
und zu bewerten. Als beste Methode wird diejenige bezeichnet, die bei minimalem Re-
chenaufwand die beste Ubereinstimmung mit experimentellen Daten bzw. numerischen
Simulationen liefert. Die Abhingigkeit von der Mikrogeometrie und von den mikrosko-
pischen Materialparametern der jeweiligen Komponenten erschwert eine allgemeingiiltige
Definition der besten Methode fiir die eingangs erwéhnten drei Materialgruppen. Das Ziel
der vorliegenden Arbeit ist es, fiir die verschiedenen Klassen von effektiven Material-
parametern die jeweils beste Methode herauszufinden, allgemeine Bewertungskriterien zu
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erarbeiten und den Einflufl der Mikrogeometrie auf die Bestimmung der Materialparame-
ter zu analysieren.

Die Unkenntnis detaillierter Informationen iiber die Mikrogeometrie heterogener Me-
dien wird kompensiert durch statistischen Konzepte, die im Kapitel 2 erldutert werden.
Nach einer kurzen Einfilhrung der grundlegenden statistischen Begriffe und Konzepte
werden diese auf die Charakterisierung der heterogenen Medien angewandt. Die quan-
titative Charakterisierung kann entweder durch eine Zahl oder eine Funktion erfolgen.
Der Volumenanteil oder die spezifische innere Oberfliche sind Zahlen, Funktionen dage-
gen sind die n-Punkt-Korrelationsfunktionen, die Verteilungsfunktion von Volumenantei-
len oder die Wahrscheinlichkeitsdichte von zusammenhéngenden Komponenten. Aufgrund
der modernen digitalen Bildverarbeitung (z. B. Rontgenbild, Elektronenmikroskopie oder
Kernspin-Tomographie) wird heutzutage die Mikrogeometrie realer heterogenen Medien
exakt bis an die Grenze der Auflésung erfafit. Die beschriebenen Charakterisierungsmetho-
den werden zu diesem Zweck entsprechend erldutert und auf diskrete heterogene Medien
angewandt.

In Kapitel 3 werden im Rahmen einer kontinuumsmechanischen Betrachtungsweise die
Grundgleichungen zur Bestimmung der effektiven Materialparameter aufgestellt. In Ab-
schnitt 3.1 wird die Kinematik des Kontinuums kurz beschrieben. Im Anschlufl daran wer-
den die Bilanzgleichungen der Kontinuumsmechanik und der Elektrodynamik diskutiert.
Die Bilanzen fiir Masse, Impuls, Drall, Energie, elektrische Ladung und die Entropieunglei-
chung koénnen in sogenannten allgemeinen Bilanzrelationen zusammengefafit werden, die
im Volumen eines Kopers giiltig sind. Die Bilanzen fiir die Normale des magnetischen Flus-
ses (Faradaysches Gesetz) und der elektrischen Verschiebung (Ampéresches Gesetz) stellt
man in sogenannten allgemeinen Bilanzrelationen der Oberflichen zusammen. Zur Losung
eines konkreten Randwertproblems miissen die kinematischen Beziehungen und die Bi-
lanzrelationen durch stoffabhéngige Konstitutivbeziehungen ergénzt werden. In dieser
Arbeit werden drei Konstitutivgleichungen aufgestellt, ndmlich das Wérmeleitungsgesetz
(Fouriersches Gesetz), das lineare Materialgesetz fiir elektromagnetische Medien und das
lineare Elastizitétsgesetz (Hookesches Gesetz).

In den Abschnitten 3.4-3.7 werden die Beziehungen zwischen den Feldgréfien auf der
Mikroskala und der Makroskala angegeben, und es wird die Definition effektiver Materi-
alparameter eingefiihrt. Mit Hilfe der Durchschnittsbildung kénnen die makroskopischen
Groflen als Mittelwerte von den entsprechenden mikroskopischen Groflen ausgedriickt wer-
den. In Verbindung mit der Mittelung wird der Begriff des Représentativen Elementarvo-
lumens (REV) vorgestellt. Das REV spielt die Rolle des Materialpunkts in der klassischen
Kontinuumsmechanik. Deswegen mufl das REV klein genug sein, um als Materialpunkt
betrachtet werden zu kénnen. Auf der anderen Seite muf} es grofl genug sein, um die we-
sentlichen Eigenschaften der Mikroinhomogenitét erfassen zu kdnnen, damit (statistisch
gesehen) die lokalen Eigenschaften des Mediums wiedergegeben werden. Durch Ausnut-
zung der statistischen Homogenitit geniigt es, représentativ ein REV zu betrachten, weil
das effektive Materialverhalten innerhalb des REV genau dasselbe ist wie das des ge-
samten Korpers. Konsequenterweise reicht es aus, das homogene Randwertproblem nur
beziiglich des REV und nicht beziiglich des gesamten Kérpers zu betrachten.

Ein effektiver Materialparameter kann auf zweierlei Arten definiert werden. Einmal,
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indem man die gemittelten Feldgrofen (z. B. gemittelte Spannung T, gemittelte Verzer-
rung €, gemittelter Wirmefluf q etc.) des Fourierschen Wirmeleitungsgesetzes, der elek-
tromagnetischen Konstitutivgleichung, des Elastizitdtsgesetzes etc. mit dem jeweiligen
effektiven Materialparameter (z. B. dem effektiven Kompressionsmodul K, der effektiven
Wirmeleitfihigkeit & etc.) verkniipft. Die effektiven Materialgrofien sind im allgemeinen
verschieden von den lokalen. Diese erste Art von Definition wird in der Literatur als direk-
te Definition bezeichnet (Aboudi [1], Hashin [79]). Die zweite Definition basiert auf dem
Energieprinzip (Aboudi [1], Hashin [79]), mit dessen Hilfe obere und untere Schranken
hergeleitet werden konnen. Die Hillsche Bedingung, d. h. die Annahme der Erfiillung der
Ergodizitit fiir die Energiemittlung, ist notwendige Voraussetzung dafiir, dafl beide De-
finitionen {iberstimmen. Andernfalls 148t sich das heterogene Material nicht durch einen
effektiven Materialparameter beschreiben.

Zur Bestimmung der effektiven Materialparameter kennt man wie eingangs erwihnt
yexakte“ Berechnungsmethoden und verschiedene Nidherungsmethoden. In Kapitel 4 wird
die exakte Methode beschrieben. ,,Exakt® bedeutet, dafl die Mikrostruktur des hetero-
genen Materials bekannt ist. Die detaillierte Information der Mikrostruktur erhilt man
entweder mittels Modellbildung (Garboczi & Bentz [68], Yeong & Torquato [195], Biswal
et al. [32]) oder mittels Computertomographie (Garboczi & Bentz [69], van Genabeek &
Rothman [178], Widjajakusuma et al. [185], Michel et al. [123]). In der Regel wird die-
se Information in diskreter Form gespeichert, daher werden entsprechende Computeral-
gorithmen benotigt, um die Randwertprobleme der diskreten, digitalisierten Medien zu
16sen. Diese Algorithmen werden ausfiihrlich behandelt.

Als erstes wird die Wirmeleitungsgleichung mit der Methode der finiten Volumen ( Pa-
tankar [141]) diskretisiert, die ein Spezialfall der Methode der gewichteten Residuen ( Gres-
ho & Sani [77]) ist. Dieses Verfahren wird wegen seiner Kompatibilitdt mit der Definition
von ,,Zusammenhang® fiir ein diskretes Medium gewihlt. Unter dieser Definition versteht
man, daf die Warme (Fluid) nur durch die Oberflichen der Elemente (Pixels) und nicht
durch die Ecken der Elemente fliefit (vgl. die Diskussion in Abschnitt 4.1 und Abbildung
4.2). Durch Losen des diskretisierten Gleichungssystems kénnen der lokale Wiarmeflufl
und die lokale Temperatur bestimmt werden. Danach werden die Felder gemittelt und
aus diesen Mittelwerten kann die effektive Wirmeleitfihigkeit & bestimmt werden. Die
effektive komplexwertige dielektrische Konstante erhilt man folgendermafien: zuerst wird
die komplexwertige Potentialgleichung mit der Methode der finiten Volumen diskretisiert,
anschliefflend wird das resultierende komplexwertige Gleichungssystem fiir das unbekann-
te elektrische Potential gelost. Danach werden das lokale elektrische Feld und die lokale
elektrische Verschiebung berechnet und gemittelt. Mit diesen gemittelten Feldgroflen be-
rechnet man die effektive komplexwertige dielektrische Konstante. Im Fall des elastischen
Problems wird die elastische Verzerrungsenergiefunktion, d. h. die im Koérper gespeicherte
elastische Energie, mittels der Finite-Elemente-Methode diskretisiert. Daraus erhélt man
die Verschiebungen bzw. die Verzerrungen und iiber das lokale Hookesches Gesetz (die lo-
kalen Materialparameter sind bekannt) die lokale Spannung. Im n#chsten Schritt werden
die lokale Spannung und die lokale Verzerrung gemittelt, um fiir die gemittelte konstitu-
tive Spannungs-Verzerrungsbeziehung den effektiven Elastizitdtsmodul zu berechnen. Die
Ergebnisse der ,exakten“ Methode kénnen als experimentelle Resultate angesehen wer-
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den. Grundsétzlich geht man in allen drei Féllen davon aus, dafl das lokale mikroskopische
Verhalten und das makroskopische Verhalten durch die gleichen Konstitutivgleichungen
beschrieben werden.

Die Niherungsmethoden kénnen als ,,direkte* Methoden (Kapitel 5) und ,,Schranken“-
Methoden (Kapitel 6) klassifiziert werden. In der Regel fehlt die detaillierte Information
iiber die Geometrie der Mikrostruktur, deshalb ist man auf charakteristische Gréfen wie
Volumenanteile der Konstituierenden, 2-Punkt-Korrelationsfuntionen oder spezifische in-
nere Oberflichen zur Kennzeichnung der Mikrogeometrie angewiesen. Diese reichen zur
Berechnung der effektiven Materialparameter mittels der beiden Néherungsmethoden fiir
die meisten technischen Probleme vollkommen aus. Desweiteren sind diese Methoden recht
einfach zu handhaben.

Die ,,direkten” Methoden, die in Kapitel 5 beschrieben werden, modellieren das hete-
rogene Medium und basieren auf einigen heuristischen Annahmen iiber die Mikrostruktur
des heterogenen Mediums. Da in vielen technischen Bereichen und im Ingenieurwesen
(wie in der technischen Physik, in der Verfahrenstechnik, im Maschinenbau, im Bauin-
genieurswesen oder in der Werkstoffkunde) die Bestimmung der effektiven Materialpa-
rameter eine wichtige Rolle spielt, sind zahlreiche Modelle basierend auf theoretischen
und phénomenologischen Grundlagen entwickelt worden (siehe Aboudi [1], Markov [115],
Nemat-Nasser & Hori [135], Priou [146], Sihvola [164]). Deshalb ist es wichtig, einige von
den am weitesten verbreiteten Modellen zu untersuchen, miteinander zu vergleichen und
so weit wie moglich Beziehungen zwischen den verschiedenen Modellen herzustellen. Diese
Modelle werden auch Mischungsgesetze genannt.

Es ist wiinschenswert, die Mischungsgesetze so einfach wie moglich zu formulieren. Im
einfachsten Fall enthélt, das Mischungsgesetz nur die mikroskopischen Materialparameter
und die Volumenanteile der Konstituierenden. Im allgemeinen miissen jedoch zusétzliche
Informationen iiber die Mikrostruktur des heterogenen Mediums bekannt sein, falls eine
genauere Vorhersage gewiinscht wird. Diese zusétzlichen Informationen kénnten die Geo-
metrie des Korns (des Einschlusses), die Isotropie des Mediums oder die Korrelationen
zwischen den Komponenten betreffen.

Zur Veranschaulichung betrachtet man ein heterogenes Medium, das aus den Kompo-
nenten ¢ und ¢° bestehen moge. Der gesamte Volumenanteil und die Wirmeleitfahigkeit
von ¢F bzw. ¢¥ seien n¥ und k¥ bzw. 7 und k°. Man beschriinkt sich auf den Fall der
Wirmeleitfihigkeit, andere Materialparameter konnen analog behandelt werden.

Wiener [188] nahm fiir das Problem der Wiarmeleitung in einem heterogenen Medium
ein Mehrschichtenmodell an. Dabei konnen zwei Félle auftreten. Im ersten Fall, wenn
die Schichten senkrecht zur Richtung des aufgebrachten Temperaturgefilles verlaufen,
entspricht das System einer Serienschaltung. Die effektive Wirmeleitfihigkeit & dieses

System ist durch
=F =8
= (Z—F + %) - (0.1)

gegeben. Im zweiten Fall, wenn die Schichten parallel zur Richtung des aufgebrachten
Temperaturgefilles angeordnet sind, entspricht das System einer Parallelschaltung. In



Contents 5

diesem Fall ergibt sich die effektive Wirmeleitfihigkeit & zu
k=n"k" +n°kS. (0.2)

Im Kontext des elastischen Problems entsprechen diese Fille den Modellen von Reuss
[150] bzw. Voigt [182]. Diese empirische Modelle kénnen verallgemeinert werden:

(k) =7 (k") + 7 (k%) —1<i<1. (0.3)

Fiir 2 = —1 und 7 = 1 erhilt man die beiden Wienerschen Modelle. Weiterhin kann man
fiir i — 0 das Modell von Lichtenecker [109, 110] wiederfinden:

In(k) = n® In(k") + 7 In(k%). (0.4)
Fiir 4 = 1/3 ergibt sich aus (0.3) das Looyengasche Mischungsgesetz
(E)l/S — nF(kF)1/3 + ﬁS(kS)l/{’,. (05)

Die entsprechenden Herleitungen von (0.1) and (0.2) findet man in Kapitel (5).

Es ist offensichtlich, dal der einzige Eingabeparameter des obigen Modells beziiglich
der Mikrostruktur der Volumenanteil ist. Der Volumenanteil ist sicherlich der einfluf3-
reichste geometrische Parameter zur Berechnung der effektiven Materialparameter. Je-
doch ist er in vielen Fillen nicht ausreichend, um genaue effektive Materialparameter
vorherzusagen, weil die Mikrostruktur im allgemeinen komplex ist und nicht ausreichend
mit einem einzigen Parameter beschrieben werden kann.

Als Beispiel betrachten wir ein Zwei-Komponenten-Medium, das jeweils aus 50% ¢’
(wirmeisolierendem Material) und ¢ (wirmeleitfihigem Material) besteht, wobei zwei
Fille diskutiert werden: (i) Die Einschliisse von ¢ sind stochastisch in der Matrix von
¢ verteilt. (ii) Die Einschliisse von ¢° sind stochastisch in der Matrix von " verteilt.
Es ist offensichtlich, dal das heterogene Material im ersten Fall leitfahig ist, im zweiten
Fall dagegen nicht. Mischungsgesetze, die nur Volumenanteile und die Warmeleitfahigkeit
als Eingabeparameter benutzen, wiirden in den Fillen (i) und (ii) dieselbe effektive
Wirmeleitfahigkeit liefern und sind daher zur Beschreibung des skizzierten Problems nicht
geeignet. Aus diesen Beispielen sieht man sofort, dafl die Kenntnis der Matrixphase eine
wesentliche Rolle spielt. Deswegen mdéchte man solche zusédtzlichen Informationen in die
Modelle einzubauen.

Verbesserte Naherungsmethoden basieren auf der Theorie des effektiven Mediums.
Die Hauptidee dieser Theorie kann folgendermaflen erkért werden: dem heterogenen Ma-
terial wird virtuell ein Einschluf§ (Korn) mit bekannten Materialparametern entnommen
und in ein homogenes Medium mit unbekannten effektiven Materialparametern eingela-
gert. Man 16st nun fiir das Korn und seine homogene Umgebung, d. h. fiir das isolier-
te Einkorperproblem mit dem Korn als Stérung, das Randwertproblem des heterogenen
Korpers. Die Losung besteht aus der effektiven Feldgrofie plus einem Stérungsanteil infolge
des Einschlusses. Der isolierte Einkorper mit Korn ist im heterogenen Ausgangsvolumen
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n-mal enthalten. Nun werden die ermittelten Feldgréfien plus Storungen gleich den Feld-
groflen des effektiven Mediums (ohne Einschluf) gesetzt. Das bedeutet aber, daf die ge-
mittelten Storungen verschwinden miissen. Diese selbstkonsistente Bedingung ermdéglicht
es schlielich, die unbekannten effektiven Materialparameter zu bestimmen (siehe Krdoner

[103, 104], Budiansky [38] und Nemat-Nasser & Hori [135]).

Viele bekannte Modelle konnen mittels der Theorien des effektiven Mediums hergelei-
tet werden. Diese verschiedenen Modelle konnen auf verschiedene Annahmen iiber die Mi-
krostruktur zuriickgefiihrt werden. Im Fall der Warmeleitfahigkeit werden in dieser Arbeit
folgende Modelle diskutiert: die Theorie des effektiven Mediums nach Bruggeman (BE-
MA) [37], die Mazwell-Garnett-Approximation (MGT) [122], die Theorie des differentialen
effektiven Mediums (DEM) [37]) und das Niherungsverfahren basierend auf der lokalen
Porositdtstheorie (MLLPT) (Hilfer [88], Widjajakusuma et al. [186]). Im Fall der kom-
plexwertigen dielektrischen Konstanten werden dieselbe Modelle benutzt, aber sie miissen
entsprechend modifiziert werden. Fiir den Fall der elastischen Konstanten werden die BE-
MA, die MGT, die DEM und das Drei-Phasen-Modell von Christensen-Lo (GSCM) [46]
benutzt. In diesem Fall sind die BEMA bzw. die MGT als Krdnersche selbstkonsistente
Methode [103] bzw. Mori- Tanaka-Modelle [133] bekannt. In dieser Arbeit werden jedoch
aus historischen Griinden die Bezeichnungen BEMA bzw. MGT verwendet. Weiterhin
werden zur Vereinheitlichung in diesem Abschnitt die englischen Abkiirzungen benutzt.

In Kapitel 6 wird die zweite Klasse der Nidherungsmethoden, némlich die ,,Schran-
ken“-Methode (vgl. Beran [17], Bergman [19, 21] Krdner [106], Milton [126, 128] Ponte
Castaneda & Suquet [39], Willis [191, 192]) in kompakter Form hergeleitet. In der ,,Schran-
ken“-Methode werden untere und obere Schranken berechnet, um die effektiven Material-
parameter einzugrenzen. Der Vorteil dieser Methode ist, dafl die Schranken mathematisch
streng abgeleitet und bei Hinzufiigen von zusétzlicher Information iiber die Mikrostruktur
systematisch verbessert werden kénnen. Weiterhin kénnen die Schranken benutzt werden,
um die Genauigkeit der ,,direkten“ Methode zu testen.

Optimale Schranken sind Schranken, die mit der verfiigbaren Information nicht ver-
bessert werden konnen. Beispiele sind Reuss- und Voigt-Schranken [182, 150] und untere
und obere Hashin-Shtrikman- Schranken [83]. Die Voigt- und Reuss- Schranken sind die
besten Schranken, wenn man nur die Materialparameter und die Volumenanteile der Kom-
ponenten kennt. Wenn man dazu noch Isotropie des Mediums annimmt, erhélt man die
Hashin-Shitrikman- Schranken, die enger als Voigt- und Reuss- Schranken sind. Anhand
dieser Beispiele sieht man sofort, dal die Schranken umso enger sind, je mehr Informa-
tionen zur Verfiigung steht.

Es gibt viele Zugéinge, um die Schranken herzuleiten. Am h&ufigsten benutzt man
Variationsprinzipien, die man in das klassische Variationsprinzip (Prinzip vom Minimum
der potentiellen Energie W bzw. Prinzip vom Minimum der komplementéiren Energie)
und in das Hashin-Shtrikman [83] Variationsprinzip unterteilen kann. Durch Einsetzen der
zuléssigen Ansatzfunktionen in das klassische Variationsprinzip erhélt man die Schranken.
Dabei bedeutet zuldssige Ansatzfunktion, dafl sie bestimmte physikalische Bedingungen
und Randbedingungen erfiillen mufl. Zuldssige Ansatzfunktionen fiir das Prinzip von Mi-
nimum der potentiellen Energie bzw. fiir das Prinzip von Minimum der komplementéiren
Energie, die enge Schranken liefern, sind in der Regel schwierig zu finden. Deswegen fiihrt
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man das Variationsprinzip von Hashin-Shtrikman [83] ein, mit dem man bei gleichem
Aufwand sogar noch bessere Schranken erhilt. In diesem Fall wird die potentielle Ener-
gie W auf die des Referenzmediums Wy bezogen, indem man die Differenz beider bildet
(W —Wo).

In der vorliegenden Arbeit werden die klassischen und die Hashin-Shitrikman Variati-
onsprinzip zur Herleitung der oberen und unteren Schranken fiir die effektive Warmeleitfa-
higkeit k, den effektiven Kompressionsmodul K und den effektiven Schubmodul G be-
nutzt. Die resultierenden Schranken hingen von den Ansatzfunktionen ab, wobei diese
die Information iiber die Mikrostruktur widerspiegeln. Je mehr Information die Ansatz-
funktionen enthalten, desto besserere Schranken liefern sie. Die klassischen Variationsprin-
zipien geben Schranken der Ordnung 2n — 1 an, das Hashin-Shitrikman Variationsprinzip
dagegen liefert Schranken der Ordnung 2n. Die Schranken n-ter Ordnung berechnet man
mittels n-Punkt-Korrelationsfunktionen. In dieser Arbeit werden die Schranken bis zur
dritten Ordnung angegeben. Fiir den Fall der Warmeleitfdhigkeit werden die Schran-
ken wie folgt bezeichnet: die Wiener-Schranken (von erster Ordnung) [188], die Hashin-
Shirikman-Schranken (von zweiter Ordnung) [83] und die Beran-Schranken (von dritter
Ordnung) [15]. Im Fall der elastischen Konstanten kennt man die untere Reuss- und die
obere Voigt-Schranke (von erster Ordnung) [150, 182] die Hashin-Shirikman-Schranken
(von zweiter Ordnung) [83], die Beran-Molyneus-Schranken fiir den Kompressionsmodul
(von dritter Ordnung) [16] und die McCoy-Schranken fiir den Schubmodul (von dritter
Ordnung) [62].

Fiir ein dissipatives Medium, fiir das die Felder und die Materialparameter durch kom-
plexwertige Variablen ausgedriickt werden (siehe Abschnitte 3.3.3, 4.2 und 5.2), kénnen
die Variationsprinzipien nicht mehr angewendet werden. Der Grund dafiir ist der Verlust
der Anordnung bei komplexen Zahlen, was dazu fiihrt, da} kein Minimum oder Maxi-
mum existiert. Um diese Schwierigkeiten zu vermeiden, werden die Schranken fiir die
komplexwertige dielektrische Konstanten mittels der sogenannten analytischen Methode
hergeleitet (siehe Bergmann [19, 21] Milton [127, 128]). Der Schliissel fiir die analytische
Methode ist, dal die komplexwertige dielektrische Konstante in ihrer Spektralzerlegung
dargestellt wird. Das zulédssige Gebiet der effektiven dielektrischen Konstante in der kom-
plexer Ebene, das von den Schranken eingegrenzt wird, ist linsenférmig. Mit zunehmender
Genauigkeit, d. h. mit zunehmender Information iiber die Mikrostruktur des Mediums,
zieht sich das linsenformige Gebiet auf den Losungspunkt (die effektive komplexwerti-
ge dielektrische Konstante) zusammen (vgl. Abbildung 6.1). Fiir ein nicht-dissipatives
Medium (reellwertige dielektrische Konstante) gehen diese Schranken in die bekannten
reellwertigen Schranken fiir die effektive Warmeleitfahigkeit iiber.

Leider ist in den meisten praktischen Situationen die erforderliche Information, um
optimale Schranken zu erlangen, nicht verfiighar. Hiufig kennt man beispielsweise nur
die Volumenanteile sowie einen geometrischen Parameter, obwohl zwei ben&tigt werden.
In anderen Féllen kennt man zwar gewisse effektive Materialparameter, allerdings sind
diese die nicht von Interesse. Ein Beispiel: es ist die effektive Wérmeleitfahigkeit bekannt,
aber gesucht wird der effektive Schubmodul. Deshalb ist es wichtig, eine Methode zu
finden, die die verfiigbaren Informationen optimal auszunutzt. In der Literatur ist diese
Methode als ,Kreuzrelationen“ bekannt. Die Idee hierzu wurde von Prager [144] und
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Berryman & Milton [26] vorgeschlagen, eine detaillierte kritische Anwendung auf reale
heterogene Medien wurde jedoch, soweit dies dem Autor bekannt ist, erstmalig in dieser
Arbeit durchgefiihrt.

In Kapitel 7 werden die beschriebenen Néherungsmethoden anhand von realen hete-
rogenen Sandsteinproben, fiir die die computertomographisch ermittelte Mikrostruktur
bekannt ist, validiert. Die ersten beiden Proben sind gering verfestigte Sandsteine und
werden als Probe A bzw. B bezeichnet. Die dritte Probe ist Berea-Sandstein und wird
im folgenden Probe C genannt. Die vierte (D1), fiinfte (D2) und sechste (D3) Probe sind
die Fountainebleau-Sandsteine. Zwei weitere Datensiitze (R1 und R2) erhilt man durch
Rekonstruktion der Probe C mit Hilfe des sogenannten Gaussschen Rekonstruktionsalgo-
rithmus (siehe Adler [2]). Grundidee solcher Rekonstruktionen ist es, die Ubereinstimmung
der 2-Punkt-Korrelationsfunktion und der Volumenanteile von Modell und Originalprobe
zu erreichen. Der einzige Unterschied zwischen den beiden Modellen R1 und R2 ist, dafl
die Auflosung von R2 doppelt so grof ist wie die von R1. Die charakteristischen Daten
dieser Datensitze werden in Tabelle 2.1 angegeben.

Zur Bestimmung der effektiven Wirmeleitfihigkeit k werden alle acht Datensitze her-
angezogen, wobei jeweils sechs verschiedene Kontrastverhéltnisse der Wiarmeleitfahigkeit
(2 < kF/k® < o0) der beiden Komponenten untersucht werden. Zuerst werden Tem-
peraturgradient und Warmeflul mittels der Methode der finiten Volumen berechnet.
Aus den Mittelungen des Temperaturgradienten und des Warmeflusses folgt die effektive
Wirmeleitfihigkeit k. Diese Simulationsergebnisse werden im folgenden als Bezugsdaten
zur Uberpriifung der Genauigkeit verschiedener Niherungsverfahren verwendet.

Am Beispiel von C, R1 und R2 (sie haben fast identische Volumenanteile und 2-Punkt-
Korrelationsfunktionen aber sehr unterschiedliche Morphologien) kann sehr deutlich beob-
achtet werden, daf§ die Morphologie im Fall geringer Kontrastverhiltnisse nur eine gerin-
ge Auswirkung hat, aber eine groflere Auswirkung im Fall hherer Kontrastverhiltnisse.
Fiir geringe Kontrastverhéltnisse sind die effektiven Leitfahigkeiten aller drei Datensétze
gleich, wihrend sie fiir hohere Kontrastverhéltnisse sehr unterschiedlich sind (vgl. Tabelle
7.1). Fiir den Grenzfall von k¥ /k® = oo ist die effektive Leitfihigkeit k& von C dreimal
bzw. viermal so grofl wie diejenige von R1 bzw. von R2.

Die Resultate aller Ndherungsmethoden stimmen quantitativ mit den Simulationser-
gebnisse im Fall niedriger Kontrastverhéltnisse iiberein. Man kann daraus schlieflen, dafl
in diesem Fall die Kenntnis der Volumenanteile und der Wiarmeleitfahigkeit der Konsti-
tuierenden vollig fiir die Berechnung der effektiven Wirmeleitfihigkeit ausreicht.

Fiir hohere Kontrastverhéltnisse stimmen die Resultate derjenigen Naherungsverfah-
ren, die mehr Information iiber die Mikrostruktur verwenden, quantitativ besser mit den
Simulationsergebnissen iiberein. Deswegen liefert das Modell, das auf der lokalen Poro-
sitdtstheorie basiert, die besten Ergebnisse, weil es die Verteilungsfunktionen der Volumen-
anteile p(nf’, L) und der Konnektivitit der Komponenten p.(n’, L) enthélt. Weiterhin er-
geben sich bei diesem Modell unterschiedliche Werte & fiir C, R1 und R2, wohingegen sich
bei allen anderen Modellen dieselbe effektive Warmeleitfahigkeit fiir diese drei Datensitze
ergibt. Allerdings héingen die Resultate sehr stark von der charakteristischen Langenskala
L ab. Die Hauptschwierigkeit bei Verwendung solcher Modelle besteht in der quantitati-
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ven Berechnung dieser Lingenskala. Die vorhandenen Kriterien (siehe Boger et al. [34],
Hilfer et al. [91], Widjajakusuma et al. [186]) zur Bestimmung dieser Léngenskala L sind
nicht allgemein giiltig, weil sie vom Kontrastverhiltnis abhéngen (vgl. Abbildung 7.3). Die
weitere Schwierigkeit bei Verwendung des MLLPT-Modells ist die Bestimmung der beiden
Verteilungsfunktionen p(n’, L) und p.(n, L), weil hierfiir die detaillierte Mikrostruktur
bekannt sein muf. Der Vorteil gegeniiber der ,exakten“ Methode ist, da man % relativ
schnell und einfach abschéitzen kann, sobald man diese Verteilungsfunktionen kennt. Das
Modell von Looyenga [111] liefert gute Ergebnisse fiir hohere Kontrastverhéltnisse fiir alle
Datensitze, wobei die Approximationswerte immer kleiner sind als die Simulationresul-
tate. Allerdings kann es auch keine unterschiedlichen Resultate fiir die Datenséitze C, R1,
R2 liefern, weil der einzige Eingabeparameter fiir das Looyenga-Modell der Volumenanteil
der Komponenten ist.

Die Schranken von Prager, die man aus der effektiven Leitfdhigkeit fiir ein Kontrast-
verhiltnis fiir jedes andere Verhiltnis herleiten kann, sind wesentlich schirfer als diejenigen
von Hashin-Shtrikman. Fiir den Grenzfall von k¥ /k® = oo ist zwar die untere Schranke
gleich null, aber die obere Schranke kann zur Bestimmung der effektiven Leitfihigkeit &
verwendet werden. Die obere Schranke, die den Wert von k fiir das Kontrastverhéltnis
k¥ /kS = 10000 als Information benutzt, ergibt ein k, das sehr gut mit dem Simulati-
onsergebnis iibereinstimmt. Da die ,exakte“ Methode fiir den Fall von k¥'/k® = oo nur
sehr langsam konvergiert, kann man diese obere Schranke in guter Ndherung als effektive
Leitfihigkeit & fiir k*/k% = oo benutzen. Im Gegensatz zu dem Verfahren von Hashin-
Shtrikman liefert die Methode von Prager unterschiedliche Schranken fiir C, R1 und R2.

Zur Bestimmung der dielektrischen Konstanten wird, wie im Fall der Wirmeleitung,
die komplexwertige Potentialgleichung mittels der Methode der finiten Volumen diskreti-
siert, und man erhilt das elektrische Feld und die elektrische Verschiebung. Aus diesen
gemittelten Feldgréflen wird die effektive, komplexwertige, dielektrische Konstante £¢ be-
rechnet. Es werden nur vier Datensitze (A, B, C, D1) benutzt und fiir jeden Datensatz
sechs verschiedene Frequenzen (w = 107*/s bis w = 10?/s) behandelt.

Die BEMA und die MGT liefern zwar qualitativ richtige Ergebnisse, allerdings gibt
es keine gute quantitative Ubereinstimmung mit den Simulationsresultaten (siche Ma
et al. [114]). Fiir einzelne Frequenzen liefert die MLLPT gute Ergebnisse, falls man die
charakteristische Léngenskala kennt. Im allgemeinen gibt es jedoch entweder im Realteil
oder im Imaginirteil von £ Abweichungen von den Simulationsergebnissen. Wie im Fall
der Warmeleitung 148t sich auch hier eine geeignete Liangenskala nur schwer bestimmen.

In diesem Fall empfiehlt es sich, die Schranken von dritter Ordnung zu verwenden,
da sie einen engeren Bereich um die effektive, komplexwertige, dielektrische Konstante
¢ eingrenzen als die Schranken erster und zweiter Ordnung. Den hierfiir benétigten geo-
metrischen Parameter ¢ (Milton-Torquato Parameter) kann man aus der , Kreuzrelation“
gewinnen, und zwar aus der effektiven Wéarmeleitfahigkeit mit Hilfe der Schranken von
Beran [15].

Im linear elastischen Fall 148t sich das Randwertproblem mittels der Methode der Fini-
ten Elemente diskretisieren. Die Finite-Elemente-Gleichungen kénnen z. B. mit Hilfe des
Ritzschen Verfahrens hergeleitet werden. Aus der Losung des Gleichungsystems werden
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die lokalen Verzerrungen und die lokalen Spannungen ermittelt. Die effektiven elastischen
Moduli kénnen aus den gemittelten Verzerrungen und den gemittelten Spannungen be-
rechnet werden. Als Datensatz wird ein Teil des Fontainebleau-Sandsteins (D1) mit der
Grofle 64 x 64 x 64 Pixel verwendet. Zwei Fille von niedrigem und hohem Kontrast-
verhiltnis werden untersucht: (i) Kompressionsmodul K* = 1.0 - 10°N/mm? und Schub-
modul G* = 2.0-10°N/mm? bzw. K% = 20.0- 10°N/mm? und G* = 50.0- 10°N/mm?. (ii)
Kompressionsmodul K¥ = 17.5-10°N/mm? und Schubmodul G¥ = 8.0- 10°N/mm? bzw.
Kompressionsmodul K* = 1750 - 10°N/mm? und Schubmodul G¥ = 800 - 10°N/mm?.

Hierbei bezeichnen sich die hochgestellten Indizes F und S jeweils auf die Phasen ¢ and

©°.

Wie im Fall der Wiarmeleitung liefern alle ,,direkten“ Nidherungsmethoden fiir geringes
Kontrastverhéltnis Resultate, die mit den Ergebnissen der Finite-Elemente-Methode sehr
gut iibereinstimmen. Fiir hohere Kontrastverhiltnisse sind die Resultat allerdings sehr
unterschiedlich in ihrer Genauigkeit, wobei die BEMA noch die besten Ergebnisse liefert.

Die geometrischen Parameter, die fiir die Schranken dritter Ordnung von Beran-
Molyneux und von McCoy benotigt werden, konnen aus der effektiven Wirmeleitfahigkeit
gewonnen werden. Diese Schranken sind schirfer als die Schranken von Hashin-Shirikman.
Weiterhin kann die obere Schranke von Beran-Molyneux bzw. von McCoy benutzt werden,
um den effektiven Kompressionsmodul K bzw. den effektiven Schubmodul G zu appro-
ximieren. Zwar liegen alle Resultate der ,direkten“ Naherungsmethoden innerhalb der
Schranken von Hashin-Shtrikman, aber nur die BEMA und die DEM liegen auch inner-
halb der Schranken von dritter Ordnung. Da jedoch der effektive Kompressionsmodul K,
der mittels der DEM berechnet wird, zu niedrig ist, empfiehlt sich hier die Verwendung
der BEMA.

Ist keine detaillierte Kenntnis iiber die Mikrogeometrie heterogener Medien vorhan-
den, kann folgendes Fazit gezogen werden: (i) Im Fall niedriger Kontrastverhéltnisse kann
man ,direkte“ Niherungsmethoden zur Bestimmung der effektiven Warmeleitfihigkeit
(darunter auch die effektive reellwertige dielektrische Konstante, die effektive elektrische
Leitfahigkeit, die effektive Diffusionskonstante und die effektiven magnetische Suszeptibi-
litdt) und der elastischen Konstanten benutzen. (ii) Im Fall h6herer Kontrastverhéltnisse
miissen die ,direkten“ Methoden mit duflerster Vorsicht benutzt werden. (iii) Ist ein ef-
fektiver Materialparameter, z. B. die effektive Wirmeleitfihigkeit, fiir ein bestimmtes
Kontrastverhéltnis bekannt, kann dieser effektive Materialparameter zusammen mit der
,Kreuzrelationen“ ausgenutzt werden, um schirfere Schranken fiir andere Materialpara-
meter (die elastischen Konstanten, die komplexwertige dielektrische Konstante) zu er-
mitteln. Diese Methode erweist sich in Fille hoherer Kontrastverhéltnisse und der kom-
plexwertigen dielektrischen Konstanten als sehr niitzlich. (iv) Im Fall komplexwertiger
dielektrischer Konstanten sind zur Bestimmung der effektiven komplexwertigen dielektri-
schen Konstanten die ,Schranken“-Methoden von Bergman und Milton die geeignetesten
Methode.



Chapter 1

Introduction

1.1 Statement of the problem

Heterogeneous materials can often be considered as mixtures of homogeneous constituents.
Examples for such materials are natural materials like wood, soil, rock, lake and sea
ice, snow, parts of human bodies (liver, various biological tissues, blood, bones, etc.),
agricultural products, and human-made materials like bricks, concrete, ceramics, fibre
reinforced materials, metal matrix composites, contact lenses, woven-clothes and so on.
The material properties of the heterogeneous material vary from grain (small region) to
grain. Within the grain, the material properties are uniform and equal to the material
properties of one of the constituents. The size scale of the grains is called the micro-length-
scale and it defines the domain of microscopic properties. On larger scales (the macro-
length-scale), the heterogeneous material often behaves like a homogeneous material with
effective material properties which generally differ from those of the constituents. Material
properties are defined as the abilities of materials to respond to the imposed stimuli.
Three representative examples are investigated. Namely, the problem of heat conduction,
of electromagnetism and of linear elasticity. The effective material parameters governing
the different models on the macroscopic scale are the effective thermal conductivity, the
effective electric permittivity, and the effective elastic moduli.

Thermal conductivity is defined as the ability of a conducting material to transport
heat due to an imposed temperature gradient field. Thermal conductivity plays a central
role in various engineering applications. For example, the knowledge of thermal conduc-
tivities of soils and rocks can be used to determine the loss of heat from buried pipes
such as steam and hot water distribution lines, electrical power transmission lines, and oil
and gas lines. This knowledge is also helpful in designing thermally insulating materials
such as enhanced heat insulation for porous building materials, enhanced safety in fires
for high performance concrete and enhanced heat transfer for fiber-ceramic composites in
the automobile.

The electric permittivity is defined as the ability of a material to resist the formation
of an electric field within the material due to an imposed electric field. The knowledge
of the electric permittivity and electric conductivity of heterogeneous media is useful in

11



12 Chapter 1: Introduction

theoretical and applied science. Examples for this case are ranging from the detection of
water or oil content in soils and rocks using electrical measurements in finding water or
oil resources, the microwave heating of agricultural products, the bioimpedance analysis
for gathering information regarding the internal state of human bodies, and the design of
the marine and aircraft systems in radar visibility.

The elastic moduli can be defined as the ability of an elastic material to respond to the
stress caused by an imposed stress field. The knowledge of elastic moduli of heterogeneous
materials are required to study the strength and failure of composite, foam and ceramic
materials, which are extensively used in the aerospace, automobile or construction indus-
tries. This knowledge is also helpful in designing an enhanced strength and toughness of
high performance composite, foam and ceramic materials.

The central problem in the theory of heterogeneous media is the determination of the
effective material parameters. In the literature, several theoretical approaches have been
proposed to determine the effective material properties (Abouds [1], Beran [17], Bergman
& Stroud [22], Christensen [44], Hashin [79, 80|, Jeulin & Ostoja-Starzewski [98], Markov
[115], Nemat-Nasser & Hori [135], Sihvola [164], Suquet [168], Quintanilla [147], Torquato
[170], Willis [191]). These approaches can be divided into exact numerical calculation
methods and approximation methods. In this thesis, all of these methods will be used
to predict the various effective material parameters. This includes thermal conductivity
(by mathematical analogy also the magnetic permeability, the diffusion constant, the
electric conductivity and the real-valued electric permittivity), complex-valued electric
permittivity, and elastic moduli. All of these methods which are applied to determine the
effective properties of heterogeneous materials will be examined and compared to each
other. The best method will be the one which has the optimal balance of the accuracy
of the predictions, the required analysis and the computational effort. The purpose of
the thesis is to have the proper methods and guidelines for predicting various effective
material properties. This can be done by comparing various approaches explained above
which will produce general guideline for predicting the effective material properties.

For an exact numerical calculation, one needs a full information of the microgeome-
try of the heterogeneous medium either by terms of special microstructures or obtained
by image processing techniques. Upon obtaining the detailed microstructure of hetero-
geneous media, one can solve a boundary-value problem of the microscale. Then, the
obtained field quantities can be averaged, and from these averaging quantities, the ef-
fective material parameters can be computed. In general, the microgeometrical data are
stored in discrete digital image form. Therefore, appropriate numerical algorithms should
be developed. For this purpose, in this thesis, numerical algorithms based on the finite
volume method (Patankar [141]) and based on the finite element method (Hughes [95])
will be implemented. Other works and methods related to this subject are the finite dif-
ference method (Adler [2]), the fast Fourier transformation (Moulinec et al. [134]) and
the lattice- Boltzmann method (van Genabeek & Rothman [178]).

The approximation methods can be classified into direct methods and bounds methods.
In most engineering and science problems, these methods are the sole methods to estimate
the effective material parameters, because in most cases, only a partial information of
the microgeometry such as volume fractions of the constituents, two-point correlation
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functions and/or specific internal surfaces are known. These methods are also used, if one
needs an easy way to predict the effective material properties.

The direct methods use some assumptions and postulations based on some physical
intuition about the microstructure of the system to model the heterogeneous medium.
From this model, one can obtain so-called mixing laws, which give the prediction of the
effective properties of the materials. Since in many technical and engineering disciplines
(physics, electromagnetics, material science, applied mechanics, thermal engineering or
bio-engineering) the prediction of the effective material parameters plays a central role, a
vast number of mixing laws has evolved based on the theoretical and empirical framework
(Aboudi [1], Markov [115], Nemat-Nasser & Hori [135], Priou [146], Sihvola [164]). There-
fore, it is important to investigate some of commonly used mixing laws and whenever
possible, to find their relationships. Many of the widely used mixing laws can be derived
from one principle, namely from the effective medium theory also called the self-consistent
method (Choy [43], Landauer [108|, Kréner [105], Nemat-Nasser & Hori [135]). These
mixing laws are obtained in heuristic manners, therefore, the only way to justify their ac-
curacy is by comparing their predicted effective value with the computer simulation data.
This thesis is also intended to study the widely used mixing laws based on the effective
medium approximation, and whenever possible, the predictions using these mixing laws
will be compared to the computer simulation data.

The second class of the approximation methods is the bounds method (Beran [17],
Bergman [19, 21|, Krdner [106], Milton [126, 127, 129], Ponte Castaneda & Suquet [39],
Willis [191, 192]). In bounds methods, lower and upper bounds are established and applied
to confine the effective material parameters of a heterogeneous medium. The advantage
of the bounds method is that the bounds can be derived rigorously and be made narrower
by systematically incorporating more microstructural information.

Bounds which can be attained for all values of constituents material parameters, vol-
ume fractions, and correlation functions are called the optimal bounds. The optimal
bounds are the tightest bounds in their class, which means that one cannot obtain tighter
bounds with the same microstructure information as the input data. Prominent exam-
ples are Voigt [182], Reuss [150], and Hashin-Shtrikman [83] bounds. The Voigt and
Reuss bounds are the narrowest bounds that can be obtained if only the constituents
material parameters and the constituents volume fractions are known. If in addition to
constituents material parameters and constituents volume fractions, the medium is known
to be isotropic, then the best attained bounds are the Hashin-Shitrikman bounds which are
narrower than the Voigt and Reuss bounds. Thus, it is clear that the more information
is incorporated into the bounds, the narrower they will be.

Unfortunately, in most practical situation, the required information to attain optimal
bounds is not available. This inappropriate information can be (i) the volume fractions
and only one microgeometry parameter are known, whereas it needs the volume fractions
and two known microgeometry parameter. (ii) the volume fractions and the value of
some effective material parameters are known, whereas the value of some effective material
parameter indeed are not needed, (iii) only the value of some effective material parameters
are known, whereas it is not needed. Therefore, it is important to find a method to use
the available information optimally. This idea has been proposed by Prager [144] and
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Berryman & Milton [26]; however, a critical evaluation using real heterogeneous media
is provided nowhere. The last part of this thesis deals with the quantitative prediction
of effective material parameters using bounds methods. Furthermore, the comparison
with the computational data and with the predictions using direct methods will also be
presented.

1.2 Scope of this thesis

The structure of this thesis is outlined as follows.

Chapter 2 is devoted to stochastic methods and to the characterization of random
media. First, in Section 2.1, a brief introduction to the probability theory is given, followed
by the discussion of the statistical homogeneity and ergodicity. Then, the probability
tool is used to characterize random media quantitatively. These quantities can be solely
numbers such as porosity or specific internal surfaces, or functions such as correlation
functions, local porosity distribution functions or local percolation distribution functions.
Then, these characterization methods will be modified and applied to digital images, which
can be seen as discrete media (Section 2.3). In Subsection 2.3.1, the Hoshen-Kopelman
algorithm is introduced, which is used to assess the connectivity property of the phases of
the discrete medium. Finally, the characterization methods are applied to the digitized
real materials, which are obtained from the computer tomography (Section 2.4).

Chapter 3 deals with some concepts and basic laws of continuum physics and with the
relationship between the macro-properties (effective properties) and the microstructure
of the micro-constituents. In Section 3.1, a brief discussion of the kinematics (motion and
deformation) of continua regardless of their forces will be presented. Then, in Section 3.2,
attention will be focused on balance equations which are independent of the material
properties and the geometry. Kinematical relationships and balance equations alone are
still insufficient to solve boundary-value problems. In order to solve these problems,
constitutive equations are needed. This topic will be discussed in Section 3.3. Since this
thesis will treat three basic physical problems namely heat transfer, electrostatics and
elastomechanics, the discussion of the corresponding constitutive equations for conductive,
electromagnetic non-deformable, and linear elastic solid materials will be presented. The
second part of Chapter 3 will be focused on the transition of field quantities from the
microscale to those of the macroscale. The volume averaging procedure may be used as
a vehicle for this transition. The volume averaging procedure is tied to the concept of a
representative volume element as discussed in Section 3.4. Then the associated boundary-
value problems and the associated averaging theorems will be given in Section 3.5. By
assuming that the random media behaviour is governed by the same constitutive laws
both on the micro- and macrolevel, the effective material parameters of the random media
which provide the relation between the field quantities on the micro- and macrolevel, will
be defined in Section 3.7. In general, these effective material parameters are different
from those of the components of random media. Section 3.6 discusses the condition
under which these effective constitutive laws are valid. The overall material properties
provide the relation between the field quantities on the micro- and macrolevel, in which
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the macrofield quantities can be seen as the average of the corresponding microfields.

Chapter 4 provides the numerical techniques to solve the boundary-value problems
of the digitized inhomogeneous media. Section 4.1 deals with the discretization of the
heat conduction (Laplace) equation for inhomogeneous media using the finite volume
method. Section 4.2 presents the discretization of the complex-valued Laplace equation
using the finite volume method. This complex-valued Laplacean governs the quasi-static
electric field in a dissipative medium. Section 4.3 discusses the discretization of the
potential energy equation for an elastic medium using the finite element method based
on the Rayleigh-Ritz variational formulation. Section 4.4 focuses on the solving of these
discretization equations. In the real-valued case, depending on the size of the linear system
of the discretization equations, two solvers will be presented, namely, the successive over-
relaxation (SOR) and the conjugate-gradient (cg) methods. In the complex-valued case,
the cg method has to be modified appropriately and this method will be presented in
Subsection 4.4.3.

In Chapter 5, a number of widely used approximation methods based on the effec-
tive medium theory are studied in a systematic manner. These approximation methods
will be used to predict the effective material parameters of three different physical cases
(linear thermal conductive, linear electric and linear elastic cases). The effective medium
approximations make use of the solution of the so-called single inclusion problem, which is
a boundary-value problem for an inclusion embedded in an infinite homogeneous medium
with different material properties. The first part of this chapter deals with the linear
thermal conductive material. It starts with the boundary-value problem for a single in-
clusion. Using the solution of this boundary-value problem, the Bruggeman effective
medium approximation (BEMA), the Mazwell-Garnett theory (MGT), the differential ef-
fective medium (DEM), and the recently developed mixing law based on the local porosity
theory can be derived. Since the effective thermal conductivity can only be obtained using
a numerical method, the corresponding numerical method will be presented in Subsec-
tion 5.1.5. All of these mixing laws can be also applied to compute the effective complex-
valued permittivity of a dissipative linear electric material. Therefore, in Section 5.2, all
of these mixing laws will be collected and rewritten in the corresponding forms. The
numerical method which is used to solve the complex-valued equation of the mixing law
based on the local porosity theory will be given in Section 5.2. The last part of this
chapter is devoted to predicting the effective elastic moduli using the mixing laws which
are similar to those of the linear thermal conductivity case. This includes the BEMA, the
MGT, the DEM and the generalized self-consistent method (GSCM). The derivation of
these mixing laws is established using the solutions of the single inclusion problem, which
can be divided into the dilatation and the shear state.

Chapter 6 presents the so-called bounds method for estimating effective material pa-
rameters. The bounds method confines the actual value of the effective material parameter
using lower and upper bounds. These bounds can be made successively tighter by taking
into account more geometrical and physical information of the heterogeneous medium.
The bounds on the real-valued material parameters will be derived using the classical
variational principles as well as the Hashin-Shitrikman variational principles. Applying
these variational principles to the linear conductive case, the bounds on the effective
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thermal conductivity can be attained. This includes the Wiener, Hashin-Shirikman, and
Beran bounds (Section 6.2). Then the bounds on the complex-valued permittivity will
be derived using Bergman’s representation theorem in Section 6.3. Section 6.4 deals with
the bounds on the elastic moduli such as the Reuss and the Voigt, the Hashin-Shtrikman,
the Beran-Molyneur and the McCoy bounds. Finally, attention is focused on the cross
property relations between the effective material parameters of the same heterogeneous
medium. These relations link different material parameters to each other. They can be re-
lations between effective thermal and effective electric conductivities or between effective
thermal conductivity and effective elastic moduli or between effective shear and effective
bulk moduli (Section 6.5).

Chapter 7 presents the numerical computation of the effective material parameters
of the digitized samples given in Subsection 2.4. In order to verify the accuracies of the
various mixing laws given in Chapter 5, the predicted effective values will be compared to
the effective values obtained numerically. The bounds method is also employed to justify
the accuracies of these mixing laws. The cross property relationship will also be studied
numerically in this chapter.

Chapter 8 gives the summary of this thesis and some proposals for improving and
extending the present work.



Chapter 2

Stochastic foundations and
characterization of random media

The stochastic nature of the microstructure of a heterogeneous medium causes fluctua-
tions in its physical properties such as material parameters, internal electric fields, internal
stresses or internal strains (Azell & Helsing, [8] Beran [20], Bobeth & Diener [33], Widja-
jakusuma et al. [187]), and in geometrical properties such as volume fractions, internal
surfaces or microstructure connectivity (Biswal et al. [31], Cheng & Torquato [41]). In
Section 2.1.1 some of the stochastic methods which effectively capture these random fluc-
tuations in heterogeneous media are briefly described.

In most real situations, only the average (macroscopic) physical and geometrical quan-
tities are known or are of interest. Thus, statistical methods are needed for characterizing
the underlying fluctuations in the microstructure properties quantitatively and relating
them to the macroscopic parameters. The macroscopic physical and geometrical quanti-
ties can be interpreted as the average values of the corresponding local quantities. As an
example, consider the flow of fluid through a permeable rock. For most cases, it is not
possible to know the detailed velocity distribution of the fluid within a single pore and
the average velocity of the water within a single pore, more over it is not desirable. On
the other hand, the variation of the average velocity of the fluid as it moves through the
rock over distances which are large compared to the average diameter of a pore is known.
This average velocity can be interpreted as the volume average of the velocity of the fluid
at each point in the structure.

Two types of averages are considered in the theory of heterogeneous media: the en-
semble average and the volume average. The ensemble average involves an addition of
observed values from many independent realizations and a division of the sum of the
observed values by the number of observations (samples), whereas the volume average
involves an integration of the observed values over the entire or the partial region of the
medium and dividing it by the volume of the region. The ensemble average is more gen-
eral than the volume average. Consider a beam loaded by a single force in the middle and
supported at the ends. The ensemble, in this case, could be a set of samples with small
variations in the point where the force is applied. If the observer can control the variabil-
ity precisely, the ensemble may even consist of only one realization. Here, the ensemble
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averaging leads to the correct shear force with the jump from negative to positive, which
is the exact solution. The volume averaging, on the other hand, leads to the vanishing
shear force.

Although the ensemble average is more general than the volume average, it requires
a large number of realizations (samples). Therefore, in practice, the volume average
which requires only one sample is more widely used. However, the requirement that the
heterogeneous sample must have a large (infinite) volume is hard to fulfill in most practical
cases. Two assumptions are made to overcome this: (i) the sample is assumed statistically
homogeneous, i. e., the volume of the given sample or any large enough subvolume of the
given sample can be used for volume averaging, and (ii) ergodicity, i. e., the ensemble
average is equivalent to the volume average. This leads to the concept of the representative
volume element, which will be briefly discussed in the next chapter (Nemat-Nasser & Hori
[135], Krajcinovic [102]).

In practice, a detailed description of the microgeometry of a random heterogeneous
medium is not available and also impractical. Therefore, it is important to characterize
a random heterogeneous medium without knowing the microgeometry in all its detail.
Moreover, these characterization must be useful in estimating the effective material pa-
rameters. By applying the stochastic tools described in Section 2.1, a random heteroge-
neous medium can be characterized using some partial geometrical information. This can
be volume fractions, specific internal surfaces, n-point correlation function or distribution
functions of the constituents’ volume fractions or of the constituents’ connectivity prop-
erties. Section 2.2 will be devoted to discussing some of these characterization quantities.

These characterization methods will be applied to real heterogeneous samples. Through
recent advances in digital image processing techniques such as X-ray imaging, scanning
and transmission electron microscopy, nuclear magnetic resonance (Wong [142] and the
references therein), high resolution microgeometrical information of heterogeneous sam-
ples can now be obtained. These valuable techniques are nondestructive, which means
that the same samples can be reused in complementary studies either by any of the above
techniques or by doing direct experimental measurements. In Section 2.3, the statistical
methods discussed in Section 2.1 and the geometrical characterization methods discussed
in Section 2.2 are reformulated to be compatible with these discrete media. Then, in
Section 2.4, these methods will be applied to the digitized samples.

2.1 Elements of stochastic methods

2.1.1 Random process and probability density functions

Consider a collection of N samples of a fluid-saturated porous aluminium foam endowed
with a Cartesian coordinate frame {O, e;} with the origin O at the same material point
for each specimen. Considering the saturated foam as a biphasic material, the indicator
function Z%(w;,x) can be used for describing the solid and the fluid phases ¢° and ¥
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(the saturated aluminium foam):

1 : for x€ p*(wi),

Tnx) = { 0 : for x¢ ¢*(w). 21)

Therein, w; represents the i-th specimen, x is the position vector and ¢*(w;) indicates the
phase ©® of the i-th specimen. The collection of such specimens is called an ensemble. w;
is one of the realizations and the set w of all possible realizations forms the sample space.
The function Z%(w, x) is called a (discrete) random field or a random process, which is a
multidimensional function of the sample space w and the position x.

Consider a point P; at x; of each porous medium of the ensemble. It is impossible
to say exactly whether this point belongs to the fluid phase ¢ or to the solid phase
¢°. The probability of P, belonging to the phase ¢® is assigned by introducing one-point
probability density functions

a

P () = p(Txr) = 1) = lim == (T9(x) ) = S5 (), (22)
where N denotes the number of specimens in which P; is located in the phase ¢®. The
angular brackets in (2.2) denote the ensemble average taken over all possible realizations.
The function Z%(x;) is a representation of a random variable and, for simplicity, the vari-
able w has been dropped henceforth. S%(x;) denotes the one-point correlation function,
which is the averaging of the indicator function Z%(x;). For Z%(x;), its averaging is ex-
actly the same as the probability p(Z®(x;) = 1), therefore, the correlation function will
be referred as the probability function of the phase ¢®.

The probability density function p® (x;) provides very limited information. Additional
information, such as whether two points of the specimen at distance r belong to the same
phase, or the shapes of the phases, or the connectivity of the phases etc., can be obtained
through higher point correlation functions. The two-point probability density function
p®® (x1,X9) gives the probability of finding two points in the phase ¢®. It is defined as

a,o _ o _ o _ I 1 N&e
PP (xuxe) = p(Ix) =1, I%(xe) = 1) = lim —
- <Ia(x1)l'°‘(x2)> = S%(x1,%s), (2.3)

where N%% is the number of specimens where both points fall simultaneously into the
phase ¢®. Particular and analogous interpretations can be applied for pf(xi,xs),
pI(x1, %), pPF(x1,%2) and p¥°(xy,x3). Consequently, the n-point probability density
function for phase ¢* is defined as

PO (%0, X)) = <Ia(x1) ---Ia(xn)> = S%(x1, ). (2.4)

In general, there are 2" numbers of n-point probability density functions. These n-
point correlation functions can be expressed as a set, of correlation functions for a phase ¢
(Torquato & Stell [172]). Thus, one can simply consider the correlation functions for phase
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Figure 2.1: Lower-order correlation functions. Shown are the one-point correlation function S7',
two-point correlation function S§ and the three-point correlation function S§ for
phase p® (grey region).

©® denoted by S,,. If the points x; - - - x,, become more and more dense, the microstruc-
ture information contained in the n-point probability density functions also increases. In
the limit of n — oo, the probability functional hm Sn (X1, ,X,) = p(x) completely

describes the whole random medium. Here, the probablhty den51ty functions instead of
the cumulative distribution functions are used to describe the random quantities. Hence,
the probability density function of a random variable E will be used interchangeably with
the terms probability distribution of E or distribution of E or just probability of E.

If the random variables E(x;),-- -, E(x,) are assumed to take any value on the real
line, the joint probability density function p (E(x;),-- -, E(x,)) dE(x;)---dE(x,) gives
the probability that F(x;) lies between E(x;) —1/2dE(x;) and E(x;) +1/2dFE(x;) and
E(x9) lies between E(x3) — 1/2dE(xy) and E(x3) + 1/2/,dE(x2) and so forth. Then,
a marginal probability density function can be obtained from n-point probability density
function by

(n— 1) —fold
B(x) / / E(xy), - B(x,))
dE(x1) -+ -dE(xi—1) dE(Xi11) - - - dE(xy). (2.5)
This relates the values of F(x) at point x; to the values at other points xi,-- - ,X; 1, X;11
,X,. The expectation value or ensemble average of any function ( f(E(x1),---, E(x,)))

is defined as

(FExy), - E / /f (x1),- , B(xn))
-+, E(x,)) dE(x1) - - - dE(x5,). (2.6)
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A more thorough and rigorous treatment of stochastic methods can be found elsewhere
(Beran [17], Papoulis [140]).

2.1.2 Statistical homogeneity and ergodicity

As discussed above, the random variable is assumed to be stationary or homogeneous,

e., its probability density function p(F(x1), F(x2), -, E(x,)) is invariant under any
translation q € V3
p(E(Xl)a E(XQ)ﬂ T aE(Xn)) = p(E(Xl + Q), E(X2 + CI), e aE(Xn + Q)) (2'7)

The property of statistical homogeneity implies that the probability density function
p(E(x1), E(x2),- -, E(x,)) does not depend on the chosen origin but depends solely on
(n — 1) position vectors, i. e., p(E(0), E(x2 — X1),--- , E(x, —x;1)). Note that the term
homogeneous refers to the probability density functions and not to the sample itself.
Particularly, the expectation value of the random variable ( F(x)) does not depend on
the position at all

(E(x)) =/°° Ep(E)dE = (E). (2.8)

o
The definition of statistical stationarity or homogeneity introduced above is termed as
strict-sense stationary. This definition of statistical homogeneity can be weakened by
requiring that only one-point and two-point probability density functions are invariant
under the translation q. This less restrictive definition is called wide-sense stationary.
(Aundn & Chandrasekar [7]).

Due to statistical homogeneity, the statistical properties of the whole space are similar.
Thus, one can substitute the ensemble averages (2.6) by the volume averages of any
single sample, i. e., each single realization completely represents the whole ensemble.
This property is known as ergodicity. In this case, one has

(f(E(x1),--+, E(xn))) = f(E(x1), -+, E(xn)) (2.9)

with

f(E(Xl)a"' :E(Xn = lim _/f X1+q E(Xn+q)) d?), (210)
Voo V

where the integral is evaluated with respect to the variable q. The integral is taken over
the body B of the heterogeneous medium, and V' represents its volume. Consequently,
under the assumption of ergodicity, the average of the random variable F(x) can be
expressed as

_ 00 1

E:/ E(x)p(E(x))dE(x) = lim —/E(x) dv. (2.11)

—00 Vooo V B

From (2.11), it is seen that ergodicity, on the one hand, requires the ensemble to be
independent of the spatial position and, on the other hand, the volume average to be
independent of the realization, i. e., an ergodic ensemble must be stationary, but a sta-
tionary ensemble needs not to be ergodic.
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The basic underlying assumption of statistical homogeneity is never exactly satisfied in
actual problems. To be exactly homogeneous, an infinite volume is needed. Therefore, it
is important to ensure that homogeneity can be assumed approximately in space intervals.
These intervals are much larger than the characteristic lengths of the microscopic inhomo-
geneity. The assumption of statistical homogeneity in the theory of heterogeneous media
plays the same role as the assumption of homogeneity in the theory of the continuum
physics.

2.2 Geometrical properties of heterogeneous media

The overall physical properties of heterogenous media depend strongly on their microstruc-
tures. Unfortunately, in most physical situations, only partial information of the mi-
crostructure is known. Therefore, it is necessary to develop some geometrical quantities
which, based on this partial information, can be used as input parameters for predicting
the effective physical properties. These geometrical quantities can take different forms,
such as simple numbers like volume fractions or specific internal surfaces, or functions,
such as correlation functions or fluctuations of the volume fractions. They should be
measurable and independent of the experimental method. Furthermore, it is desirable
to develop geometrical quantities which are sensitive enough to the topological and ge-
ometrical properties and which can be used to distinguish one heterogeneous medium
from another. For example, the porosities or the two-point correlation functions from two
different media can be nearly identical, even though their microstructures may be very
different.

2.2.1 Correlation functions, porosity and specific internal
surfaces

The porosity or the one-point correlation function has significant influence on the effective
transport properties of a porous material. It is defined as the ratio of the volume of the
pore space VI to the total sample volume V:

nt =TIF(x,) =VF)V. (2.12)

Note that in this work it has to be differentiated between the local volume fraction n’" (of
a subregion) and the total volume fraction 7¥" (of the whole medium). In addition to the
porosity, a second type of one-point correlation functions known as the one-point surface
correlation function M (x), also plays a prominent role in various transport phenomena of
porous media. Examples can be found in porous catalysts (Dullien [53], Sahimi [153, 154])
or in fluid transport and fluid trapping in porous media (Scheidegger [155], Torquato [170]).

Here, the interface indicator function M(x) = |grad Z¥(x) | is a generalized function,
which is non zero when x is located on the interface OF and zero elsewhere:

1 : for xe€dpl,

Mx) = { 0 : for x¢ dp". (2.13)
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The function 5 defined as the ratio of the internal surface area 4%°" and the total sample
volume V' can be used to define the specific internal surface area s:

§=M(x) =A% /V [m. (2.14)

The porosity and the specific internal surface, are insufficient for a complete statistical
characterization of a porous medium, since they do not provide any information about
how the components of the porous medium vary from point to point. As discussed in the
previous section, a full characterization of a porous medium requires the complete n-point
correlation functions ( Torquato [170], Torquato & Stell [172, 173]). In practice, however,
mostly the two-point correlation function and rarely three-point correlation functions are
used. Correlations beyond five-point correlation functions are never really computed,
except in some special cases, where they can be determined analytically (Markov [116,
117], Quintanilla [147]).

For any statistically homogeneous and isotropic porous medium, the two-point corre-
lation function S, (x1,x2) depends only on the distance |xo — x;| =7, i. e., Sy (X1, X2) =
Sy (). In this case, the slope of the two-point correlation function at the origin |xo —x;| =
r = 0 can be linked to the specific internal surface 5 (Debye et al. [51], Berryman [27]):

—3 one-dimensional space,
85’2 (’f’ ) < . .
=4 -2 two-dimensional space, (2.15)
or |,_o i
4

three-dimensional space.
The porosity and its square are related to the two-point correlation function via

lim Sy(r) = nt, lim Sy(r) = ()2 (2.16)

r—0 r—00

Sometimes, it is convenient to work with the normalized two-point correlation function
5(r),
3y = OO~ @)
T) =
2 n? (1 —nf)

(2.17)

Obviously, S2(0) = 1 when r = 0 and decays to zero as |r| — oo, i. e., S(o00) = 0.

The distance r at which So(r) becomes effectively zero will be denoted as characteristic
correlation length L.. There are several possibilities to obtain L.. The common way is
to use the value of r at which Sy(r) is equal to exp(—1) or to use the value of r at
which [Sy(r)| < § for a small 6. At this length scale, one can assume that the different
parts of the microstructure cannot interact with each other. This assumption plays an
important role in the effective medium theory (Chapter 5). Therefore, the correlation
length may be used as a measure of the inhomogeneity scale of the random medium. For
anisotropic mixtures, the correlation length can be different for different space directions.
The relationship between the specific internal surface and the two-point correlation length
can also be obtained in the anisotropic case (Berryman [23]).



24 Chapter 2: Stochastic foundations and characterization of random media

2.2.2 Probability density functions of local geometric
observables

This section deals with the fluctuations of microgeometrical quantities such as porosity,
specific internal surface or connectivity of heterogeneous media. These fluctuations have
been studied by different authors who deal with different problems such as fracture of
composite materials (Botsis & Beldica [35]), scattering by heterogeneous media (Debye
et al. [51], Sheng [162]), characterization of porous media (Biswal et al. [31, 32]) and
transport in porous media (Boger et al. [34], Hilfer [88, 89|, Sahimi [154], Widjajakusuma
et al. [185, 186]). Even in periodic heterogeneous random media, there exist local volume
fraction fluctuations (Quintanilla & Torquato [148]). The fluctuation described by the
standard deviation of the corresponding geometrical quantities is only a number that does
not provide much useful structural information about the heterogeneous medium. The
fluctuations are better captured by corresponding probability density functions. In order
to obtain these, the porous sample can be subdivided into m non-overlapping windows
K!,--- ,K™. For simplicity, the windows are chosen to be cubical of side lengths L.
Thus, one can denote the window as K'(x;, L), where x; is the position vector of the
center of the window K’ (x;, L). Measured geometrical quantities from these windows can
then be collected into various histograms. From these, the probability density function
of the corresponding geometrical properties can be obtained. These probability density
functions depend on the size and shape of the chosen windows. This kind of microstructure
geometry characterization was proposed in the local porosity theory by Hilfer [88, 89] and
in term of coarseness by Lu & Torquato [113].

Local porosity distribution function

The local porosity within the region K!(x;, L) is defined as
V(e" NK' (x;, L))
V(K (x;, L))

where BY represents the region of the phase ¢”. The local porosity distribution function
p(nf, L) is given by

n*(x;, L) = (2.18)

p(n”,L) = %Z(S(n}? —n*(x;, L)), (2.19)

where §(nf — nf(x, L)) is the Dirac delta function. The function p(nf’, L) gives the
probability to find a local porosity n! in the range of nf — 1/2dn% to nf + 1/2dn’.
Clearly, the local porosity and its distribution function rely on how the sample is divided.
For L. = oo, the observed window is equal to the whole porous medium and the local
porosity distribution function reduces to

p(n”, L = 00) = 6(n" —n"). (2.20)

For L = 0, the observed window is equal to a point of the porous medium and the local
porosity distribution function can be expressed in terms of the total porosity 7’

p(n”,L=0)=n"§(n" —1)+ (1 —n")é(n"). (2.21)
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The expectation value of the local porosity is equal to

nt'(L) = /01 n* p(n*, L) dn". (2.22)

Local specific internal surface distribution function

Similarly to (2.18) and (2.19), the local specific internal surface s within the region
K’ (x;, L) and the local specific internal surface distribution function p(s, L) are defined

as .
A" NK' (x4, L))

s(x;, L) = V& (x. D) (2.23)
and .
p(s, L) = % 365 = (i L), (2.24)

respectively. Moreover, one can define a joint probability density p(n’, s, L) of finding a
local porosity nf" and a local specific internal surface s in the range of [nf" —1/2dnf" nf +
1/2dn%] and [s — 1/2ds, s + 1/2ds] as

Z §(nF —nf (x;, L)) 6(s — s(x;, L)). (2.25)

Local percolation distribution function

The phase connectivity of a heterogeneous medium plays a decisive role in transport
phenomena of the heterogeneous medium. For example, the values of conductivity and
permeability of a porous medium depend significantly on how good or how bad is the
interconnectivity between the pores. The strength of the porous material is determined
by the connection of its matrix phase. These connectivity properties of a heterogeneous
medium can be captured through the percolation theory.

Originally, Flory [66] and Stockmayer [166] introduced percolation processes in dealing
with the problems of polymerization and gelation. Many years later, Broadbent & Ham-
mersley [36] reintroduced the percolation concept in the context of the spreading of fluid
particles through a porous medium. The terms of percolation can be seen as the flow
of fluid through heterogeneous media; similar to the flow of coffee in a percolator. The
connectivity varies randomly within the medium meaning that through some subregions
(windows) the fluid can flow easier than through others; however, at some subregions it
cannot flow at all. The term fluid-flow can be interpreted in a general sense meaning that
it could be a flow of liquid, a flow of electric current, a spread of disease, a passing of
information, and so on. Similarly, the heterogeneous medium can be interpreted as an
alloy, population in a city, computer network and so on. A comprehensive treatment and
the application of the percolation theory in various disciplines of sciences and engineering
can be found in, e. g., Stauffer & Aharony [165] and Sahimi [153].
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Consider a percolation parameter p, which gives the average degree of connectivity
between various subregions of a random medium. When p, = 0, all subregions are
totally isolated from every other subregion. When p, = 1, all subregions are connected
to neighbouring subregions. When the random medium is connected from one side to the
other through paths which span completely across the system, a so-called spanning cluster
exists. The term percolation threshold p.. can be defined in the following way. Starting
from p, = 0 if one creates connections among the subregions, at p; = pr., a spanning
cluster exists for the first time. When p; > p.., there always exists a spanning cluster,
although some isolated clusters can still be present. Applying the concept of percolation
to the flow problems of (heterogeneous) porous media means that, whenever the porosity
of a porous medium is above this critical value, fluid particles can always flow from one
side of the random medium to its opposite side and, whenever porosity is below this value,
the fluid particles can not flow from one side to the opposite side.

Similar to the definitions of the local porosity and of the local specific internal surface,
the indicator function for the connectivity of the pore space within a subregion K’ (x;, L)
can be defined. This connectivity indicator function £(x;, L) takes the value 1 if fluid can
flow from one side to the opposite side and takes the value 0 otherwise:

1 : if K (x; L) allows isotropic percolation,

L(x;, L) = { (2.26)

0 : otherwise.

The local percolation probability p.(n', L) is the probability of finding a percolating
geometry in all three directions in the observed window K¢ of length L in which the local
porosity and the local specific internal surface area are nf and s, respectively.

™ L(x;, L) §(n" —n¥(x;, L)) (s — s(x;, L
:Z( ) (xi, L)) 8(s — s(xi, L))

§(nF — nF (x;,L))6(s — s(xi, L)) (2.27)

=1

Total fraction of percolating regions

The local percolation probability p.(nf’, s, L) gives the local connectivity property (con-
nectivity property of windows K¢). To obtain the global overall connectivity, one has to
take the average of the local percolation probability over all windows:

p(L) = /000/0 p(n®, s, L) ps(nF, s, L) dnt ds. (2.28)

The function p(L) gives the total fraction of percolating cells. If the value of p(L) of

a given porous sample is above (under) some critical value p., then fluid can (not) flow

through this porous sample. Obviously, Llim p(L) = 0 if the pore space of a given porous
—00

sample is disconnected and Llim p(L) = 1 if its pore space is connected.
— 00
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2.3 Digital images and their geometrical
characterization

In practice, microgeometric information of a heterogeneous medium is stored in discrete
digital image form. Therefore, the characterization methods for continuum heterogeneous
media, which are introduced in the previous sections, must be appropriately modified for
this purpose.

To obtain a digital image that can be used for a computational purpose, a digital image
has to pass through following steps: Through image formation, the sample is irradiated
with energy, e. g. x-rays, and it absorbs an amount of energy, which can be converted
into an electric energy and can be measured by a sensor. The sensor, which can be
considered to be moving at particular locations in the image, measures a certain amount
of energy at these particular locations. This can be seen as subdividing the sample into
picture elements and laying the measure point in the middle of the picture element. This
process is known as sampling, and the picture element and its size are called pixel and
spatial resolution, respectively. The second step is to assign (quantize) the continuous
measurement values of the sensor into integer numbers. In general, the integer numbers
range from 0 (black) to 255 (white) corresponding to a grey-level scale. For a biphasic
material composed of ¢° and ¢! only two integer numbers 0 and 1 are needed, which can
be assigned to ¢° and ¢, respectively. The third step is to store the location of each pixel
and the corresponding grey-scale value, on the output data storage device as an array.
Hence, the digital image is just an array of positive integers. A detailed description of
digital image processing can be found in, e. g., Castleman [40].

Certainly, the quality of the digital image approximation is determined by its reso-
lution, the higher the resolution is, the better the real image approximation produced
by digital imaging will be. This can be clearly seen in Figure 2.2. By decreasing the
resolution size, the surface value of the digitized circle approximates better the surface
value of the actual circle; by simply counting the pixels, one can show that the approxi-
mation error decreases from 27.32 % (at the resolution size r) to 0.53 % (at the resolution
size r/8). However, the approximation of the circle circumference by the digitized circle
remains the same, i. e., 8, independent of the resolution size. This discrepancy has to
be always taken into account when dealing with internal surfaces of digitized heteroge-
neous samples. Similar to the two-dimensional case, in the three-dimensional case, when
a sphere is approximated by a digitized image of cubic voxels, the sphere and its volume
can be well approximated at high resolutions, but the sphere’s surface is approximated
by 67r? at any resolution size.

Now, the statistical methods and the characterization methods presented in the pre-
vious section are reformulated to be applied to the digital image. Let us consider the
three-dimensional digitized biphasic sample (composed of phases ¢° and ¢) with the di-

mension M; X My X M3 and the resolution size a. The indicator function Z' (x;) indicating
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Figure 2.2: Digital images of a circle of radius r at different resolution sizes. Top left showing
the digitalization circle at the resolution size r, top right showing it at r/4, and
below showing it at 7/8.

the phase ! can be written as

() 1 : for ! —voxel, (2.29)
X;) = .
0 : for ¢¥ — voxel,

where x; is the location of the ith voxel. Then the total porosity (the volume fraction of
the pore space) of the digital image can be obtained by simply counting the p’-voxels
and dividing with the total number of voxels M = M; M, Mj:

Af = % PREALEH) (2.30)

The standard deviation of the volume fraction can be written as
| M
—F _ [ 1 Fro\ _ =F\2]1/2
devn’ = [M;(I (x;) —7 )] . (2.31)
The standard deviation dev n’', which describes the fluctuation of geometrical quantities,
may be used to examine the fluctuation of computed n% in several cross sections or
several sections of the same heterogeneous sample in predicting the porosity ¥ of the
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whole sample from its cross section. In the same manner, the specific internal surface can
be obtained by counting the interface elements between ¢~ and ”-voxels:

5= % 3 Mix,) (2.32)

Therein, the interface indicator function M(x;) is defined via

1 : for interface between ¢~ and pS-voxels,

M(x;) = { (2.33)

0 : otherwise,

where x; is the position of the interface of p’- and ¢°-voxels. Since digital images have
a finite size M; x M, x M3, the actual evaluation of the two-point correlation function
for the phase ¢! is given by

N
1
1) = 3 DT ) T s+ ), (2.34)
where y is the distance between the points x; and x; +y, N = (M; —y1) X (My — ys) X
(M3 — y3), and y, y» and y3 are the components of the vector y = yie; + y2€9 + yszes.
Sy(y) can be normalized as
= Sa(y) — (@7)?
S = 2.35
For a statistically homogeneous medium, it is useful to convert Sy(y) according to (2.35)
to the form Sy(r) (for details, see Berryman [23]). The three-point correlation function
for the phase " can be given as

S5 = %Zﬂ(x) TP (x + ) T (x + 7). (2.36)

where K = [M;—max(y1, 21)] [Ma—max(ys, 22)] [M3—max(ys, 23)], y; and z; are the vector
components of the distance vectors y and z, respectively. These vector components satisfy
following relationships 0 < 41,21 < (M7 — 1), 0 < 99,20 < (My — 1) and 0 < y3,23 <
(M3 —1). One can measure the correlation functions from a two-dimensional cross section
of the sample. After converting the two-point correlation function Sy(y) of the cross
section into its polar form Sy(r), the corresponding porosity and the specific internal
surface can also be calculated according to (2.15).

Similarly, the local geometrical characterization quantities within an observed cubical
region K’(x;, L) with side length L (in the units of pixel) and centered at x; can be
computed. The local porosity of an observed window can be found by counting the ¢*'-
voxels within it. Thus,

nF(L) = %ZIF(XZ'), (2.37)
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where J = L3. The local porosity distribution p(n’, L) is given by

m

1
F F_F
D)= —S " 6(nF —nf(x, L)), 2.38
p(n )m;(n n (i, L)) (2.38)
where m is the number of placements of the observed window K’ (x;, L) and the function
§(nf —nf(x, L)) is the Dirac delta function. Thereby, K!(x;, L) is placed on all lattice sites
x; which are at least in a distance L/2 from the boundary sample, hence, m = H?:1(Mi -
L+1). The reason to use the overlapping windows instead of the non-overlapping windows

(which are theoretically required) is to ensure better statistics.

The connectivity property of the observed windows can be examined using the Hoshen-
Kopelman algorithm, which is discussed in the next subsection. With the aid of the
indicator function for the connectivity of a region,

1 : if K (x;, L) percolating in all 3 direction,

L(x;, L) = { (2.39)

0 : otherwise,

the local percolation probability pc(n*', L) can be computed via
Zm
d(nf —nf(x;, L)) ) .

pﬁ(nFa L) =

=1

The total fraction of percolating regions of size L is given by integration over all local
porosities:

p(L) = /0 p(n®, L)ps(n®, L) dn”. (2.41)

It is important to note that, although the porosity or the two-point correlation function
of a three-dimensional sample can be estimated from its two-dimensional cross sections,
the percolation property of a three-dimensional sample cannot be similarly mapped from
its two-dimensional cross-section (Stauffer & Aharony [165]). The percolation threshold
is higher for a two-dimensional cross-section. Moreover, real sandstone is corresponding
to the correlated disordered medium and usually has a lower percolation threshold than
the uncorrelated disordered medium.

2.3.1 Hoshen-Kopelman algorithm

The connectivity property in digitized heterogeneous media can be investigated using
Hoshen-Kopelman algorithm (HKA). Consider a two-dimensional lattice with dimension
of 7x 7 pixels (squares), in which the grey (1) and white (0) pixels represent the phases ¢*
and ¢, respectively, as shown in Figure 2.3. Two pixels are called as neighbouring pixels
if and only if they have a common side length, thus a two-dimensional pixel has 4 (north,
east, west and south) neighbours. The neighbouring pixels are defined as connected if
they have the same colour; a cluster is defined as a group of connected neighbour pixels.
Note that by this definition, two pixels belonging to the same class and touching at one
corner are disconnected. For example, the pixel which occupies the first row (from the
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Figure 2.3: Tllustration for the Hoshen- Kopelman algorithm.

top) and the fifth column (from the left) and the pixel which occupies the second row
and the sixth column are not connected according to this definition (see Figure 2.3).
Therefore, a membership of a pixel in a cluster depends on the used neighborhood rule.
However, the results of this connectivity definition are in good agreement with their
continuum counterparts, if the resolution of the digital images are high enough (Garboczi
et al. [70, 71]).

The HKA requires two arrays, one for labels L(i, j) assigned to the cluster number
and another one assigned to the indices of labels N(i), which will be used to reduce the
redundant labels. One can start from the top left corner, go from left to the right in each
line and go down from the top line to the bottom line. To determine the clusters for
the grey pixels, the labels and the indices of the labels are assigned as follows: all of the
white pixels are always set to zero, the grey pixel is assigned to a new integer L(i,j) and
the index of the label is assigned to N(L(Z,j)) = L(i, ), if it does not have both western
and northern grey neighbours, else it is assigned to the number of its neighbours label.
Through this assigning rule, the first both lines look like:

1 11020 3 N1)=1 N@2)=2 N3)=3
0010040 N4=4

In the third line, there is a problem to assign the grey pixel which is at sixth from the
left, because this grey pixel has western and northern grey neighbours, which have two
different labels. In this case, the smaller number of these two labels, i. e., 4, is chosen for
this pixel and simultaneously the index of the larger label is set to the value of smaller
label, i. e., N(5) = 4. This implies that label 5 is redundant label, which can be seen
easily from Figure 2.3. The index of the label will solve this redundant problem, because
of going back to renumber all labels 5 into 4 would be inefficient for a lattice with large
dimension. Now, the third line reads
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0005 5 4 4 NB)=4

Analogically, the reminder of the following lines can be written as

0 06 55 40 N6=5

7 76 0008 N(T7=6 N@B =38
0 76 09 9 0 N9=9

10 06 09 0 0 N(10)=10

The final labels and their indices can be given as

Label L
Index of Label N(L)

4 5 6 7 8 9 10

1 2 3
1 2 3 4 4 5 6 8 9 10

The last step is to check whether a label is redundant or not, because a redundant label
should be renumbered and reassigned to its home cluster. It can be done as follows:

e Check if N(L) = L, if yes, check the next label.

e Else set L = N(L) = L', and check if the new label N(L") = L', if yes, check the
next label.

e Otherwise repeat the above step until the label is equal to its index.

After renumbering, each cluster will have a unique label; the clusters for the above problem
can be renumbered and classified into 7 clusters (cf. Figure 2.4).

Figure 2.4: The label of the clusters after renumbering.

A spanning cluster exists if the same label occurs on two different opposite edges;
in this case it is the cluster with label 4. The HKA given here can be extended to the
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three-dimensional case. A comprehensive review and an efficient computer program for
the two-dimensional case can be found in the appendix of the monograph by Stauffer &
Aharony [165].

2.4 Digitized samples

Figure 2.5: Left: Three-dimensional perspective of surface cuts of a 128 x 128 x 128 voxel of a
Fontainebleau sandstone D1 obtained via microtomography (each voxel has dimen-
sion 7.5 x 7.5 x 7.5 m?3). The pore space is grey and the solid phase is black. Right:
The pore space of the same sample. The pore space is grey and opaque and the solid
phase is transparent.

In this section, the methods discussed in the previous section are applied to analyzing
real digitized heterogeneous media. The obtained characterization quantities will be used
later in connection with estimating the effective material parameters. The sample pre-
sented here uses data of eight natural sandstones produced by computer assisted tomog-
raphy [Source: R. Hilfer [32, 31]]. The first and second samples are weakly consolidated
sandstones (Sst6d and Sst20d) and are abbreviated as samples A and B, respectively. The
third sample is a digitized microstructure of Berea sandstone and is denoted as sample C.
The forth, fifth and sixth samples are digitized Fontainebleau sandstone (D1, D2 and D3,
respectively). Indeed, all of these Fontainebleau samples are obtained by slicing from the
larger Fontainebleau sandstone with dimension 300 x 300 x 299 (in units of pixel). From
Table 2.1, it is obvious that the porosity fluctuates in this larger Fontainebleau sample.

The last two samples (R1 and R2) are obtained by the Gaussian field reconstruction
method (Adler [2] and the references therein). Both samples are numerically reconstructed
[Source: B. Biswal [32, 30]] from the same given real sample C, but with different length
scales. R2 is two times coarser than R1. Thus, R2 has twicely the actual size of R1.
The basic idea of this method is to reconstruct a medium which should have the same
two-point correlation function and volume fractions as the reference (real) medium. The
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main procedure can be described as follows. Firstly, from a reference medium (here Berea
sandstone is selected as a reference medium), the two-point correlation function and the
volume fractions can be measured experimentally. Secondly, a discrete standard Gaussian
field which consists of statistically independent (uncorrelated) Gaussian random variables
is generated. Then, this random fields are successively passed through a linear and a
nonlinear filter. The linear filter changes the uncorrelated random fields to correlated ones,
whose mean value is equal to 0 and whose variance is equal to 1. The given correlation
function and volume fractions are taken into account by constructing this linear filter.
The nonlinear filter produces the reconstructed sample with this correlated random field
as input parameter.

Through the digitization process, the samples are represented by a cubic lattice of
voxels with a resolution (lattice constant) a. The dimension of the samples is denoted
as M; x My x M3 (in unit of a®), the total bulk porosity is m¥ and the specific internal
surface s (in units of 1/a). The bulk porosity and the specific internal surface are found
by counting the pixels of phase ¢! and their interfaces, respectively. Because of the fact
that a digitized sphere has a surface area of approximately 6772 as opposed to 4772 (see
also discussion in Section 2.3 and Figure 2.2), the values of s should be corrected by
multiplying them with the value 4/6.

Sample a M, x My x Ms nt s

fine Sst6d (A) 10pm | 95 x 128 x 128 | 0.3200 | 0.3325
coarse Sst20d (B) | 30um | 73 x 128 x 128 | 0.2470 | 0.2698
Berea (C) 10pm | 128 x 128 x 128 | 0.1775 | 0.2188

Fontainebleau (D1) | 7.5um | 128 x 128 x 128 | 0.1208 | 0.1151
Fontainebleau (D2) | 7.5um | 128 x 128 x 128 | 0.1476 | 0.1133
Fontainebleau (D3) | 7.5um | 128 x 128 x 128 | 0.1171 | 0.1137
R1 10pm | 128 x 128 x 128 | 0.1783 | 0.2837
R2 20pm | 128 x 128 x 128 | 0.1776 | 0.4095

Table 2.1: Resolution a, dimension M; x My x M3 (in units of a?), total porosity 7" and specific
internal surface s (in units of 1/a).

Since all of the Fontainebleau samples were obtained from the same but larger real
Fontainebleau sandstone, one can conclude that the porosity strongly fluctuates from one
region to another, while the specific internal surface fluctuates only slightly. In the case
of the reconstructed samples, all of the samples’ porosities more or less are similar with
the reference porosity (the porosity of sample C) as it should be, however, the internal
surfaces are a little bit different. The significant discrepancy of the specific internal surface
of R2 with those of C and R1 is due to the fact that the resolution of R2 is twice than
those of C and R1. All of these data are summarized in Table 2.1.

In the literature, there are different ways to define the correlation length L.. Recall
that the correlation length is the length, where S(r) becomes effectively zero. To define
L., one can take the length at which S(r) = 0.01 (for other definitions see, e. g., Gardiner
[72]). These correlation length values can be found from the Figures 2.6 and 2.7. They
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are tabulated in Table 2.2. The left side of Figure 2.6 shows the correlation functions of

Sample | L.[a] | s estimated from S(r) | corrected s
A 8.0 0.2355 0.2217
B 8.4 0.1973 0.1799
C 18.4 0.1499 0.1459
D1 13.8 0.0802 0.0767
D2 21.8 0.0791 0.0755
D3 13.9 0.0791 0.0758
R1 18.2 0.1905 0.1891
R2 6.7 0.2753 0.2730

Table 2.2: Correlation length L. (in units of a), the estimation of internal surface s (in units of
a) using correlation values and the values s by direct counting (after the correction

by multiplying with 6/8).
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Figure 2.6: The normalized two-point correlation functions S(r) of different samples.

the first three samples, while the right side of Figure 2.6 shows the correlation functions
of the different parts of the Fontainebleau sandstone. The correlation function of D1
more or less is the same as that of D3, while the correlation function of D2 is quite
different. The correlation functions of the reconstructed media R1 and R2 as displayed in
Figure 2.7 are seen to be in excellent agreement with the reference values of sample C. The
specific internal surface s can be estimated from these correlation functions using (2.15)
and (2.17). The estimated values are displayed in Table 2.2 together with the correction
values of s (from Table 2.1). Obviously, the correlation function provides a reasonable
estimation of the specific internal surface s.

Using the equations of Section 2.2.2, p(nf', L), ps(n¥', L), the function of percolating
regions p(L) can be computed for these eight digitized sandstone samples. In Figure 2.8,
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Figure 2.7: The normalized two-point correlation functions S(r) of Berea sandstone and its
reconstruction models.

p(L) is plotted versus L (in units of a) for the eight samples. For all samples, p(L) is
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Figure 2.8: Total fraction of percolating regions p(L) of the eight samples at different windows’
length L (in the units of a).

sigmoidal in shape. The porosity plays an important role in determining the connec-
tivity of a porous medium (cf. Table 2.1 and the left side of Figure 2.8). However, the
right side of Figure 2.8 implies that the connectivity depends on the morphology of the
microstructure because all of the three samples (C, R1 and R2) have almost the same
average porosities but very different connectivity properties. The connectivity of sample
C is better than those of both reconstructed samples. Therefore, in predicting the effec-
tive material parameters, one has to include more microstructure information in addition
to the porosity. Indeed, in Chapter 7.1, one can see the effective conductivity of sample
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C will be of order 10 larger than the effective conductivities of samples R1 and R2 in
the case of infinite contrast ratio k™ /k® = co. Here, k™ and k5 are the conductivities
of the fluid phase and the solid phase, respectively. This results from the fact that the
reconstructed porous samples R1 and R2 have more isolated pore spaces than the real
sample C (cf. Chapter 7). This can immediately be seen from the pictures of the cross
sections of these three samples as depicted in Figure 2.9.

Figure 2.9: The cross sections of the sample C (left) and its reconstructions R1 (middle) and
R2 (right).
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Chapter 3

Basic equations of continuous media

In Chapter 2 some concepts of stochastics and geometric characterization of random media
have been discussed; however, the discussion excludes any physical laws. Every physical
process, regardless deterministic or random, is governed by physical laws. Heterogeneous
media, both at micro-level and at the macro-level, are governed by the same basic physical
laws, namely, the classical continuum physics. The reason is that the typical micro length-
scale (the size scale of grains) is still much larger than the atomic or molecular length
scale. Therefore, the first part of this chapter is devoted to review some basic ideas and
concepts of the continuum physics. This includes the kinematics of continua (Section 3.1),
the balance principles of continua (Section 3.2) and the constitutive relations (Section 3.3).
The detailed description of the continuum physics are given elsewhere (Ehlers [58, 59],
Eringen & Maugin [63], Haupt [84], Holzapfel [94], Truesdell & Toupin [176]).

The second part of this chapter discusses the relationship between the effective macro-
properties and the micro-properties. The effective macro-properties can be deduced using
the volume averaging procedure. To this end, the concept of a representative volume
element is introduced (Section 3.4). Then in Section 3.5, the associated boundary-value
problems are formulated and the necessary averaging theorems are presented. By consid-
ering the same constitutive laws governing at both levels, the effective material parameters
(the effective thermal conductivity and elastic moduli) can be defined (Section 3.7). Fi-
nally, the validity of the effective constitutive laws (at the macro-level) is examined in
Section 3.6.

3.1 Kinematics of continua

Consider a set of material points occupying a region By of Euclidian space E* at time
to, which has a volume V; and a surface 0B;. The material points are endowed with
physical properties like mass density, charge density, energy density and entropy density,
which are needed to sustain mechanical forces, electromagnetic forces and heat fluxes.
After choosing a particular basic system, every material point X can be put into bijective
correspondence with a particular point in E?, whose position vector is X. This can be

39
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expressed mathematically by
Xy (Bo, ty) € E?,
(3.1)
X = Xo(X, o), X =X, 1(X).
The function X is called configuration. Furthermore, this configuration can be designated
as reference configuration.
A motion is defined as a family of configurations parameterized by the time ¢
X;(B,t) € B,
(3.2)
x = X;(X, 1) = X; (X, 1(X), 1) = X(X, ).

The configuration X(X,t) at the current time ¢ is called current configuration, and x is
the position vector of the material point X at time ¢. If it is assumed that continuum
discontinuities such as coalescence or breakup of the continuum do not occur, then the
motion X;(X,t) is a continuously differentiable bijective mapping (Truesdell & Toupin
[176]). This assumption is known as the aziom of continuity. Thus, (3.2) is invertible:

X = Xx"!(x,1). (3.3)

Equation (3.2), states that a motion transforms the material point X with the spatial
position X at time ¢, to the position x at time ¢. Equation (3.3) states that the position
vector x at time ¢ can be traced back to the starting position X of X at time y. It
is noteworthy to say that the choice of the reference configuration is arbitrary and the
reference configuration needs not even be a configuration ever occupied by the body during
its motion.

The displacement u of the material point X can be defined as relative of its actual
position to its reference position via

u=x-X. (3.4)
The velocity x (X, t) and acceleration x (X, ) of the material point X are defined as
i X (X, 1)
X,t) = ——= 3.5
% (X.1) =20, (35)
. PX(X,t) 0x(X,t)
X,t) = — = : 3.6
% (X, 1) o =, (36)

respectively.

Any vectorial function a given as a(X, ) is called Lagrangean or material description,
whereas given as a(x,t) is called Fulerian or spatial description (Haupt [84], Holzapfel
[94]). The material time derivatives are defined as

. 0
& (X,t) = %MXﬁ::aa@@,
(3.7)

&t = apn =%a@ﬁ+QMa@ﬂk@ﬁ
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for a function in Lagrangean description and a function in Fulerian description, respec-
tively. Here, x (x, ) is the spatial (Eulerian) representation of the velocity. The material
time derivatives express the time rate change of a function a of a material point X. Math-
ematically, d/dt¢ represents the total derivative with respect to time taking into account
the motion of the material point X. Note that the first term and the second term on the
right of (3.7), are called the local and convective derivative, respectively. The local term
describes the rate of change of a at the particular location x, while the convective term
gives the contribution due to the motion of the material point X. Thus, from (3.7)s, the
acceleration in Fulerian description can be given in the form

. _Ox (x,1)

X(x,t):ifc(x,t)— o

at + [grad x (x,1)] % (x,1). (3.8)

3.1.1 The gradient of deformation, displacement and velocity

The deformation gradient F is given by

0
F = 8—; = Grad x, (3.9)
where Grad(-) is the gradient operator with respect to X. The material displacement
gradient Grad u can be obtained by taking the gradient of (3.4), thus

Gradu=F -1 (3.10)

According to the axiom of continuity, F is not singular, i. e., det F # 0. The material
velocity gradient is defined as

- 0x .
F= a_;(( = Grad %, (3.11)
and the spatial velocity gradient is given by
0 X .
L= a—;( = grad x . (3.12)

The relationship between the two descriptions of the velocity gradients can be easily found
from the chain rule of differentiation as

ox 0x0X -
L=—=——"=FF! 1
ox 0X 0x F (3.13)
or, vice verse,
F=LF. (3.14)

The spatial velocity gradient L can be additively and uniquely decomposed into a
symmetric and a skewsymmetric part. The symmetric part D is called the stretching or
strain rate tensor

D=;(L+L"), (3.15)

whereas the skewsymmetric part W is called the spin or vorticity tensor

W=1(L-L"). (3.16)
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3.1.2 Kinematics of line, surface and volume elements

By (3.9), a relationship between a material line element dX in the reference configuration
and a material line dx in the actual configuration can be established as

dx = FdX. (3.17)

By defining dA = dX; x dX5 as the surface element in the reference configuration and
da = dx; x dx, as the surface element in the actual configuration and using (3.17), (A.1)
and (A.2) the corresponding relation for a surface element can be established as

+
da=FdA =detFF'"'dA. (3.18)

Let dV = (dX; x dX3) - dX3 and dv = (dx; x dxy) - dx3 be the volume elements in
the reference and in the actual configurations, respectively. Using (3.17) again and some
simple algebraic manipulations, the following relation can be obtained:

dv = det FdV. (3.19)

The detailed discussion of the relationships (3.17)-(3.18) can be found elsewhere, e. g.
Haupt [84] and Holzapfel [94]. Using (3.17) and (3.13), a relationship between a material
line element dx and its material derivative can be obtained:

(dx)* = FdX = FF'dx = Ldx. (3.20)

Using (3.18) and the relation
+ +
(F) =[(L-)I-L"]F, (3.21)
——
div x
the material time derivative of a surface element (da)* can be obtained:

(da)* = [(divx)I — L"]da. (3.22)

Furthermore, with
(det F)* = det F div x (3.23)

and (3.19), the material derivative (dv)* of volume elements can be calculated as
(dv)* = (div x) do. (3.24)

These relations are applied to compute the derivatives of volume and surface integrals as
required in the balance equations.

The material time derivative of a volume integral of any vector field ¢ over a material
volume B with boundary 0B is given by

d _ . . _[oy .
E/B'(/)dv—/s('gb —l—'t,bdlvx)dv—/B 5 dv+ | 1 (x-da). (3.25)

oB
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This identity is known as the Reynolds’ transport theorem. It can be proven by carrying
material time derivative inside the integral and using (3.7)s, (3.24) and the divergence
theorem (A.9). The result (3.25) can be extended to an observed volume B, with a
boundary 9B,, which is moving with a non-material velocity w, i. e.,

d o

— dv = —d -da). 3.26
gl [ v [ Gravs [ wveaa) (3.26)

This may be seen by imagining that B, U 0B, consists of some fictituous material particles
which have velocity w. If the volume B, is assumed to coincide with the material volume
B at time t, the local derivative in (3.25) can be eliminated using (3.26). This leads to

d d
= dv = —
dt/BdJ YT @

The material time derivative of a surface integral of any vector field € over a material
surface S is given by

/B'z,bdv + . P [(x —w) - da]. (3.27)

< . .
% SC -da = /s [% + (divs) x +rot (Sx x)] - da. (3.28)
The proof of (3.28) follows upon carrying out the material derivative (3.7)y inside the in-
tegral and using (3.22). By making use of Stokes’ theorem (A.11), (3.28) can be rewritten
as

d oS ) . .

— [ §-da= [—+(d1v€) x|-da+ ¢ (Sxx)-dx, (3.29)
where 08 is the boundary of the curve S. Similar to (3.26), (3.29) can be extended to
an observed surface S, bounded by a curve 9S,, which is moving with a non-material
velocity w. Thus,

w/soc.da: /S [%—i— (divc)w} .da+]gso(g X w) - dx. (3.30)

If the surfeace S, is assumed to coincide with the material surface & at time t, the local
time derivative in (3.28) can be substituted using (3.30). This leads to

4
dt

d
_ S-da=—
it oo T @

w[sc'da+[sdivg(i _W).da+£s[g ‘(—w)]-dx. (3.3)

3.1.3 Strain

The deformation gradient F' can be uniquely decomposed into an orthogonal tensor R,
which describes the rotation of line elements, and a symmetric positive-definite tensor,
which describes the deformation of line elements:

F=RU=VR. (3.32)

The second-rank tensors U and V are called the right and left stretch tensors, respectively.
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The difference between the square of the line element in the current configuration and
the square of the line element in the reference configuration is given by

dx-dx —dX-dX = 2E-(dX ® dX)

= 2A - (dx ® dx), (3.33)
where
E=YF'F-I (3.34)
and
A=i{I-F"'F) (3.35)

are known as the Green-Lagrange E and Fuler-Almansi A strain tensors, respectively.

In many cases, it is useful to express the tensor E by means of the displacement
gradient Grad u, which can be gained by inserting (3.10) into (3.33). Thus

E = ; [Gradu + (Gradu)” + (Gradu)” Grad u] . (3.36)

If the displacement gradient is small, the non-linear terms of the finite stress tensor (3.36)
can be neglected and the strain tensor reduces to

e = 1 [Gradu + (Gradu)'], (3.37)

where € denotes the Lagrangean infinitesimal strain tensor.

3.2 Balance relations of continuum physics

3.2.1 Global balance laws

The balance relations of continuum physics can be formulated axiomatically and can be
classified into volume and surface balance relations (Eringen & Maugin [63]).

The master volume balance relation of a vectorial physical field quantity % can be

written as d
—/'(,bdvz/ <I>da+/a'dv. (3.38)
dt /s oB B

(3.38) postulates that the rate of change of ¢ in a body B is equal to the total eflux ® n
across the surface 0B and the external supply o within B. Here, 9 and o are the n-rank
tensor fields, @ is the (n+ 1)-rank tensor field and n is the outwards oriented unit surface
normal of 0B. For a scalar field 1, the terms ® n and & have to be replaced by ¢ -n and

o, respectively. Hence,
d
—/wdv: (,b-da—i-/adv. (3.39)
dt J B B

For electromagnetic continua, (3.38) should be supplemented by the master surface
balance relation which can be formulated as

4 C-daz% T-dx—l—/w-da. (3.40)
dt Js as s
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(3.40) expresses that the rate of change of the physical field quantity § at the two-sided
material surface S is balanced by the total eflux 7 through the closed boundary curve
0S and the external supply o within S.

For open systems, the production terms 'c,Zv and S have to be added to the balance equa-
tions (3.38) and (3.40), respectively. The production terms are caused by the exchange of
the material points with the environment. Prominent examples of this case are concrete
(Newille [136]) and, in general, multiphase continua (de Boer [49], de Boer & Ehlers [50],
Ehlers [56, 60], Truesdell [175]).

3.2.2 Local balance laws and jump conditions

The local form of the balance laws, which are partial differential equations, can be derived
from the global balance laws (3.38) and (3.40). The fields governed by these partial differ-
ential equations must be smooth within the continuum. However, eventhough the fields
are piecewise continuous functions, they still satisfy the global balance equations (3.38)
and (3.40), because the integral of piecewise continuous functions exists. In this case,
the local form of the balance equations can still be used but they must be supplemented
with the jump conditions, whenever the derivatives of the fields do not exist. In this
subsection, the boundary conditions for the piecewise continuous fields, which are known
as jump conditions, will be derived.

oB*

Figure 3.1: Discontinuity surface A.

The vector field % is considered to be a continuous function in B except on the dis-
continuity surface A which moves with the velocity w through the material body B. The
region on the side of the positive direction normal vector n4 is denoted by Bt and on
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the other side is denoted by B~ as shown in Figure 3.1. The limit values of ¥ (x,t) are
defined as
P = lim (x,1), P~ = lim (x,1) (3.41)
x—)xj"l x—)x:4
as X approaches the position x4 on the surface A from the + and — sides, respectively.
Then, the jump of ¥ (x,t) across the surface is defined by

[¥] =9 -9 (3.42)

Because the material body B contains a discontinuity surface A, the transport theorem
(3.25) cannot be used to calculate the right side of (3.38). This transport theorem has to
be modified to accomodate the presence of A. To this end, the volume B is splitted into
two subvolumes Bt and B~ bounded by 0B* U A and 0B~ U A, respectively. Hence,

d d d
d _4d 94 , 4
dt/gz,bdv = B+wdv+dt Bi¢dv (3.43)

The volumes BT and B~ are not material volumes, since the velocity w of the discontinuity
surface A differs from the material velocity x. This means that (3.25) still cannot be used;
however, one can apply (3.27) to the right side of (3.43):

d d
&/B‘Pd” = @

wdo+ «,b[(fc—w)-da]—/Awuf—w)-m]dw

e Gl [ owars [ wlGow-aal+ [ 6 —w)nan
(3.44)

By considering (3.26), (3.44) can be rewritten as

< _ [ x -da) — % —
dtf,g’pd”_/,gat dv+ | (x-da) /AW®( w)ln,da. (3.5

Similarly, the surface integral of the right side of the balance equation (3.38) is splitted
into two parts:

/ <I>da:/ cbda+/ <I>da:/ <1>da+/ <I>da—/|[<I>]]nAda. (3.46)
B OBtTUA 9B~ UA OB+ oB— A

Then, by applying (3.45) to the left side of (3.38), considering (3.46) and using the
divergence theorem (A.9), one obtains

/B[ib +1Pdiv>'c—div<I’—0']dv—/A|['tb ® (x —w) — ®]n,da = 0. (3.47)

A similar argument can be applied to evaluate the rate of change of fg ¢-dain a surface
S that contains a discontinuity line C. If S is decomposed into ST U C and S~ U C, the
left side of (3.40) can be written as

S-da+ 4 S -da. (3.48)

S-da=—
dt Js+ue dt Js-ue

dt Js
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oS+

08~

Figure 3.2: Discontinuity line C.

Using (3.31) to evaluate the right side of (3.48) and by considering (3.30), (3.48) can be
rewritten as

4 C-da:/[a—g+div€ i]-da—%?{ (Sx }’()-dx—jﬁ[Cx(i{—w)]]-tc dz, (3.49)
dt Js s Lot 88 c

where t. designates the tangent vector of C. It is necessary to split the line integral of
the right side of (3.40) into two parts. Hence,

j[ T-dX:?{ T-dx—l—?{ T-dx:j{ ‘r-dx—|—j{ T-dx—j{ﬂf]]-tcdx. (3.50)
as as+tuc as-uc as+ a8~ ¢

Using (3.49) and (3.50), the surface balance law (3.40) can be modified in the case of a
surface S which contains a discontinuity line C to

/5 [%+div§ X +rot (§x x —T)—w]-da—fék-([[CX(fc —w)—71]xn,)dz =0. (3.51)

The second term of the left side of (3.51) is obtained by introducing the binormal vector k
with the property t, = —k x n; and the tripel scalar product rule a- (b xc) =b-(c x a).

The global balance laws (3.47) and (3.51) are assumed to be valid for any given volume
of integration. This statement is known as azxiom of locality. Then it is a consequence
of a mathematical theorem that the integrands of (3.47) and (3.51) must be zero at any
point in B, which leads to the following local balance equations.

The local balance law in the volume reads
Y +pdivi —divd —o = 0 in B, (3.52)
[ ® (x —w) —®]n, = 0 on A, (3.53)

where ¥ ® (X —w) must be replaced by v (x —w) for a scalar field 1.
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The local surface balance law reads

S—rotT—w = 0 in S, (3.54)

[[Cx()'c—w)—‘r]] xn, = 0 on C, (3.55)

where

x 0§ . .
S= yn + divs x +rot (Sx x).

Balance laws Y (V) ® (@) o (o)
Mass P 0 0
Linear momentum p X T pf
Moment of momentum X X p X x X T x x pf
Energy ple+ix-x) | TTx—q | x-pf+pr
Entropy on -q/6 pr/e
Electric charge Qe j—g.x 0

Table 3.1: Local volume balance laws.

The different fields ¢ (¢), ® (¢) and o (o) of the volume balance are listed in
Table 3.1. Here, p is the mass density, T is the Cauchy stress tensor, f is the body force
density, € is the internal energy density, q is the heat flux vector, r is the heat supply
(radiation), € is the temperature, ¢. is the charge density and j is the electric current
density.

The fields S, 7 and w are tabulated in Table 3.2. The magnetic flux vector, the
electric displacement vector, the electric field and the magnetic field are represented by
b, d, e and h, respectively.

Laws S T w

Faraday | b | —e—x xb 0

Ampére || —d | =h+x xd | j—q. x

Table 3.2: Local surface balance laws.
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3.2.3 Balance of mass
From Table 3.1 and (3.52) the local form of the balance of mass

p+pdivx=0 in B (3.56)
and its corresponding jump condition

[p(x —w)]-n, =0 on A (3.57)

can be obtained.

3.2.4 Balance of linear momentum

By employing Table 3.1, (3.52) and taking the mass balance (3.2.3) into consideration,
then the local balance of momentum can be expressed as

divT +pf=px in B (3.58)
with the jump condition
[px®(x—w)—T]n,=0 on A (3.59)

If the discontinuity surface A is a material surface

W =X, (3.60)
(3.59) reduces to
[Tln,=0 on A. (3.61)
If the discontinuity surface A coincides with the surface of the body
pt =0, X" =w, (3.62)
(3.59) reduces to
[Tln, =0 on A. (3.63)

When T'n, is interpreted as the traction t and T n, is set to Tn, (3.63) gives the
boundary condition on tractions:

Tn=t on 0B. (3.64)
If the discontinuity surface is a fixed surface
w =0, (3.65)

(3.59) reduces to
[px®x -T]n, =0 on A. (3.66)

If the acceleration X vanishes, (3.58) reduces to the equilibrium condition

divT + pf =0 in B. (3.67)
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3.2.5 Balance of moment of momentum

The balance of moment of momentum takes the local form as
T =T" in B. (3.68)

They can be obtained by using Table 3.1 and combining the result with the local balance
of momentum (3.58). The local balance of moment of momentum states that the Cauchy
stress tensor is symmetric, which is merely valid in classical continuum mechanics. The
jump condition for the moment of momentum is satisfied identically according to (3.59)
and (3.61).

3.2.6 Energy balance

From the Table 3.1 and (3.52), the local form of the energy balance reads
ple+1x-%)] +[p(e+1x-x)]divx —div(T" x —q) — p(f- x +r) =0. (3.69)

After considering the balance of linear momentum (3.58) and of moment of momentum
(3.68), (3.69) can be written as

pé—-T -D+divq—pr=0 in B. (3.70)
From (3.53) the corresponding jump condition reads
[p(e+45 % x)(x—w)—Tx+q]-n,=0 on A. (3.71)

For the case that the discontinuity surface A is a material surface (w =x), (3.71) reduces
to
[a—Tx]-n,=0 on A. (3.72)

This states that the jump on the energy of tractions across a material interface is balanced
with that of the normal component of the heat flux vector. If the material velocity is
continuous across A using (3.63) this further reduces to

[a] ‘n,=0 on A. (3.73)

If the discontinuity surface A coincides with the surface of the body (p* = 0, x = = w),
(3.71) becomes

(—Tx )'n=—-qg-n—t-x" on 0B, (3.74)

where T™n, =t,q"-n, = —qo-n, T" =T, q” = qand n, = n are set. (3.74) gives the
boundary conditions on the energy flux across the surface of the body. If the tractions
are attached to the surface, then x =~ =x* and by employing (3.63), one obtains

g-n=qp-n on 0B. (3.75)
If the discontinuity surface is a fixed surface (w = 0), (3.59) reduces to

[p(e+3x-x)x-Tx+q]-n,=0 on A. (3.76)
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3.2.7 Entropy inequality

The second law of thermodynamics states that a non-negative entropy production exists
in every thermodynamical processes, i. e. lﬁ = 7 > 0. Considering the second law of
thermodynamics in combination with Table 3.1 and (3.52), the local form of the entropy
inequality can be formulated as follows:

pi+div(dy - 2T > o, (3.77)
0 0
The local form of the entropy balance is used as a criterion to check whether or not

thermomechanical processes are admissable, a condition that has to be satisfied by every
admissable thermomechanical processes.

With introduction of the Helmholtz free energy 1 by
Yv=ec—0n (3.78)
and eliminating the heat supply r in (3.77) by use of (3.70), the generalized Clausius-

Duhem inequality can be obtained:

—p(th +1 é)+T-D—%Mdezo. (3.79)

The Helmholtz free energy plays an important role in the development of constitutive
equations (Haupt [84], Truesdell & Toupin [176]).

3.2.8 Balance equations of electrodynamics

This subsection presents the balance equations of electrodynamics, which are known as
Mazwell’s equations. Contrary to the balance laws of thermomechanics which can be
derived only from the general volume balance law, the balance laws of the electrodynamics
are obtained not only from the general volume balance law, but also from the general
surface balance law.

The conservation of magnetic flux b is given by

/ b-da=0. (3.80)
o8B

The conservation of electric flux d, which is known as the Gauf’s law, is given by

/ d-da=/qedv. (3.81)
B B

(3.81) implies that the net electric flux d through a surface 9B is equal to the total charge
¢e enclosed within the volume B. (3.80) and (3.81) are equivalent to the local forms

divh = 0 in B, (3.82)
divd = ¢ in B. (3.83)



52 Chapter 3: Basic equations of continuous media

The corresponding jump conditions are given by
[b] n = 0 on A, (3.84)
[d] - n = 0 on A. (3.85)

(3.82), (3.83) and the corresponding jump conditions (3.84), (3.85) follows from the ap-
plication (3.46) and the divergence theorem (A.9) in (3.80) and (3.81). From Table 3.2
and (3.40), the global form of Faraday’s law can be written as
d .
— [ b-da= ?{ (—e— x xb) - dx, (3.86)
dt Js 88
where (—e— x xb) is the electromotive intensity. The local form of Faraday’s law can be
obtained by employing (3.54), (3.55) and by considering (3.82). Thus,

rote + %—l; =0 in S. (3.87)
The corresponding jump condition reads
[b x (x —w) +e+x xb] X nc =0 on C. (3.88)
From Table 3.2 and (3.40), the global form of Ampére’s law can be written as
d . .
— —d-da:]{ (—h+xxd)-dx+/(j—qex)-da, (3.89)
dt¢ S oS S

where (—h+ x xd) is the magnetomotive intensity. By employing (3.54), (3.55) and
(3.83), the local form of the Ampére’s law

d
roth = %t +] in S, (3.90)

and the corresponding jump condition
[-d x (x —w)+h—x xd] xne =0 on C. (3.91)

can be obtained. For the discontinuity line C is equal to the material line, the jump
conditions (3.88) and (3.90) reduce to

[e+ x xb] xne, = 0 on C, (3.92)
[h—x xd] xne, = 0 on C. (3.93)

By transforming (3.87), (3.90), (3.82) and (3.83) into the Fourier space, the differential
form of the Mazwell equations can be expressed as

rote(x,w) = itwb(x,w), (3.94)
roth(x,w) = —iwd(x,w)+jx,w), (3.95)
divb(x,w) = 0, (3.96)
divd(x,w) = ge(x,w), (3.97)



3.3 Constitutive Relations 53

where w represents the frequency and i = y/—1.

In the quasi-static limit w — 0 the electric field e(x,w) and the magnetic field h(x,w)
can be expanded into power series around w = 0, which can be written as

o) wk r ak 7 o
e(x,w) = Z o |5k e(x,w) = Zek(x, w),
k=0 b Sw=0 k=0
(3.98)
o0 wk r ak T o0
b(x,w) = Z o wb(x,w) = Zbk(x,w).
k=0 L Jw=0 k=0

By substituting the electromagnetic fields according to (3.98) into the Faraday’s law (3.94)
and equating the same order of w:

rote’(x) = o, (3.99)
rotef(x,w) = iwbfl(x,w) m=1,2,... . (3.100)

By applying the same treatment to other field quantities, the electrostatic equations can
be obtained from (3.94) and (3.97) for £ = 0, hence,

rote’(x) = 0, (3.101)
divd®’(x) = ¢’(x), (3.102)

and similarly by (3.95) and (3.96) the magnetostatic equations can be written in the form

roth’(x) = j°(x), (3.103)
divh’(x) = 0. (3.104)

It can be seen from (3.101) and (3.103) that in the quasi-static case the field quantities of
the Mazwell equations can be decoupled into two cases, namely into the electrostatic and
the magnetostatic case. It is known from vector analysis (de Boer [48]) that a rotation-free
vector field can be expressed as a minus of a gradient of a scalar potential U(x). Hence,
e’(x) may be written as

e’(x) = —grad U(x). (3.105)

A comprehensive discussion about this topic can be found elsewhere (Eringen & Mau-
gin [63], Jackson [97]).

3.3 Constitutive Relations

The balance equations discussed in the last sections are universal laws which are valid in
the free space and for every material. They are independent of the material properties
and of the geometry of the boundary-value problems. However, balance relations them-
selves are usually insufficient to determine the physical fields of the bodies and because
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of this shortcoming, additional equations are needed. Some of these so-called constitu-
tive equations will be presented briefly in this section. These equations describe how the
material distributes momentum and energy internally. By employing the axioms of the
constitutive theory such as the Clausius-Duhem inequality (3.79), the determinism, the
local action, the equipresence, the material frame indifference, and the dissipation, the
dependence of the constitutive relations on the kinematical and physical variables can be
determined. Then, upon the choice of the Helmholtz free energy 1 the special consti-
tutive equations can be found. This section will focus on the constitutive equations for
heat conductive media, linear rigid electromagnetic bodies and linear elastic materials.
However, only the end result of these constitutive relations will be summarized here since
the complete derivations and thorough discussions of them can be found elsewhere ( Ehlers
[58, 59, 55, 57, 60], Haupt [84]).

3.3.1 Heat conduction

In the framework of a linear theory, the relation between the heat flux vector q and the
temperature gradient grad # as the driving force is given by the Fourier’s law

q= —kgrad@, (3.106)

where k is the isotropic thermal conductivity constant.

3.3.2 Linear elasticity

The theory of linear elasticity is valid within the limits of geometric linearization, i. e., in
terms of infinitesimal deformation and strain, and hence, there is no difference between
the reference and the actual configuration. The constitutive equation for a linear elastic
solid relates the stress T and strain € through the expression

4
T=Ce (3.107)

which is known as the generalized Hooke’s law. In terms of the Lamé constants A and p,
4
the elastic tensor C for an isotropic body can be written as

23

4
C=2u(ID)T +\IQI, (3.108)

where I is the second-rank identity tensor. The Young’s modulus E, Poisson’s ratio v,
bulk modulus K and shear modulus G are related to the Lamé constants in the form

E = pBA+2u0)/(A+ p),
v o= MN[2(A+u);

K = X\+2u/3,

G = u

(3.109)
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In the isotropic case, it is often very useful to split the stress and strain into spherical
(hydrostatic) and deviatoric components. The spherical components of the stress T and
of the strain X are defined by

T = (T DI, (3.110)
e = 1(e-IL (3.111)
Then, the deviatoric stress T? and strain e take the form
TP = T-TK, (3.112)
e’ = e—€". (3.113)

The exploitation of (3.108)-(3.113) allows to cast the stress-strain relations (3.107) into
the form
TK =3K X (3.114)

and
TP = 2G €". (3.115)

Here, K relates the spherical stress tensor T to the spherical strain tensor €X, while G
connects the deviatoric stress tensor TP with deviatoric strain tensor ”.
3.3.3 Linear electromagnetic rigid continua

The general constitutive relations for linear electromagnetic materials in the frequency
domain have the form

d(x,w) = &(x,w)e(x,w)+ €(x,w)h(x,w), (3.116)
b(x,w) = ji(x,w)h(x,w)+ ¢(x,w)e(x,w), (3.117)
where &(x, w), €(x,w) fi(x,w) and {(x,w) are material parameter tensors of second-rank.

The media, which are characterized by (3.116) and (3.117), are called as bianisotropic
media (Kong [101]). The bianisotropic media become both polarized and magnetized if
subjected to an electric or a magnetic field. When the media become only polarized under
an electric field and become only magnetic under a magnetic field, the media are called
anisotropic media. This can be expressed by the following constitutive equations:

d(x,w) = &(x,w)e(x,w), (3.118)
b(x,w) = p@(x,w)h(x,w). (3.119)

Isotropic media are media, whose polarization or magnetization are equivalent in all di-
rections under an electric or magnetic field, respectively. Then, the second-rank tensors
€ and @ reduce to the scalar electric permittivity € and magnetic permeability ji. The
constitutive relations can simply be written as

dix,w) = &x,w)e(x,w), (3.120)
b(x,w) = p(x,w)h(x,w). (3.121)



56 Chapter 3: Basic equations of continuous media

In vacuum the electric permittivity is &€ = g = 8.854 x 107! farad/m and the magnetic
permeability is ji = fip = 47 x 107 henry/m. For the electrostatic or magnetostatic case
the constitutive relations are independent of the frequency w, thus (3.120) and (3.121)
become

d(x) = &(x)e(x), (3.122)
b(x) = p(x)h(x). (3.123)

In real media the electric field may also contribute to the electric current, which is
expressed in the linear Ohm’s law

i(x) = 6(x) e(x), (3.124)

where G(x) is the electrical conductivity. Since the Mazwell’s equations (3.94)-(3.97)
are written in the complex notation, the material parameters are also given as complex-
valued numbers. Using the constitutive relations (3.122) and (3.124), the right-hand-side
of (3.95) can be written in terms of the electric field e

—iwd+j=—iw E+ ) e (3.125)
w

N——r

é"C
The complex-valued permittivity £¢ contains the material permittivity € as the real part
and the ratio of the material conductivity & to the frequency w, i. e., 6 /w, as the imaginary
part. These real and imaginary parts are connected to each other through the dispersion

relation, which is also known as Kramers-Kronig relation (Sihvola [164]).

The electric current j is responsible for the loss of energy of the field, because j and e
are in the same phases. In general, the imaginary part of £€¢ implies that the medium is
dissipative. The propagating electromagnetic waves in such conductive media attenuate
to exp(—1) ~ 37% of their original value at a propagation distance & (Sihvola [164]).
This distance is known as the penetration depth or the skin depth and amounts to

b= ] ——. (3.126)
Who

3.4 Concept of representative elementary volume

The concept of representative elementary volume (REV) is introduced to provide a valu-
able dividing boundary between macroscopic and microscopic theories in treating het-
erogeneous media. For scales larger than the REV, the macroscopic continuum theories
for a homogeneous medium are applicable, while for scales smaller than the REV, the
microstructure of the heterogeneous medium must be considered. In order to define the
REV, the heterogeneous medium is assumed to be ergodic and to be statistically homoge-
neous. Recalling that the assumption of ergodicity allows replacing ensemble averages by
volume averages. This assumption implies that instead of an observation of an esemble
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of samples, an observation of a single sample is enough. The assumption of statistical ho-
mogeneity causes the volume average quantities not to depend on the volume. Therefore,
it can be assumed that there exists a large enough subvolume of the sample which can be
used to obtain essentially the same average quantities. This subvolume is referred to as
the REV. The volume of the REV should be small enough to be seen, macroscopically,
as a material point of the heterogeneous medium and large enough in the microscopical
scale so that it consists of a large number of which statistically represent the local contin-
uum properties. The best choice of the REV is the one that includes the most dominant
features which have the largest influence on the overall properties of interest and, at the
same time, yields the simplest model. Note that representative means that the REV will
have the same macro properties as any other of such elements and as the whole medium.
Therefore one can use a REV and the whole medium interchangeably. The definition
applied here is a loose definition, a rigorous definition of a REV can be found in the work
of Drugan & Willis [52].

The basic underlying assumption of statistical homogeneity is never exactly satisfied
in actual problems, since to be exactly homogeneous, an infinite volume is needed. Thus,
it is important to assure oneself that homogeneity can be assumed approximately in
space intervals, which are larger compared to the characteristic lengths (the typical size
of grains). In this context, one may consider three length scales which are related to the
concept of the REV. The first one is called microscale which defines the heterogeneity
(associated with the grains) within an REV. The second one is called miniscale which
defines the size of an REV. The third one is called macroscale which is associated with
the sample. To provide applicable results, these length scales have to satisfy following
inequalities:

MICRO <« MINI <« MACRO. (3.127)

This is known as the Hashin MMM principle [80]. If the lengths of the microscale, of the
miniscale and of the macroscale are denoted by d, D and L, respectively, then, according
to the Hashin MMM principle, these length scales satisfy

L D1 (3.128)
5 <1, 7 <1 .

Let x be a position vector to a reference point in the REV (e. g., centroid) defining its
location and y be a local coordinate system being defined inside the REV and originating
at x. The macroscopic physical quantity ¢(x) (e. g., macro heat flux, macro strain fields)
depends on x, while the corresponding micro quantity ¢(x,y) within the REV is a function

of both global and local variables, x and y. The macroscopic quantity can be obtained
from the microscopic one by volume averaging over the REV B:

B(x) = % /B b(x,y) dv. (3.129)

Thereby, the integration over B is taken with respect to the local coordinate y and V' is
the volume of the REV. This procedure is known as homogenization.

The inverse procedure is called as localization. In this case, starting with the macro-
scopic quantity ¢(x) the corresponding microscopic quantity ¢(x,y) can be determined
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using the microscopic constitutive laws, the boundary conditions and the equations of
microscopic equilibrium:

divy ¢ = 0. (3.130)

Here, the operator div, means that the divergence operator is taken with respect to y.
Of course, the obtained micro quantity ¢(x,y) must satisfy the corresponding condition
(3.129).

Figure 3.3: Pillbox used in the proof of the scale separation.

Due to the argument of the scale separation, the volume sources and inertia effects
can be neglected in (3.130). To prove it, consider that the REV has a shape of a flat
cylindrical pill box as shown in Fig. 3.3. If D denotes the height of this pill box, then
V(B) = D A(0B). Furthermore, in (3.38) the integration of the field ¢ and of the external
supply o in (3.38) are assumed to satisfy the axiom of continuity with respect to the
volume V(B). This axiom means that for any configuration X; of B there are positive
constants « and 3, which depend on X;, such that if V(B) is sufficiently small, then

‘/BQﬁdv
‘/Badv

Similarly, the integration of the eflux term ¢n can be bounded:

/anb-da

Therein, 7 is a positive constant, which depends on the configuration X;. Applying (3.38)
to the REV and taking the limit D — 0, the disk 0B being kept fixed, so that its area
remains constant. The limit of the integral over the volume is 0, since the parameter D
tends to 0. Thus only the limit of the integral over the surface remains to be considered:

< aV(B), (3.131)

< BV(B).

< v A(9B). (3.132)

lim [ ¢-da=0. (3.133)
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For validity of the same type of constitutive laws on micro and macroscale, the so-
called Hill’s condition [93], which requires the equality between micro and macro energy,
must be satisfied. The Hill’s condition implies the ergodicity condition. For an example,
a linear elastic heterogeneous material obeys a global (effective) Hooke’s law if

Te=TE, (3.134)

where T and e are the stress and strain fields, respectively.

To produce a statistical homogeneity field in a heterogeneous medium it is expedient
to apply boundary conditions that produce homogeneous fields in an homogeneous body.
Such boundary conditions will consequently be called homogeneous and will be discussed
in the next subsections.

3.5 Boundary conditions associated with REV

a(pF — 8(,05

Figure 3.4: Inhomogeneous material B = BS U B’ composed of the phases ¢° and ¢f.

3.5.1 Heat conduction problem
The average gradient theorem.

If a linear boundary temperature is prescribed on the boundary 0B, then the external
boundary condition may take the form of

By = po - X on 0B, (3.135)

where po is a constant vector. Then, the volume average of the temperature gradient
grad 6 of the medium can be completely determined in terms of py. If the volume average
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of an arbitrary integrable field quantity p(x) is defined by

P=— / (3.136)

where V' is the volume of the body B, then, the volume average of the temperature
gradient can be written as

_ 1 1
grad = — / graddv = — / grad 0 dv + / grad 0 dv| . (3.137)
Vv B \% BF BS
The volume integral can be transformed to the surface integral using theorem (A.13)
— 1
gradf = — [ 6 da + / Hda} , (3.138)
V' L/osF aBS

where OB and 0B° are the bounding surfaces of phases ¢ and ¢°, respectively. The
interfaces OB" N 0B° and the external surface B are included in these surfaces. For a
perfect bonded material, the temperature 6 is continuous across the interfaces 0B NoB°
and it follows that the contributions from 0BF N dB° in the two integrals of (3.137)
invalidate each other. By substituting (3.135) into (3.137) and transforming back to the
volume integration, one comes up with

— 1
gradd = — [ 6da = p,. (3.139)
V Jos

The average flux theorem

If at the surface boundary 0B the normal component of the heat flux is prescribed, then
one may write:

gs = —qo - n. (3140)
Here, ¢, can be interpreted as the heat influx and n denotes the outwards oriented unit
surface normal of 0B. For this boundary condition the average heat flux q is identical to
the prescribed heat flux qg, which can be established as follows. The average heat flux q

is given by
_—i/ d—l/ d+/ d (3.141)
q—VBq V= Bqu Bsqv. .

By employing gradx =1 and divq = 0, the heat flux q can be reformulated as
= (gradx) q + (divq) x = div (x ® q). (3.142)

Thus, one has

ﬁ:%{/%F(q-n)xda+/665(q-n)xda}. (3.143)

If the material is perfectly bonded, the integration of two terms at the internal boundaries
0BT NoB* invalidate each other, one needs to evaluate the integration solely at the outer
boundary 0B. With the boundary-value (3.140) one obtains

1 1 1
d=—= [ (qgp-n)xda=—-—= [ (x®da)qy=—— /(gradx) Qo dv = —qp. (3.144)
V Jos B Vs
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3.5.2 Elastostatic case
The average strain theorem

If a displacement uy = €¢x is applied on 0B, the volume average strain can be expressed
in terms of the prescribed displacement components which are independent of the mi-
crogeometry and the material parameters of the components. The volume average strain

tensor € reads
5= %/Be(x) dv=1. [/BF e(x) dv + /Bss(x) dv} . (3.145)

Using the strain-displacement relations (3.37) and the divergence theorem, (3.145) be-
comes

1
€=— . .14
€= [/BBF(u®da+da®u)+/865(u®da+da®u)} (3.146)

The boundaries B and B are the whole boundaries for both phases consisting of the
external and internal parts. If the material is perfectly bonded, the contribution of internal
boundaries dp’ and ¢ invalidate each other, which leads to

_ 1
e = oy aB(u ®da+da®u) = 57 [(on) ® da + da ® (gx)]
1
= o7 /{grad (e0x) + [grad (gox)]" }dq) = g,. (3.147)
B

The average stress theorem

If a uniform traction t = Tyn is prescribed on 0B, the volume average stresses can
be formulated in terms of the boundary traction only. The volume average stresses are
independent of the microgeometry and the material parameters of the components. Due
to the argument of the scale separation, div T = 0, then

div(x®T) = (gradx) T" + x®divT = (gradx) T=1T = T. (3.148)

Using (3.148), the volume average stress tensor T can be evaluated:

— 1
T = —/Tdv— /le x®T)d V/(X@)T)da

= — (x®T0)da——/d1V (x® Ty) dv = T.
V o8

3.6 Instances of the Hill’s condition

In this section, the validity of the same type of constitutive laws on micro- and macroscale,
the so-called Hill’s condition [93] is presented. The Hill’s condition requires the equality
between micro and macro energy, must be satisfied and it implies the ergodicity condition.
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By assuming that the homogeneous medium admits an effective dissipative potential,
the average values of the heat flux and the temperature gradient can be related to the ave-
rage value of the dissipative energy (for a linear conductivity case). The Hill’s condition
for a linear conductivity case is given by

q-gradf =q-gradé. (3.149)

It can be proven that under the given boundary conditions as described in Section 3.5.1,
the Hill’s condition holds. Due to the argument of the scale separation, divq = 0, then
the average of the dissipative potential can be formulated as

1l — 1 1 1
—q-gradf = — q -grad 0dv = — / div(fq)dv = — Hq - da. (3.150)
2 2V J,

2V 2V
If 80 = po - x at 0B, then (3.150) becomes

! ad @ ! ! (q-da) ! ad 6 1/d' (x®q)d

—q-gr = —po-— | x(q- =—gradf - — iv (x

2(1 g 2P0 V Jos q 2g V /s v q)dv

1— 1 1 —— _
= §grad0-v/8qdv: Egradﬁ-q (3.151)
If g = —qp - n at 0B, then (3.150) becomes

! adf = ! / 6 da 13 2 adfd L5 ad 6 (3.152)
— radf = —— =-q-— r v=—-q-gr )
2(1 g or o - o5 2(1 v E)Bg 2(1 g

In the linear elastic case, the Hill’s condition states that the average values of stress
and strain can be connected to the average value of the elastic potential energy. In this
case the Hill’s condition reads

T-e=T-& (3.153)

It can be proven that under the given boundary conditions as described in Section 3.5.2,
the Hill’s condition holds. For divT = 0 (the argument of the scale separation), the
average of the potential energy can be formulated as

1 1 1
3 T-e= G T gradudv = — / div (Tu) dv = v/, (T u) - da. (3.154)
If the traction t = Ton at 0B is prescrlbed, then one has
1 1 1 1
ET-S = v/, (Tu)-dazﬁ (Tn) - uda—WTo /(%u@da
1 1 _
= §T0 /gradudv =-T — / edv = 5 -E. (3.155)

Thereby, the average stress theorem (3.149) and div T = 0 are used. If the displacement
Uy = €ox at 0B is given, then

1 1 1 1 [
5T = g [ (Tw-da= g aB(sox)-TdazW/Bdlv[T(sox)]dv
= i/[T ( dx)]dv = ! Td 1Tz (3.156)
=, €pgradx or vV-Ey= 2 £, :

where the average strain theorem (3.147) and d1vT = 0 are used.
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3.7 Definition of effective material parameters

The objective of this section is to define precisely what the effective material parame-
ters mean. A precise definition is required if one wishes to make precise mathematical
statements about it. The definitions of effective material parameters will be given in the
framework of the so-called direct method (Hashin [80], Beran [14], Abouds [1]). In this
definition, the effective material parameter provides a relation between the average field
and the average flur. Another definition is based on the energy method (Hashin [80],
Beran [14], Aboudi [1]). The average and energy methods were proven by Hill [92], to be
equivalent if the Hill condition is fulfilled (see also Nemat-Nasser & Hori [135], Aboudi
[1]). Another way to obtain the effective material properties is using forward amplitude
scattering in the wave propagation context (Sheng [162], Sabina & Willis [152], Stroud &
Pan [167]). For simplicity, the medium is assumed to be isotropic on both micro- and
macrolevels. In general, the media can be anisotropic, even if they are isotropic on the
microscale. This effect arises out of the asymmetry of the microgeometries.

The formulation of the effective material parameter will make use of the concept of
the REV. In formulating boundary-value problems associated with an REV, the body
forces and other inertia terms can be excluded, because these forces represent the effect
of the materials not in contact with the considered continuum (Nemat-Nasser & Hori
[135] p. 19). For example, the effective elastic moduli of the heterogeneous medium are
the same on earth as well as on the moon, although the body forces are different for
both places. This can be rigorously proven using the asymptotic method of multiple
scales (Bensoussan et al. [13]). However, in this thesis, the proof will make use of scale
separation.

To be more specific, the random medium under study is considered as a biphasic
medium composed of phases ¢° and ¢, which can be any materials. The interface
between both phases is denoted by 9 = d¢®.

3.7.1 Effective thermal conductivity

In this subsection, the precise definition of the effective thermal conductivity is given.
This definition, by mathematical analogy, can be used for the magnetic permeability,
the electric permittivity, the electric conductivity, and the diffusion coefficient. Further-
more, the definition can be directly applied to the complex-valued electric permittivity
(frequency dependent permittivity), if the field quantities are considered to be complex-
valued quantities (frequency-dependence).

The local heat conduction reads
divq(x) = 0 x € B, x ¢ ", (3.157)
The local Fourier’s law (3.106)
a(x) = —k(x) grad 6(x), (3.158)

where
k(x) = k¥ 7V (x) + k° 7°(x) (3.159)
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is a function of the thermal conductivities of phases ¢ and ¢°, i. e., k¥ and k°, re-
spectively. Here, ZF(x) and Z%(x) are the indicator functions given by (2.1). Across the
interface d¢’, the temperature § and the normal heat flux ¢, = q-n must be continuous.
Here, n is the normal vector of the interface. The effective thermal conductivity  relates
the average of the heat flux q to the average of the gradient grad # of the temperature
field:

q = —k grad 0(x). (3.160)

The results obtained are valid for the heat conduction problem, however, they are
applicable straightforwardly to electrostatics, magnetostatics, electric conduction, diffu-
sion and thermal conduction problems (see Table 3.3). This circumstance is in agreement
with the universality of the disordered potential equations, which govern all these kinds
of physical problems.

Problem Potential grad 0 k a
electrostatics electric electric permittivity | electric
potential field displacement
magnetostatics | magnetic magnetic magnetic magnetic
potential field permeability | induction
electric electric electric electric current
conduction potential field conductivity | density
diffusion concentration | concentration | diffusion mass
gradient constants flux
heat temperature | temperature | heat heat
conduction gradient conductivity | flux

Table 3.3: Disordered potential problems which are considered here.

3.7.2 Effective elastic moduli

In this subsection, the effective elastic moduli is precisely defined. The local equilibrium
equation reads

divT(x) =0 x € B and x ¢ 0", (3.161)
where T(x) denotes the stress tensor. The local Hooke’s law is given by
4
T= Ce. (3.162)

4
The effective elastic tensor C is defined by the average stress T and the average strain &

tensors via )

T=CeE. (3.163)
For an isotropic material, the effective elastic tensor is given by

23

4 —
C=2p(ID" +)\I®IL (3.164)
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The average strain and stress tensors can be decomposed into their spherical and deviatoric
parts as described in Section 3.3.2:

T = 3(T-DI, (3.165)
e’ = (DI, (3.166)
T = T-T", (3.167)
e? = g-¢¥. (3.168)

T" and T are the average spherical and deviatoric stress tensor, respectively, and &K
and P are the average spherical and deviatoric strain tensor, respectively. Introduction
of (3.165)-(3.168) into (3.163), considering (3.164) and (3.109) leads to

T — 3

TD

=

gk, (3.169)

Ql

= 2GE&". (3.170)

Christensen [44] showed that under creeping flow conditions, there is a similarity
between the determination of the effective shear modulus of composite materials and
the determination of effective viscosity of a suspension of perfectly rigid particles in an
incompressible fluid.



66

Chapter 3: Basic equations of continuous media




Chapter 4

Numerical solution techniques

The objective of this chapter is to give the numerical methods to solve the boundary-value
problems that have been discussed in Chapter 3, if the detailed microgeometry of the ran-
dom media is known. Practically, for real materials, the knowledge of the microgeometry
can be obtained by microtomography (Garboczi & Bentz [69], van Genabeek & Rothman
[178], Widjajakusuma et al. [185] and Michel et al. [123]), while for idealized materials,
the knowledge of the microgeometry can be found by models (Garboczi & Bentz [68],
Yeong & Torquato [195] and Biswal et al. [32]). Usually, microgeometric information is
stored in discrete digital image form; thus, to solve boundary-value problems on these
digitized heterogeneous media, computer algorithms are needed. Therefore, in this chap-
ter, a discussion regarding computer algorithms will be presented. From the solutions of
these boundary-value problems, the effective material parameters can be directly deter-
mined by averaging the solutions. Three cases regarding their physical and mathematical
nature will be discussed. The first one is the case of the effective thermal conductivity of a
heterogeneous medium solved using a finite volume discretization. The second case is the
determination of the frequency-dependent effective permittivity of a medium composed of
two phases at finite frequency. This problem is also solved using a finite volume program.
The finite volume method can be seen as a special case of the weighted residual methods.
This method is chosen because of its compatibility with the definition of connectivity for
a digitized medium which is introduced in Section 2.3. With respect to the connectivity
definition, the heat can flow only through the element’s interface, not through the ele-
ment’s nodes (Section 4.1 and Figure 4.2). Both cases mentioned above are very similar;
both of them are solved in the same way by discretizing the Laplace equation. The differ-
ence between them is that the discretized equations of the thermal conductivity problem
are given as a system of linear equations of real variables, while the frequency-dependent
permittivity case gives a system of linear equations of complex-valued variables. At zero
frequency, the effective permittivity problem is governed by the same equation as the effec-
tive conductivity problem, because both problems have the same mathematical structure
as shown in Table 3.3. Finally, the third case concerns the effective elastic moduli of a
medium composed of different materials which is solved using the finite element method.
The finite element method will be derived from the Rayleigh-Ritz variational principle.

67
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4.1 Laplace equation

In the heat conduction case, the governing partial differential equation is the Laplace
equation
div]k(x) grad 0(x)] = 0, (4.1)

where k(x) is the local thermal conductivity and 6(x) is the local temperature field. The

thermal conductivity k(x) is dependent on the thermal conductivities k¥ and £° belonging
to the phases ¢ and ¢°, respectively. Thus,

k(x) = k" IV (x) + k5 79(x). (4.2)

Since k¥ # k%, k(x) is a discontinuous function with the discontinuity at the interfaces
d¢®. The solution of (4.1), if existing, cannot be the solution to a partial differential
equation (4.1) in the conventional sense, because derivatives are not defined at the dis-
continuity. Instead, the solution is required to satisfy a family of related integral equations.
Integrating (4.1) over the heterogeneous medium’s region B3, one obtains

/Bdiv[k(x) grad 0(x)] dv = 0. (4.3)

The solution of (4.3) is known as the weak or distribution solution ( Wiadimirow [193]).

In general, (4.3) cannot be solved analytically, it has to be solved numerically. Looking
for an appropriate shape function to approximate #(x) for the whole domain B is a
very difficult task. The function #(x) is expected to have a large variation over the
problem’s domain B due to the material inhomogeneity. Additionally, this function has
to fulfill the complicated internal boundary conditions (Section 6). In order to meet those
requirements, the approximating function should be described in terms of a family of
piecewise continuous functions. Each piecewise continuous function takes care of only a
part of the solution domain.

Transcribing the above idea means that the solution domain B is subdivided into a
finite number of non-overlapping subdomains that will be called control volumes (CVs),
where in each CV, #(x) is approximated by a piecewise continuous function. The numer-
ical technique used here is the finite volume method (FVM) and is widely used in the
computational fluid dynamics community (Durran [54], Patankar [141] and Ferziger &
Peri¢ [65]). The FVM is chosen here because of its compatibility with the definition of
connectivity for a digitized medium which is introduced in Section 2.3. With respect to
this connectivity definition, the heat can flow only through the element’s interface, not
through the element’s nodes and edges. Another reason is that the FVM, through its
formulation, automatically satisfies the conservation equation of the whole region B as
well as of each CV.

In the three-dimensional case, the CV may take a cubic form, as is shown in Figure 4.1.
The computational node at which the variable value 6 has to be computed is located at the
centroid P of the cube. The variable values at the CV surfaces and the surface integrals
are expressed approximately through these values at the nodal points. For a digital image,
a voxel is taken as a CV and the computational node is placed at the middle of voxel.
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A.Z‘g

Figure 4.1: A typical three-dimensional control volume B’ with compass notation. The nodal
point P lies in the center of the CV. The neighbouring nodal points are denoted as
east E/, west W, south S, north NV, bottom B and top T. The small letters e, w,
s, n, b and t denote to the east, west, south, north, bottom and top control volume
interfaces.

By applying (4.3) to each CV B’ and using Gaup’ divergence theorem gives

7{931 k(x) grad 6(x) - n da = 0. (4.4)

If the values of conductivities and the gradients at the CV’s interfaces are assumed to be
constant, (4.4) can be approximated as

00 00 00 00
|:l€e (a—.Zj)e - k'w (a—xl> w:| AiL'Q A$3 + |:kn (a—CQ)n - ks (a—@>s:| Axl A.Tg +

00 00
|:l€t (8—$3>t - kb (a—a’,‘:&)b] A.Tl AJTQ = 0. (45)

Equation (4.5) represents the balance equation of the heat flux in the CV.

The gradients at the interfaces can be approximated linearly by assuming a linear
profile between P and its nearest neighbours. For example, the gradient at the e-face can

be approximated linearly as
00 O — 0
<—) ~ 2 (4.6)
(9331 e A.Tl
Here, O is the nodal point of the CV of the east neighbour. The conductivity value at
the interface e can be approximated using the harmonic mean value:
2kpk
k, = PRE

= —. 4.7
kp+ kg ( )
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Hence, the heat flux ¢, can be written as

q — b (39) - QkpkEeE—Hp

0z,). " kp+kp Am

(4.8)

The reason to choose the harmonic mean value in (4.7) instead of the arithmetic mean
value is that the heat flux ¢. at the interface e is given correctly in the following two
limiting cases. The first is either kg = 0 or kp = 0 leading to k. = 0 and thus ¢. = 0,
which implies that the heat flux at the interface of an insulator vanishes (as it should be).
The second is kp > kg, in this case ¢, ~ 2kg (0 —0p)/Ax; arises, which implies that the
high conductivity material around P would give a negligible resistance if compared to the
material around E, which is physically correct. If k. is taken as the arithmetic formula of
kp and kg, i. e., ke = 1/2 (kp + kg), then for the first case (kp = 0 or kg = 0) the heat
flux ¢, ~ 1/2(kp + kg)(0r — 0p)/Az; is not equal to zero at the insulator’s interface,
and it is a wrong result, because k. # 0. For the second case, the heat flux g, depends
strongly on kp through the arithmetic approximation, but in fact, it must approximately
depend solely on kg. In this case, again the arithmetic approximation leads to the wrong
result.

Following the same approximation procedure for the other faces of the CV, the dis-
cretized form of (4.5) can be obtained and rearranged in the form:
kb03+k505+kwew+AP0P+ke0E+kn0N+kt0T:0- (49)

The coefficients k; and Ap are tabulated:

k| k| ke | ke | K k, Ap
2kpkp | 2kpks | 2kpkw | 2kpks | 2kpky | 2kp Ky
kp+ kg | kp+ks | kp+kw | kp+ kg | kp + ky | kp + kp (ks

ke + kn + k)

The spatial location of the computational node of the i-th CV #(x;) can be referenced
using the grid indices (i, j, k). Meanwhile, the computational nodes in (4.9) are written in
the compass notation and these nodes are normally stored in computers in one-dimensional
arrays. Therefore, it is expedient to set a relationship among them. Table 4.1 shows the
conversion between the grid indices, compass notation and storage locations.

‘ Grid indices ‘ Compass notation ‘ Storage location ‘

(1,7, k) P I=(k—-1)N;N;+(i—1)N; +j
(i,j,k — 1) B [ — N; N;

(i—1,4,k) w [ — N;

(i, — 1, k) S -1

(t,j +1,k) N [+1

(t+1,7,k) E [+ N;

(4,7, k+1) T [+ N; N;
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To gain useful solutions, boundary conditions are needed; thus, they should be sup-
plemented in (4.5). As discussed in Section 3.5.1, there are two types of boundary condi-
tions, namely external boundary conditions which are prescribed from outside and internal
boundary conditions which are caused by the inhomogeneity of the material. Since each
voxel of the digital image is taken as a CV, the inhomogeneity can solely appear at the
interfaces of the CVs. Through the formulation of the FVM, the internal boundary con-
ditions (jump relations) are automatically satisfied, because the temperature § and the
normal component of the heat flux ¢ = q - n are continuous at the interfaces. To solve
this problem, the mixed boundary conditions are chosen as follows. The first boundary
condition is the one with a temperature gradient that is prescribed across the sample.
The temperature gradient can be produced by giving different temperature values at op-
posite surfaces of the sample; for example, west and east surfaces. This condition is
called Dirichlet boundary condition. The second boundary condition is the one with the
heat flux that cannot flow out at the other four faces of the sample. This is a Neumann
boundary condition, which involves the derivative of the temperature while the temper-
ature itself is unknown. In the FVM formulation, the known heat flux can be directly
inserted into (4.5). For example, the corresponding discretized equation for the CV, whose
top interfaces represent the top of the sample, can be obtained by substituting

oo
=k|— ) = 4.1
gt t ((9x3>t 0 ( 0)

into (4.5). Hence,

00 00 00 00
kel =— ) —ku| =— Azo A ko | — — ks | — Az, A
[ (5951)8 (aﬁ)w} T2 AT T [ (a@)n (3552)5} e

00

By doing so, the required number of equations for the unknown temperature can be
constructed, and the result is a system of linear algebraic equations, which can be written

as
A9 =b, (4.12)

where A is the coefficient matrix and @ the unknown temperature values. The vector b
is called the right-hand side, which has zero elements except those which are known from
the Dirichlet boundary condition.

It is necessary to discuss the infinite contrast limit case (the ratio of the thermal
conductivities of both constituents are either 0 or co) using the FVM, because there is a
pitfall in connection using the FVM. For simplicity, a two-dimensional case is considered.
The insulating ¥° = 0 and conducting k¥ # 0 materials are represented by white and grey
colours, respectively, as displayed in Figure 4.2. Through the harmonic approximation,
the correct heat flux can be obtained in this limiting case. The heat fluxes are denoted
by the straight lines in Figure 4.2. For example, the heat flux cannot flow from 36th
to 37th CVs, but it can flow from 36-th to 29-th CVs (Figure 4.2). However, there is
a pitfall by the posed finite volume formulation since the heat flux cannot flow from 30
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to 38 even though they are physically connected by corners, because the heat flux can
only flow through the CV’s interfaces, but not through the CV’s corners by definition.
To overcome this shortcoming, the definition of connectivity between neighbours has to
be modified. Substantially, it means that the heat fluxes are allowed to flow through the
corner, which can be achieved by finite element or first-passage formulations. In the finite
element formulation, again each pixel can be taken as an element, but the computational
nodes now lie in the pixel’s corner (Section 4.3). The nodes at the corners of a given
pixel are connected to 9 different nodes, one with itself, four with the first nearest and
four with the second nearest neighbours, which are the nodes in the corners of the four
pixels that share a corner. Note that in three-dimensional, each node is mathematically
connected to 27 nodes (itself + 26 neighbours).

Figure 4.2: Two-dimensional CVs for a part of a digital image. The computational nodes are
in the middle of the pixels. The white area is non-conducting and the grey area is
conducting. The lines indicate that the fluid can flow from one control volume to
another control volume.

If the resolution of the image is high enough, which means that even the smallest
feature is composed of many pixels, the use of different methods will give insignificantly
different results (Garboczi et al. [70]). However, if the resolution of the image is low,
different methods may produce different results. Therefore, the definition of how the
pixels are connected will determine which method has to be used. Otherwise, the choice
is arbitrary. From this explanation it can be concluded that conducting biphasic materials
physically composed of pixels connected only by corners would be connected electrically
when using finite elements or limit-passage, but disconnected electrically when using finite
volume or finite differences of lower order (Garboczi et al. [70], Kim & Torquato [100]).
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4.2 Frequency-dependent permittivity problems

In the quasi-static case, the frequency-dependent permittivity problems are governed by
the elliptic linear differential equations which have complex-valued coefficients and solu-
tions. By taking the divergence of (3.95), by considering divrot h = 0, and using (3.105)
and (3.125), the governing equations for this case can be formulated as

div (6%(w,x) gradU(w,x)) =0, d(w,x)=£€%(w,x)e(w,x), (4.13)

where d(w, x) is the electric displacement, e(w,x) = —grad U(w, x) is the electric field,
and U(w, x) is the electric potential. Here, £°(w,x) = £(w, x)+i0(w,x)/w is the complex-
valued permittivity. The real part of £.(w,x) represents the permittivity of the medium,
while the imaginary part represents the conductivity of the medium which is scaled by the
frequency w. It should be emphasized again that the complex-valued permittivity implies
that the treated medium is lossy or dissipative.

Similar to the thermal conductive case, (4.13) can be discretized using the FVM
yielding

0 (%) - 0(32) e [0 (32,510 () s

+ [55@) (%)t — &(w) (g—i)b] Azt Az = 0, (4.14)

where the permittivities £¢(w) are still dependent of the frequency w. Equation (4.14)
gives the balance of the electric displacement d(w) in a CV.

Like in the real case, the gradients at the interfaces are also approximated linearly.
For example, the gradient at the e-face can be given approximately by

oU Ug —Up
— ) & —. 4.15
(8151)6 A$1 ( )

As the reason given in the thermal conductive case, the permittivity value at the interface
is approximated using the harmonic mean. For example, the permittivity at e-face is given
by

2 =C =C
so(w) = 2P ) (W) (4.16)
£p(w) + 4 (w)
Hence, the electric displacement d, can be written as

25%(&)) 5%(&)) UE - Up

S+ Ao 1

de(w) ~

Following the same approximation procedure for other faces of the CV, the discretized
form of (4.14) can be formulated as

E(w) Up+E5(w) Us+E; (w) Uy + Ap(w) Up+E5(w) Ug +&5 (w) Uy +E5(w) Ur = 0, (4.18)



74 Chapter 4: Numerical solution techniques

where
Ap(w) = —(§{w) + &5 (w) + &, (w) + gfw) + &7 (w) + & (w) (4.19)

and . ~

e = 20 )
£p(w) + €f(w)

with I = B, S, W, E, N, T. Obviously, the linear system of equations (4.18) still contains

the frequency w, thus (4.18) has to be solved for each w.

(4.20)

4.3 Rayleigh-Ritz variational method for the elastic
case

In this section, a numerical solution, which is based on the finite element method, is
applied to compute the elastic moduli of a digitized heterogeneous medium. The finite el-
ement will be formulated using the Rayleigh-Ritz variational method (Hughes [95]), which
starts directly from a variational formulation for the potential energy. To derive the finite
element equation, each voxel will be chosen to be an element, where the nodes are placed
at the corners of the element (cf. Figure 4.3).

8

Al‘g

Figure 4.3: A typical 3D tri-linear finite element with local coordinates (z1, z2,x3).

The potential energy for a linear isotropic elastic material in a voxel is given by

wzl/'s-(és)dv, (4.21)
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where

1
e = E(grad u + grad Tu), (4.22)

4

4
C = M@I+2GL (4.23)

Here, the voxel is assumed to have side lengths x; = 25 = x3 = 1 (in units of resolution).
Note that the potential energy of the whole digitized medium can be approximated by
summing the voxel’s potential energy. As with the method of weighted residuals (see 4.1),
the displacement u(x) is approximated by linear interpolation of the nodal displacements,

such that ' '
u(x) = Z Ni(x) u'. (4.24)

Here N*(x) are the shape functions, which have the following forms:
NY = (1—z)(1 — 29)(1 — z3),
N? = 21(1—m9)(1 — 23),
N? = mme(1 — z3),
N* = (1 —=x1)2o(1 — 23),
N° = (1—z)(1 — )3,
N® = (1 — x)as,
N = z12013,
N® = (1—x1)z0xs.

With the aide of these shape functions, the gradient of the displacement field u can be
expressed as
grad u=u; ®Xe = Uk, €k X e (4.25)

with

up(x) = Z Nij(x) uj, . (4.26)

The strain field € can be found by substituting (4.25) into (4.22). By inserting this
expression for € and (4.23) into (4.21), the potential energy becomes dependent on the
nodal displacements u’. Now, the principle of minimum potential energy is applied. To
find the minimum energy, the derivative of w with respect to the nodal displacements u},
(k-th coefficient of displacement at the i-th node) must be set to zero. Thus,

ow
oul.

= 0. (4.27)

The Rayleigh-Ritz variational method can be applied whether the approximation func-
tion ' is defined locally, as described here, or globally, as in the case of applying Beran’s
method in deriving the bounds (Chapter 6).
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4.4 Tterative solution methods

After obtaining the set of discrete equations (4.12), the next step is to solve them. Since
the coefficient matrix A in (4.12) is a sparse, large and positive definite matrix, the best
way to solve the system is using iterative methods. An iterative method uses a trial and
error solution as a start solution and improves it systematically until a proper result is
found. Since there are many iterative methods to solve such problems, some criteria have
to be taken into account in finding the most suitable method. The first criterion is whether
the method works well to solve the problem. A method which works well for one problem
may not work as well or even not at all for another problem. The second criterion is the
storage capacities of computers, since the unknown variables and the coefficient matrices
can be very large for three-dimensional problems. For example, for just 100 unknowns in
each direction in a three-dimensional problem, the total number will be 100® unknowns
and the non-zero components of the coefficient matrix A will be 7 - 1003. The third
criterion is the convergence rate of the methods, since the results have to be obtained in
a proper time.

A method which is a good candidate to solve this problem is the successive over-
relaxation (SOR) method, since it needs the lowest storage requirement compared to
other iterative methods (Barrett et al. [11]). Using the SOR method for the digital image
problem, only the voxels’ values and the solution vector need to be stored. The coefficient
matrix A and the right-hand side b can be computed in every iteration in order to work
with a larger system of equations. However, the computational process will be slower since
A and b have to be computed in every iteration step. The main disadvantage of the SOR
method is that the convergence rate and the accuracy of the result depend on the judicious
choice of the so-called overrelaxation parameter w. Moreover, in some cases, especially
in the case of complex-valued variables, the SOR method converges very slowly and it
may even diverge depending on the choice of w. To solve the shortcoming of the SOR
method in solving such problems, a conjugate-gradient (CG) method should be applied.
The CG method needs to store four auxiliary vectors. For the complex-valued case, the
CG method has to be properly modified (van der Vorst & Melissen [177], Freund [67]).
Because of its important relation to this work, the SOR and CG methods will be briefly
presented in this section. A comprehensive discussion and the mathematical proof can be
found in, e. g., Azelsson [9] or Golub & van Loan [75]. To enable one to work with larger
problems and a faster convergence rate, the computer programs must be parallelized.

4.4.1 SOR iterative method
The simplest iterative method can be expressed in the form of
MO" =NV +b. (4.28)

If 0 represents the exact solution of (4.12), then, by definition, the converging case must
be 8 = 9"~V = §. Comparing (4.28) to (4.12) gives

A=M-N. (4.29)
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From (4.29), the iteration matrix M 'V is a function of the coefficient matrix A. If
M™'N does not vary from iteration to iteration, then the iterative method is called
stationary.

To gain a lower computational cost, the matrices M and NN have to be chosen prop-
erly. Obviously, to solve (4.28), M must be easily invertible, which means that from
the computational point of view M must be diagonal or triangular or perhaps a block
triangular or block matrix. The computation of N 01 is cheap, since A and thus IV
is sparse. For example, if M = D and N = —(L + U) are chosen, then this iteration
method is known as the Jacob: iterative method:

0" = D' (L+U)0" Y+ D 'b. (4.30)

Therein, D, L and U represent the diagonal, lower-triangular and upper triangular parts
of A, respectively. If M = L+ D and N = —U are selected, then it is called the
Gauf-Seidel method:

6") = (L+D)" (-U8" ) +b). (4.31)

For a positive definite matrix A, the Jacobi and Gauf-Seidel methods converge (Azelsson
[9], Varga [181]). A complex-valued matrix A is called positive definite in the complex
plane C" if its quadratic form 87 A  is positive for all non-zero vectors 6 in C".

Since the Jacobi and Gaujf-Seidel methods converge very slow in the real problems,

an overcorrection to the value of 8 at the r-th iteration of the Gaufs-Seidel iteration
can be made to counter its shortcoming. Thus,

0(” — WSOR 0_(7«) + (1 — wSOR) 0(7-71), (432)

where wgpr is the overcorrection factor or overrelaxation parameter. This method is
called SOR. By introducing the residual vector

£ =A6" —b, (4.33)

which can be used as a criterion for terminating the iteration procedure, since the goal
of the iteration procedure is to drive the residual to zero. Then one iteration step of the
SOR method can be represented by

0" = 0"V —wsor (L+ D) e, (4.34)

If wsor = 1, the SOR method reduces to the Gauf-Seidel method. As mentioned above,
in general, it is impossible to choose the optimum value of wsor. However, this value
lies almost invariably in the range 1 < wspor < 2. It can be shown that for a symmetric
and positive definite matrix, the SOR iteration is always convergent for any value 0 <
wsor < 2. In general, the SOR method is divergent for wsog outside the interval [0, 2]
and convergence is not guaranteed for any value of wgog inside [0,2]. A comprehensive
treatment and proof of the above results can be found in, e. g., Varga [181] and Azelsson

[9].
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In the limit of infinite contrast, i. e., k¥ /k% — oo, it can occur that det L = det D = 0
and thus, L™' and D™" do not exist. For example, the discretization equation for the
10-th or 34-th CV in Figure 4.2 is

0=0 (4.35)

in this case, because ks = k,, = k. = k, = 0 (the white region). It means that the elements
of the 10-th and 34-th rows of the matrix A are equal zero and thus, det L = det D = 0.
There are two ways to fix this problem. The first one is by throwing out the rows and
columns, which have only zero elements. This can be done in many ways, the simplest
one is just by skipping these rows in the numerical code. Then, the SOR algorithm for
the thermal conductivity problem can be summarized as follows

Initialize by setting: r=0,00 =0, 6% =A40,-b

Advance the counter: r=r+1

e Calculate: 0" = 0"V — gor D LETY
e =407 —p
e Repeat until convergence.

The second way to treat the problem of infinite contrast is using the Hoshen-Kopelman
algorithm as described in Section 2.2.2 to extract the backbone cluster of the digital image.
Every conducting voxel that does not belong to the backbone cluster is changed to a non-
conducting voxel. For example, the 2-nd, 4-th, 8-th and 38-th grey voxels (conducting)
are switched to be white voxels (non-conducting). Then, the equations according to
the new digital image are solved with the method described above. The alteration of
the isolated conducting voxels to non-conducting ones does not affect the computational
result, because the isolated conducting voxels do not contribute any part to the heat flux
of the whole system. The rank of the obtained coefficient matrix A will decrease or at
least remain the same, since it will contain more rows and columns with zero elements.
A bookkeeping program can be used to transform the original coefficient matrix A to the
coefficient matrix A which is smaller than A. Moreover, the new matrix A is a strict
diagonal dominant matrix meanwhile the old matrix A may be a weak diagonal dominant
matrix. Therefore, the linear system of equations with the coefficient matrix A can be
solved faster and easier than the original one.

Although the optimal value of wspor in general can not be determined, however, it
can be heuristically estimated as given in e. g., van Kan & Segal [179], Section 11.2.6, or
Young [196]. Moreover, the relaxation parameter wsor depends critically on the ordering
of equations and unknowns (Young [196] and the references therein). Another way is
to modify the SOR method using different wgspr for every half iteration step. As the
iteration step goes to infinity, wsor should tend to the optimal value wg,p. This method
is called SOR with Chebyshev acceleration, which can be done using odd-even ordering
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and changing wsogr at each half-step according to the following rule:

wiop = 1 )

wsbr = 1/(1=Pye/2) | .
Wior ) = 1A =40/, r=1/21,.. 00 '
Wior = Whom )

Here, half-step means that SOR is used to solve only the odd-numbered variables, i. e.,
61, 05, etc. or only the even-numbered ones, i. e., 05, 04, etc. A compact description and a
routine for SOR with Chebyshev acceleration can be found in Press et al. [145] p. 859-860.

4.4.2 CG method

One of the effective iteration methods to solve a symmetric positive definite linear system
of equations is the CG method, which is a nonstationary iterative method. The CG
method can be seen as an iterative solution method to solve linear systems of equations
(4.12) by minimizing the following quadratic functional

1 _
f(6) = 5€A7'E, (4:37)
where € = AQ — b. Since A ! is positive definite, a minimizer which is § = A 'b exists.
To find the minimizer of f(@), an iterative method is used to construct a new search
direction vector d” at each stage and a local minimizer along this search direction, which
is

0" =gV 4 () g, (4.38)
Correspondingly, the residuals ") = A0 — b are updated as

€N = ¢ 4 Ad". (4.39)

It can be shown that the choice 7 = 7(") = —£(T’1)T §(T’1)/d(T)TA d™) minimizes S(T)TA.S(T)
over all possible choices for 7 in (4.39) (Azelsson [9], Section 11.2.1). It can be proven
that, if the direction vector d” is chosen conjugately orthogonal to the previous direction
vectors, then it will give the best approximation in the so-called Krylov space. Thus,

d(’r—|—1) — _£(7‘+1) + B(T)d(r)’ (440)

where the choice ) = §(T+1)T S(TH)/E(T)T £ guarantees that d"™" and Ad" are
conjugately orthogonal. The word conjugate means that the vectors are orthogonal with
respect to A, i. e.,

d""Ad® =0 for r#s, (4.41)

since the product of dV"Ad®) = (d(’"),Ad(s)) can be seen as scalar product of two
vectors d”” and Ad® in the Krylov space. Here, (-,-) indicates a scalar product. The
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Krylov space of dimension r associated with A and €@, i. e, K’ (AE?), is a vector
space that is spanned by the vector €, A¢©. ... A™'¢® It is worth noting that
the minimization of %{ A7 € is equivalent to the minimization of the distance of the

approximation 8™ and the exact solution  with respect to norm || - | A, thus

16 — 6|4 = min |v-—ex|. (4.42)
vekr (A EO)

The norm |- || 4 can be defined as

|v|| = vT Av. (4.43)

The convergence rate of the CG method can be improved by preconditioning. Precon-
ditioning means that the original coefficient matrix A is replaced by another matrix A
with the same solution as A but smaller condition number. Thus, the convergence rate
of A is faster than that of A. One way to precondition the original coefficient matrix A
is to premultiply the matrix A by a preconditioning matrix P such that

A9 =b (4.44)

with A = PA and b = Pb. Now the minimization takes place over the Krylov space
K™ (P A£") instead of the original Krylov space K (A £). As posed before, the main
restriction in computing the physical quantities of digital images is the storage capacity.
This thesis only uses the Jacob: preconditioner, because this preconditioner can be applied
without using any extra storage. In this case, the preconditioned matrix P is

: (4.45)

where D is the diagonal part of the coefficient matrix A. For a comprehensive treatment
and convergence analysis please refer to Azelsson [9], Chapter 11. The pseudocode for a
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computer implementation takes the following form

Initialize: 0 = @, ; ¢ = A0© —p; h©® = D ¢, (4.46)
d® = _pO : 5(()0) _ £(O)Th(0)

check convergence; continue if necessary

forr=12 ...
g™ = Ad"
() — 5(r71)/(d(r)Tg(r))
o) = =1 4 () gr)
e = ¢ 4 7 A4
h() = D_lﬁm ; 557) _ S(T)Th(r)
check convergence; continue if necessary
B =/ s o) = )"
drt) = —h™) 4 g gr+h)

next r

(g and h{") can be stored in the same vector.)

4.4.3 Complex-valued symmetric coefficient matrix

From the discretization of the Laplace equation in the frequency-dependent case, the

following linear system is obtained:
A6 =0b. (4.47)

Therein, @ and b are complex-valued vectors. Here, A is a complex-valued symmetric
matrix but not-Hermitean, i.e., A = AT but A # A", Since A is not- Hermitean,
A cannot be a positive definite matrix. This can be proven easily by taking a vector
v € C" with the zero elements everywhere except the first element, i.e., v1 = 1 and
vy = w3 = -+ = v, = 0, and then calculating the quadratic form of the matrix which is
complex. This result contradicts the definition of a positive definite matrix (Azelsson [9],
p- 85). Therefore, the methods to solve the positive definite linear systems as discussed
previously are not applicable for this case.

Usually in practice, the n x n complex-valued linear systems (4.47) can be transformed
to equivalent 2n x 2n real systems by taking real and imaginary parts of (4.47); hence,

R(6) R(b) R(A) I(A)
~3(0) 3(b) 3(A) —R(A)

Y * T

(4.48)

Since A = A", then A, = AT. At a first glance, variants of the CG method which are
called MINRES and SYMMLQ are applicable in this problem, because they can be used in
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the case of symmetric indefinite linear systems (Paige & Saunders [139]). Unfortunately,
Freund [67] showed that by analyzing the spectral property of the coefficient matrix A,
Krylov subspace methods are not applicable to solve the transforming real linear system
(4.48). Thus it is implied that the MINRES and SYMML(Q methods are inappropriate
to solve (4.48), since the MINRES and SYMMLQ methods as variants of the CG method
belong to the family of Krylov subspace methods.

The coefficient matrix A can also be rewritten in real linear system as

A [ R(0) ] _ [?R(b) ] AL [§R(A) —3(A) ] | (449
3(4) R(A)

The matrix A,, is unsymmetric and the resulting system can be solved by GMRES
(Barrett et al. [11]). Again in this case, the spectra of A,, are unsuitable for Krylov
subspace methods (Freund [67]). As in the real case, the convergence rates of these

methods depend strongly on the ratio of material parameters k£ /k° and sometimes, the
methods do not converge to proper solutions.

The explanation above and also some numerical and theoretical results produced by
Freund [67] show that using Krylov subspace methods, the equivalent linear real-valued
systems are more difficult to solve than the original complex-valued ones. Hence, in
this thesis, the modified version of the CG method will be used to solve the complex-
valued linear system (4.47) directly. This modified version of the CG method is called
conjugate orthogonal conjugate gradients (COCG) (van der Vorst & Melissen [177]).
Certainly, COCG can be preconditioned to accelerate the convergence as in the classical
CG method. Indeed, the pseudocode for CG as displayed in (4.46) is applicable for COCG.
The main difference of those two methods is that theoretically, the complex-valued scalar
product (z,y) = &'y should be replaced by the bilinear form (x,y) = "y, where the
name conjugate orthogonal comes from. However, in the pseudocodes, the difference is
invisible, COCG can break down in the case of the complex-valued linear systems, since
the conjugate scalar product d(T)Tg(") = d""Ad™ = 0 in (4.46) for d™ #£ 0. In the
real linear systems, however, this difficulty does not occur, since if the scalar product
d"" Ad™) = 0 and then d™ = 0, which implies €7~ = 0 in the corresponding Krylov
space (van Kan & Segal [179], p. 221). The residual €Y = A9~V _ b = 0 implies that
the exact solution is found.

The pseudocode is the same for the real case (box (4.46), but one has to be aware of

the modified scalar product discussed above. The rigorous derivation of the method and
the proofs can be found in van der Vorst & Melissen [177].
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Effective medium theory

The solutions of the boundary-value problems presented in Chapter 3 depend nonlinearly
on the material parameters of the heterogeneous material components and thus depend on
the microgeometry of the materials. This dependency implies that the mean values of the
solutions of such problems and thus the effective material parameters (cf. 3.7) rely on the
detailed microgeometries of the corresponding heterogeneous media. Unfortunately, in
general, the complete information of the exact microstructure is not available. Therefore,
one has to solve such problems by approximation.

One way to determine the estimated effective material parameters is by proposing the
so-called mixing laws. It would be desirable to keep these mixing laws as simple as possible
such as only requiring the material properties of phases of heterogeneous media and their
volume fractions. However, in general, additional information about the nature of the
mixture must be known if the material parameters have to be predicted accurately. This
additional information can be particle size and shape, interactions between the phases
and the nature of the packing found in the heterogeneous media.

For illustration, consider a biphasic random material composed of the phases " and
¢° with the total volume fractions " (thermal conductivity &%) and #° (thermal conduc-
tivity k%), respectively. Note that, for simplicity, the illustration will be given in terms of
thermal conductivity. Wiener [188] considered a biphasic random material is composed
of parallel layers of pure components ¢ and . If the layers are perpendicular to the
direction of the applied temperature gradient (see Figure 5.1.a), then, the system is equiv-
alent to two different thermal conductivities in serial connection and the overall thermal

conductivity k is given by
_ (nf w\!
= (— + —) . (5.1)

This can be proven as follows. Due to the applied temperature gradient gradf,, the
obtained heat flux qg in the REV is uniform, however, the temperature gradient varies.
The volume average of the heat flux and the temperature gradient are given by

_ 1 1
Q—E/Bqu—E/BQOdX—QO (5.2)
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D D

(a) (b)

Figure 5.1: The parallel layers associated with the Wiener (a) lower bound and (b) upper bound.
The arrow points in the direction of the applied temperature gradient grad 6.

and
do 1 /radﬁdx 1 / radﬁdx—i-/ rad § dx
Ta = -
& AD /.8 AD \Jpr® s

B 1 Qo Qo B n* 7w
— _AD</BF].ngX+/BSdeX>_ qO(kF+k5 ) (5.3)

In (5.2) and (5.3), it is assumed that the cross section A is constant. Substituting (5.2)
and (5.3) into (3.160) gives (5.1).

If the layers are parallel to the direction of the applied temperature gradient (see
Figure 5.1.b), then the system is equivalent to two different thermal conductivities in
parallel connection and the overall thermal conductivity £ is given by

k=n"k" +7%k". (5.4)

This can be proven as follows. Due to the applied temperature gradient gradfy, the
resulting temperature gradient grad 6 is uniform in the REV. The volume average of the
temperature gradient is given by

grad f = / grad # dx = grad 6. (5.5)
B

In contrast, the heat flux q is not uniform in the REV and its volume average can be

computed as
L / dx = = / d +/ a
= X X
AD J, 3T ap \ J,r @ s
1

= D (/BFkFgradé)odx—i-/BSksgradeodx>

= —gradf (" k" +n°k%). (5.6)
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Substituting (5.5) and (5.6) into (3.160) yields (5.4). Note that in the elastic case, the
corresponding models are the Reuss [150] and the Voigt models [182].

These empirical mixing laws (5.1) and (5.4) can be collected into one family and can
be generalized as

(k)' =n" (k7)" + 7 (k%) —1<i<1. (5.7)
Here, for i = —1 and i = 1, the previous Wiener’s models are recovered. For i = 1/3, the
famous Looyenga’s mixing law [111] is recovered

—1/3

k Al (k)3 7% (k%)Y3. (5.8)

For i = 1/2, one obtains the Birchak’s mixing law [29]
(E)I/Z — ﬁF(kF)1/2 + ﬁS(kS)1/2, (59)

which is used in the microwave remote sensing research. The Birchak’s mixing law can
be traced back to the last century in the Beer’s monograph [12] and was confirmed
experimentally by Gladstone & Dale [74] in case of liquid properties. By taking the limit
i — 0, (5.7) becomes the Lichtenecker logarithmic mixture-law [109, 110]

In(k) = A" In(k") + 7 In(k%). (5.10)

This can be proven as follows. For i — 0, (k)* (as well (k¥)? and (k%)) can be approx-
imated as 1+ Ink (Arfken & Weber [6]). Substituting these approximations into (5.7)
yields (5.10).

Clearly, the only microgeometrical input in these mixing laws are the volume fractions
of the heterogeneous medium. The volume fractions of the components of a heterogeneous
medium are the most influential geometrical properties in determining the overall physical
properties. However, in general, these simple mixing laws are unable to predict the overall
material parameters accurately, because microgeometries are often very complicated and
this complexity cannot be captured by a single parameter. To see this intuitively, consider
a biphasic medium composed of 50% rubber and 50% steel. Two possible cases arise: (a)
Dispersed rubber inclusions are embedded in the connected steel matrix (left side of
Figure 5.2); (b) Dispersed steel particles are spread out in the connected rubber matrix
(right side of Figure 5.2). Although it is evident that the first medium has very different
elastic properties from the second one, a calculation of effective elastic constants which
includes only the volume fraction would fail to bring out this distinction. A similar
problem will happen in the electric conductivity case, if the rubber and the steel are
assumed to be non-conducting and conducting materials, respectively. By employing only
the porosity as a geometrical input parameter, one will obtain the same overall electric
conductivities, evidently material (a) is conducting and material (b) is non-conducting.
Obviously, the nature of the packing found in the heterogeneous media plays an important
part in the overall strength and overall conductivity of the above biphasic materials.

An enhanced direct method is an approximation method based on the effective medium
theory (EMT). On the other side, the EMT is quite simple to use and will give quite sat-
isfactory results, if used properly. Therefore, in this chapter, the presented approximation
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Figure 5.2: 50—50 biphasic medium consisting of a disconnected inclusion phase and a connected

matrix phase. The black phase is the rubber material and the white phase is the
steel.

methods are based on EMT. The main idea of the EMT is that an inclusion is taken out
of the original heterogeneous material and inserted into an unknown infinitely extended
homogeneous effective medium. Consider that homogeneous boundary conditions are im-
posed to this medium. Due to the presence of this single inclusion, which has different
thermal and/ or elastic properties than those of the surrounding effective medium, the
temperature gradient and/ or displacement gradient are disturbed. Therefore, this tem-
perature gradient and/ or displacement gradient inside the inclusion is different to those
outside the medium. Because the (averaged) temperature gradient and/ or displacement
gradient in the unknown effective medium without the inclusion must be homogeneous, the
averaged temperature gradient and/ or displacement gradient within the inclusion must
be equal to the averaged temperature gradient and/ or displacement gradient outside the
inclusion. In other words, the temperature gradient and/ or displacement gradient actu-
ally cannot feel the presence of the inclusion in the averaged sense (Beran [17], Hashin &
Shirikman [81], Markov [115]). This circumstance is defined as effective medium as seen
by the temperature gradient and/ or displacement gradient (Figure 5.3). The require-
ment that the disturbance temperature gradient and/ or displacement gradient caused
by the inclusion should be zero is called the self-consistent condition and, therefore, the
method is called self-consistent method (Krdner [103, 104], Budiansky [38], Nemat-Nasser
& Hori [135]). Theoretically, the inclusion can have any form and several inclusions can
be inserted into the homogeneous effective medium. If both components of the biphasic
material and also the homogeneous effective medium are assumed to behave as isotropic
linear materials, one can take an inclusion of spherical shape as the first approximation.
The EMT used in this thesis is based on the quasi-static approximation. One can also
define an EMT dynamically by requiring that the average forward-scattering amplitudes
of the inclusions should be vanish in the low-frequency limit (Sheng [162]).

Various classical effective medium approximations such as the Bruggeman effective
medium approximation (BEMA) [37], the Mazwell-Garnett theory (MGT) [122] and the
differential effective medium (Bruggeman [37]) in the case of the heat conduction are
briefly described. The corresponding approaches in the elastic case known as the Kroner’s
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Figure 5.3: The scheme above describes the effective medium theory in finding the effective ma-
terial parameters of a two-component random medium made up of components ¢
(left-leaning diagonal lines) and ¢° (white). The hatched grain can be ¢ or ¢ and
is embedded in the effective medium (bricks), which has the yet unknown effective
conductivity and/ or effective elastic moduli as shown in the middle. Upon vol-
ume averaging, the disturbance temperature gradient and/ or displacement gradient
should vanish, which means that the inclusion is indeed invisible for the temperature
gradient and/ or displacement gradient.

self-consistent method [103], as the Mori-Tanaka method [133], or as the three-phase
model by Christensen & Lo [46] are given. All of these mixing laws are established using
the solutions of the boundary-value problem of a single inclusion. The solution to this
problem has a long history. For an isotropic conducting sphere and ellipsoid in an isotropic
matrix the problem was solved by Poisson. Later, Mazwell treated them in his famous
treatise [121]. Much later, Eshleby [64] gave the solution to an elastic field of an isotropic
ellipsoid in an isotropic matrix. The brief historical remarks can be found in Markov
[115].

The derivation of these mixing laws will be presented in the framework of the EMT and
the volume averaging method. Different mixing laws based on the EMT can be linked
to the different microgeometries of the heterogeneous medium. The BEMA treats the
random medium with the aggregate microstructure (symmetric microstructure), whereas
the MGT treats the random medium with the dispersion microstructure. Another exam-
ple is the observation conducted by Berryman & Berge [25]. They found that different
versions of the effective medium are useful for real materials with different classes of mi-
crostructures. The differential effective medium theory (Norris [137], Watt [184]) and
the Hashin composite spheres assemblage [78] predict good overall elastic properties of
a porous foam composed of glass, whereas BEMA is useful in predicting overall elastic
behaviour of sintered glass-beads. Therefore, it is important to develop a more general
method to incorporate more microstructural information in order to predict the overall
material parameters. In order to give a more precise prediction of the transport param-
eter quantitatively, a more general mixing law based on a local porosity theory will be
introduced. This provides more geometric information in terms of local volume fraction
distribution and local percolation probabilities.
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5.1 Thermal conductivity

5.1.1 Average heat flux through a coated sphere

The mixing laws based on the EMT may be derived using the so-called single inclusion
problem. It is a boundary-value problem for an inclusion embedded in an infinite homoge-
neous medium whose material properties differ from those of the inclusion. The inclusion
itself is allowed to be inhomogeneous. Upon solving this boundary-value problem, the
temperature field inside the inclusion is known. For an ellipsoidal inclusion, the tempera-
ture gradient is constant (Eshelby [64], Markov [115]). The constant temperature gradient
in the inclusion can be connected with the uniform applied field at infinity by the so-called
Wu'’s tensor (concentration factor) [194]. The Eshelby’s tensor [64] can be derived from
the Wu’s tensor and vice versa. It is a second-order tensor for a linear conductive case.

To derive mixing laws for an isotropic heterogeneous material, a spherical inclusion
is used. In this case, the Wu’s tensor reduces to a scalar quantity. For the sake of
completeness, the solution of the single inclusion boundary-value problem is presented
here.

Consider an isotropic coated sphere surrounded by an infinite homogeneous medium
with the thermal conductivity £(®). The shell (core) of the coated sphere has the radius
RM (R®@) and the conductivity k) (k). This ensemble is imposed to an external tem-
perature field with constant gradient at infinity, i. e., 8(x = 00) = 0y z3 (see Figure 5.4).
The temperature distribution is #®) in the region i of the shell (core).

I3 |

| RO

Figure 5.4: Coated spherical inclusion in a homogeneous medium imposed by a temperature
field 8 = 0y z3 at infinity.

Due to the spherical symmetry of the coated sphere, it will be easier to solve this
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boundary-value problem in spherical coordinates (7,9, ). This representation of the
spherical coordinates is chosen here to be compatible with the common representation of
spherical coordinate system. Then, (8,62, 63) in appendix are set to ' =r, #* =1 and
6 = ¢. By exploiting its azimuthal symmetry (%(- --) = 0) and by considering that k(®
is constant in each layer, the heat conduction equation (B.31) becomes

°09(r,9)  10°%09(r,9)  2000(r9) 1 969(r,9)

= 11
or? r2 09?2 r or r2tand OV 0 (5.11)
with the boundary conditions at the interfaces r = R®
(%) — (i+1)
6% (r, ) e 6 (r, 9) @
(5.12)
%0 909 (r,9) _ D) 96U+ (r,9)
or or

r=R() r=R()
The general solution of (5.11) can be obtained in the form of (Arfken & Weber [6], Jackson
[97])

0% (1, 9) = Z (a,(:) rk 4 b,(:) r_k_l) Py (cos ), (5.13)
k=0

where ag) and bg) are constants and Py (cos)) are the Legendre polynomials. In spherical
coordinates, the imposed external temperature gradient is

grad @ = 6y es = Oy (cosve, +sindey), (5.14)

where the relationships (B.4) and (B.5) are used. By considering the orthogonal property
of the Legendre polynomials, P;(cos?¥) = cosd, and the boundary conditions (5.12),,
(5.13) reduces to

09 (r,9) = (a9 + b9 r3) 1 cos 0. (5.15)
From the jump conditions (5.12), the boundary condition (fy at r — co) and b®) = 0 (to
avoid a singularity at 7 = 0), all of the coefficients a( and ) can be found.

For later purposes, the average heat flux in the coated inclusion, g™, is given by

: 1
q™ = ~ Y / k(x) grad 0(x) dv
BlnC
3
_ 3 k(l)/ 00 da — k(l)/ oW g k@)/ 024
Ar(RW)3 ( oBl ? B2 ar aB2 2
1
= ~RO) [k(l) alV ((R(l))?’ — (R(Q))El) + k@ 4@ (R(Q))ﬂ es, (5.16)
where
aQ 3O 250 4+ k@) p
CTT k0 1 EOY 260 1 k@) + 2 (RD /RO (KO — kD) (kO — k@) 0
(5.17)
0 1
o 9 k0 1) .

260 + k) (26D + k@) + 2 (RD/RD)3 (kO — kD) (kO — k@)
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To obtain the second line of (5.16), (A.13) is used. For a single spherical inclusion, the
average heat flux i m the inclusion q“‘“ can be obtained from (5.16) and (5.17) by inserting
kM = k® and RM) = R®). Thus, g™ is

3k (1)

g =WV e, = -~
q = k“Va €3 = 25 (0) T £ 00 e3.

(5.18)

5.1.2 Bruggeman effective medium approximation

In this subsection, the results of the previous section are employed to derive the Brugge-
man effective medium approximation (BEMA) [37]. Consider a biphasic random material
with a volume fraction 7" of conductivity k¥ and »° of conductivity £°, respectively, that
is imposed under a constant temperature gradient 6, es; across the medium. Evidently,
it is m" +7m° = 1. The BEMA assumes that the phases ¢ and ¢° may be decomposed
into m and m?® inclusions, respectively. The shape of the inclusions may be arbitrary;
however, for a macroscopic isotropic material it can be assumed that the inclusions are
roughly spherical. The size of the inclusion is arbitrary, ranging from finite size to infinites-
imally small (Milton [130], Hashin [78]). Then, these inclusion spheres are inserted into
an homogeneous effective medium (RVE) of effective conductivity k. The same boundary
conditions are applied to the effective medium.

Applying (3.139) (here, py = 6y e3), the volume average temperature gradient grad ¢
can be obtained

— 1
gradf = — / grad 0(x) dv = 6, es. (5.19)
Vs
From (5.18), the volume average heat flux q can be evaluated as
mS
4= — [ qx)dv= do+ 10 d
@ = 5 [ad =" [ a5 [ aGoa
7L F s
= —ﬁF ék K 00 €3 — S 3k K 00 €3, (520)

2k + k¥ 2k + kS

where K (K%) is the inclusion of the phase ¢ (¢°) and m! and m® are the number
of the inclusions of ¢! and of the inclusions of ¢, respectively. In the second step of
(5.20), the main assumption of the effective medium approximation is used to convert
the integral over the volume V' of the RVE into an integral over the volume occupied by
the inclusions K¥ and K°. Recalling that the main assumption of the effective medium
approximation is that each inclusion in the effective medium behaves as if it is isolated
(cf. Figure 5.5). The average quantities in the last step are found using the results (5.15)
and (5.18) of the previous section.

By inserting (5.19) and (5.20) into (3.160), the equation for the effective conductivity
k can be obtained. Hence,

- +7% = =0. (5.21)
2k + kF 2k + kS
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Figure 5.5: Schematic diagram of the Bruggeman effective medium approximation to determine
the effective material parameters of a random medium, which has two structural
units (on the middle): The first one consists of an inclusion with the material prop-
erties of material " (left-leaning diagonal lines) embedded in an homogeneous effec-
tive medium (bricks region), as shown in the middle upper. The second one consists
of an inclusion with the material properties of material ¥ (white region) embed-
ded in an homogeneous effective medium (bricks region), as shown in the middle
lower. The right figure is the effective reference medium, which has the effective
material parameters obtained upon averaging all structural units. There is no direct
interaction between the different inclusions.

Equation (5.21) is known in the physics and electromagnetics literature as the Bruggeman
effective medium approximation (Bruggeman [37], Sheng [162], and Sihvola [164]) or the
Polder-van Santen mixing law (Polder & van Santen [143], Sihvola [164], Ishimaru [96]).
The BEMA is a symmetric mixing law, which means that the simultaneous interchange
of k¥ and k° and of »¥ and 7° results in the same overall conductivity.

It can be easily shown in the case of infinite contrast, i. e., k¥ /k° = oo, that the
mixing law (5.21) possesses a percolation threshold ¥ = 1/3, which means that, if
the value of ¥ is below 1/3, the effective conductivity equals zero, i. e., & = 0. This
result can be interpreted as follows. Consider that a random material is composed of
thermal conducting material k" = 1 and of non-conducting material £ = 0. The heat
flux boundary condition (3.73) implies that no heat flux can flow into component ¢°.
Therefore, as long as the thermal conducting phase does not form any cluster, which links
a boundary side to its opposite side, the heat flux cannot flow through this inhomogeneous
material, which implies that £ = 0. But, if the conducting material forms a cluster, which
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Figure 5.6: Schematic illustration of the Mazwell-Garnett approximation to find the effective
material parameters of a random medium. The dashed lines show how the ran-
dom medium is divided into structural units (on the left side). On the middle the
structural unit is shown. It consists of a coated sphere, which is composed of a in-
clusion material as the shell (left-leaning diagonal lines) and matrix material (white
region) as the core, embedded in an homogeneous effective medium (bricks region).
The right figure is the effective reference medium, which has the unknown effective
material parameters.

spans a boundary side to its opposite side, then, a non-vanishing effective conductivity
exists (k # 0). It can be proven using statistical analysis that this situation is possible
only if the volume fraction m¥" of the conducting component is greater than nf = 1/3
(Landauver [108]).

On the other hand, the BEMA has its shortcomings. Firstly, it does not allow direct
correlations among particles, however, the interactions between particles are taken into
account via the effective medium. Hashin [80] pointed out that this approximation indeed
violates the RVE principle, because the single sphere as a microelement can only see
other microelements (spheres) but not directly the minielement (the effective medium).
Hashin ([80] p. 487) put it figuratively as “the BEMA assumes that a tree sees the forest
but a tree sees only other trees”. Secondly, the BEMA fails to predict a reasonable
effective properties near the percolation threshold (Davidson & Tinkham [47]). However,
the BEMA predicts very good overall permittivity of snow (Matzler [119]) and for the case
of a microstructure consisting of a small concentration of non-overlapping spherical grains
embedded in a host. Milton [130] has shown that for a certain fractal-type microstructure,
the BEMA gives exact overall material parameters.

5.1.3 Mazwell-Garnett theory

There are many composite media whose inclusions with the volume fraction ¥ of conduc-
tivity k¥ are distributed randomly in the matrix with the volume fraction 7° of conduc-
tivity k¥ (left side of Figure 5.6). For such a medium, it is better to take a coated inclusion
consisting of a core o and a shell ©° (instead of spheres of one constituent as was done in
the BEMA) and to insert it into the homogeneous effective medium. Through this coated
inclusion, the interaction between the components is taken into account. Consider that
a random medium can be partitioned into m non-overlapping windows K/, which can be
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modelized as Hashin assemblages [78]. In this case, the average heat flux is given by

a= [aa =3 Y [ ad= 3 S viamim) (5.22

where Vj is the volume of K7, and Fj is the microgeometry of the pore space in K/. In
general, it is impossible to determine the average heat flux q;(F}) per cell K/ by solving
the boundary-value problem directly. Therefore, one has to find an approximate average
heat flux in the cell K/ under the following assumptions:

e The porous medium is spatially and statistically homogeneous, which means that
the average heat flux q;(F}) does not depend on the position of the structural unit
K’ in the porous medium.

e The correlation between cells is neglected, and the pore space configurations Fj in
each cell are statistically independent. This will be approximately fulfilled for Rg >
L.,, where Rg is the outer radius of the coated sphere and the correlation length
L., is defined as the length at which the correlation function decays to exp(—1).

e The pore space and the matrix space in each cell can be approximated by a coated
sphere as first approximation (cf. Figure 5.6 in the middle).

Hence, by (5.16), one has the average heat flux q(n}) in each cell

BES 3k k5 [2k5 + kT 4 20l (K — £9)]
Z o Vies.  (5.23)
(2k + k) (2kS + kF) + 2nL (kS — k) (kT — k5)

J:1

Contrary to the structural units of the BEMA (cf. Section 5.1.2 and Figure 5.5), in
this case, the local volume fraction nf of the dispersed phase can fluctuate from region
to region. Therefore, the volume average should be reformulated by introducing the
probability distribution p(n", L) (2.22) of the local volume fraction n; with the property

1 « '
=7 anV] = / nf p(n®, L) dn*. (5.24)
=1 0

Then, the average heat flux (5.23) can be expressed as

! kES[2kS + kF + 2nf (k¥ — kS
q:_/ p(nF,L)( SkK7[2k” + k7 +2n ( ) OodnF es.  (5.25)
0

% + k5)(2kS + kF) + 2nF (kS — &) (kF — kS)

By inserting this expression combined with (5.19) into the definition of the effective con-
ductivity (3.160) and upon simple manipulations, one obtains

/1p (nF. 1) (E_— k) (2kS + k) — nF(ki — k%) (25 + k) dnF — 0. (5.26)
0 (2k + kF)(2kF 4 EkS) + 2nF (k — kF)(kF — E5)
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When u(p) = §(nf" —nT), (5.26) reduces to the celebrated MGT [122] which is also called
the Rayleigh mixing law [149]
F—kS kP kS

— =70 — (5.27)
k + 25 kF 4+ 2kS

(5.27) can be derived in the context of the electromagnetic theory through the Clausius-
Mossotti relation based on the polarizabilities for determining the effective permittivity
(Sihvola [164]). The derivation presented here stresses the role of the microstructure.
Also, it should be emphasized that the Mazwell-Garnett equation (5.27) does not predict
a percolation threshold. For the infinite contrast case (k¥ /kS = co), the effective con-
ductivity is the same as the conductivity of the matrix phase because the inclusions are
always prevented by the matrix phase to form an infinite cluster.

The MGT gives good results in predicting the permittivity of composite media (Sheng
[158, 159], Sheng & Callegari [163]).

5.1.4 Differential effective medium

The differential effective medium (DEM) applies the EMT sequentially in determining
the effective properties of heterogeneous random media. The DEM method replaces an
infinitesimal concentration of the dispersion phase, let’s say phase ', into the host phase
©°. It begins with the homogeneous phase ¢° as an initial host, and is altered in each
step as a new concentration dn’ of the inclusion phase ¢! is inserted. The process is
continued until the desired proportion of the constituents is attained. A schematic sketch
of the iterative process is displayed in Figure 5.7.

The altered volume fraction dn!" of the phase ¢! in each step is not equal to dnf'.

Since by removing an amount of dnf” randomly from the effective medium of the previous
step, a part of the phase ¢ is also removed. This removed part of ¢f is equal to nf dn®,
where nf' is the volume fraction of the phase in the effective medium of the previous step.
Thus, the relationship between the altered volume fraction of the phase ¢ and the new
amount of inserted inclusions is given by

dn = (1 —n")dn". (5.28)

In each step, the effective material parameters are approximated using the dilute
variant of the BEMA that can be obtained by expanding (5.21) around nf = 0. Thus,

3k(n") (k" — k(n")]
kF 4 2k(nt)

k(n™ +dn") = k(n") + dn”. (5.29)

In the limit dnf" — 0, (5.29) becomes to the differential equation

g 3E[ -
dnf — EF 42k

(1—n") : (5.30)
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Figure 5.7: A schematic illustration of the iteration steps in the DEM method.

which can be integrated between the limits £° and & and between the limits 0 and 7"
This yields the following expression:

F_T7. s\ /3
Ll i =1-n". (5.31)
EF — kS \ k

Equation (5.31) is valid for the case of the spherical inclusion (for non spherical inclusion
see Norris et al. [138], Markov [115]). Note that (5.29) can be derived rigorously using
the theory of Landau-Lifshitz [107] which is valid for the dilute case only.

As in the case of the MGT, the DEM method treats the constituents unsymmetrically,
which implies that there is a preferred material as a host material. Obviously, the effective
material parameters depend crucially on which material is chosen as the host. When the
biphasic material is composed of conducting and insulating materials, the difference can
be seen immediately.

If the insulating phase is taken as the initial host phase, into which a small amount
of the spherical particles of the conducting material is incrementally injected, then, the
overall effective conductivity is zero, because in each step, the conducting particles are
isolated by the insulating phase. This result is known as Hanai-Bruggeman mixing law
(Greffe & Grosse [76]). If one starts with the conducting phase as the host phase and
incrementally adds spherical particles of the insulating phase, then the overall effective
conductivity is finite (not equal zero) because a conducting path always exists through
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the conducting phase. This result leads to the mixing law of Sen et al. [157], which may
capture the famous Archies law [5]. Sen et al. [157] successfully applied their mixing law
in explaining the conductivity behaviour of sandstones.

However, this classical biphasic DEM model has a main disadvantage since some-
times it cannot treat different physical phenomena of a bicontinuous material in a unified
framework. Bicontinuous means that both constituents form infinite paths across the het-
erogeneous random medium such as rocks, sandstones (Mavko et al. [120]) and infiltrated
sintered materials (Allais et al. [3]). For example, consider a bicontinuous sandstone
composed of the brine water (electric conductive material) and rock material (electric
non conductive material). Since the overall electric conductivity of the sandstone is not
equal to zero, the fluid material should be taken as an initial host phase in order to predict
non-zero overall conductivity, but it cannot sustain the shear force since the solid con-
stituent (rock mineral) is disjoint. On the other hand, if the rock mineral is taken as an
initial host phase, the DEM model can sustain a shear force but the model is insulating,
which is not correct in this case.

5.1.5 Mixing law based on the local porosity theory

It is pointed out in the previous sections that some difficulties occur in treating bicontinu-
ous media. One way to overcome such difficulties is the introduction of a three-component
DEM theory in which the solid particles are consolidated through the presence of the so-
called cement material (Sheng [161]).

Recently, a more general mixing law based on the local porosity theory (MLLPT)
was proposed to overcome some of the difficulties outlined above (Hilfer [88, 89], Wi-
djajakusuma et al. [186]). In the MLLPT, the input of the microstructures is given by
local porosity distributions and local percolation probabilities, which describe the porosity
fluctuations and connectivity fluctuations, respectively (see also Section 2.2.2).

Similar to Section 5.1.3, the random medium is divided into m cubical non-overlapping
windows K!, - - - , K™ of side length L. In this case, the average heat flux is given by

d== [a@do==Y [ ax)dv== 3 V,a((F). (5.32)
Vs 4 j=1 7K v 3=1

Here, F; denotes the parameter which describes the geometry of the pore space inside the
j-th cell. One has to solve a boundary-value problem to obtain the heat flux q;(x)(F}).
In practice, it is rarely possible to solve this boundary-value problem straightforwardly,
because the complete information of the pore space geometry is generally unknown. How-
ever, one can still find an approximate heat flux under the assumptions given in Section

5.1.3 for the derivation of (5.26).

Again, the spherical coated inclusion can be used to approximate the geometry of the
pore space and the matrix-space in each cell. Contrary to the dispersion microstructure
(Section 5.1.3), there is an unidentifiable inclusion medium in each cell. The indicator
function A; can be employed to solve this problem. If a cell is percolating (A; = 1), then,
the structural unit of this cell can be taken as material ©° coated by material . For
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a non-percolating cell, the core and the shell are made up from materials ¢ and ¢,
respectively. In this case, one can solve the boundary-value problem accurately. This
gives the heat flux ﬁ(nf ,Aj, L) for each cell. It should be noted that the dependency
on the internal surface S; can be neglected for the thermal conducting problem. By
summing over the cells and classifying different cells into different species according to
their percolation, (5.32) becomes to

F S
1 | &= .
Qo Z;Q("j’AjZLLHg 101(nj,/\j=0,L) : (5.33)
J= j=

where m = V(¢°)/V (K) is the number of cells in the partitioning of ¢©°, m” is the number
of percolating cells, m® is the number of non-percolating cells and m = mf + m°. By
replacing £, kM), k® and (R®/RW)? with k, k¥, k¥ and 1—n!’, respectively, in (5.16),
the average heat flux (_1(njm ,A; = 1,L) for the case of the conducting coated sphere is
obtained:

3k kT [3kS + 2nl (K7 — k%)) 60

A A = ) = = s ok 1 2(1 - nt) (kF — &) (k5 — kF) (5:34)

Similarly, one replaces £, k() £ and (R® /RM")3 with k, k5, k¥ and n; respectively
in (5.16), and obtains the average heat flux of the non-conducting coated sphere
3k kS[E" + 2k5 + 20l (k¥ — k5)] 6

anf, A;=0,L)=— — — e;. 5.35
alny, A ) (kS + 2F) (k" + 2kS) + 2nF (kS — &) (K" — kS) (5:35)

In a porous medium, the local volume fraction nf and the indicator function A; for the
connectivity can fluctuate from one cell to the next. As discussed in Chapter 2, the
fluctuations of nj and A; are captured by p(n”,L) and pc(n”, L), respectively. As a
result, the expression for the heat flux in (5.33) has to be reformulated using p(n”, L) and

pc(nf, L)
KT [3kS + 2nt" (kT — k%)
(KF + 2k) (kS + 2kF) + 2 (1 — nF) (KF — k) (k5 — kF)

1
4 ~ —30,F / u(p, ){ pe(n”, L)
0

ES[EY + 2k5 + 2nf (k' — k5))
(kS + 2&) (k¥ + 2kS) + 2nF (kS — &) (kF — k5)

By substituting (5.19) and (5.36) into (3.160), and after some algebraic simplifications,
the mixing law based on the LPT takes the form of

— [1=pc(n”,L)] Ydnfes.  (5.36)

1

ol 1) pela® 1)

0

ke (k7 kS, 1 — n)
kcs(kF’ k-S, 1— nF)

—k
—dnf +
+ 2k

1
ke (kS, kP, n") — &
+ nt', L)1 — ps(nf, L U —dnf =0, 5.37
O/p< L . (5.37)
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where
_ 3k° +2nF(kF — /-’JS) P

kcs(kF,kS, 1— ’I'LF)
3kF — nt (k¥ — k)

(5.38)

Root finding in the real case

For any given L, the approximate value of the MLLPT of the effective permittivity is the
root of k of the mixing law (5.37). If u and X\ are known, the value of the MLLPT of
the effective permittivity can be obtained by finding the root of the mixing law (5.37)
iteratively. To find the root of the mixing law (5.37), firstly, (5.37) has to be evaluated
numerically using the extended midpoint rule [145]. Thus,

F(b) = (nf —nf) [P ) ol ) +

=0, (5.39)

where

ke (k¥ kS, 1 —nt') — k N
kes (kP kS, 1 —nF) + 2k
kes (kS kP nF) — k
kes(kS, kP, nF) + 2k

f(n") = p(n", L) pe(n”, L)

+ p(nf, L) [1 —pﬁ(nF,L)]

and nf is the abscissa. For k = k, F(k) is equal to 0.

The next step is applying the Van Wijngaarden-Dekker-Brent method (VDB)[145] to
find the root. It starts from a = k¥, b = k°, which are the end points of the interval in
which % is searched. The VDB carries out an iteration in which three values a, b and ¢ are
present at each step. Here, b is the latest iteration value that is the closest approximation
to k, a is the previous iteration value and ¢ is the previous or an older iteration so that F'(b)
and F(c) have opposite signs. Clearly, b and ¢ bracket k and |F(b)| < |F(c)| during each
iteration step. The VDB method improves the solution iteratively until the convergence
criterion

lc—bl < B+4.0v[b] or F(b)=0.0 (5.40)

is satisfied, where [ is the accuracy parameter. In addition to 3, the machine accuracy
parameter 7 is involved to protect against the possibility that 8 is too small. The value
b is returned to be the root of (5.39). Thus, b is the effective permittivity k.

At each iteration step, the VDB chooses either bisection or inverse quadratic inter-
polation to find the root. Inverse quadratic interpolation is selected whenever a, b and ¢
are distinctive and the point obtained by interpolation is accepted. Accepted means that
the point is inside the current interval or the bounds decrease rapidly. Otherwise, the
bisection step is taken. Thus, the VDB method combines the accuracy of bisection with
the speed of a higher-order method whenever appropriate. For a detailed explanation,
one is referred to Press et al. [145], Section 9.3, and references therein.
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Length scales and limits of validity of mixing laws based on the LPT

Obviously, the mixing laws based on the LPT (5.37) and (5.50) provide effective material
properties, i. e., k and £¢, which depend on the length of the observable window (measure-
ment cell) K (see 2.2.2). Therefore, it is important to determine the length, over which
(5.37) and (5.50) provide reasonable estimations of k and &°.

The mixing laws (5.37) and (5.50), which are generalizations of the effective medium
approximation (EMA), are expected to hold in neither the limit L — 0 nor in the limit
L — oo. For L — 0, the observable window becomes a point and the local geometry
becomes very simple but strongly correlated, which violates the effective medium as-
sumption. For L — oo, the local simplicity assumption is not applicable. Therefore, the
mixing laws are expected to provide reasonable estimation of the effective permittivity
only over an intermediate range of values of L.

Several criteria for determining the length L, which is relevant to the estimation of
the transport properties, have been proposed in earlier works on the local porosity theory
(Boger et al. [34], Hilfer [90], Hilfer et al. [91] and Widjajakusuma et al. [186]). Boger
et al. [34] gave three methods to determine L. The first method is called the entropy
method, which can be described as follows. First, the so-called information function

(L) = /1 (. D) I p(n® L) dn” (5.41)

is introduced and then minimized, i. e.,

df

L=Len

From (5.42), the length L., can be obtained. This length is called entropy length L,
(Boger et al. [34]). The logical concept of this method is to maximize the geometrical
content contained in p(n’, L). The entropy length of the eight digitized samples of Sec-
tion 2.4 can be calculated and are depicted in Figure 5.8. These lengths are needed later
for estimating the effective material parameters. The minimum points of these entropy
functions can be read from these figures and are tabulated in Table 5.1. Note that the
local minimum at L = 2 exists for some samples due to the bad statistics.

The second method is the correlation method, which is constructed from the fact that
the local geometries are assumed to be statistically independent. This assumption is
needed to apply an effective medium approximation. This condition is satisfied when the
length scale is larger than the correlation length L.,. Therefore, the length scale L, at
which the transport parameter is calculated, can be considered as the correlation length

L.,. These correlation lengths have been discussed in Section 2.4 and are summarized in
Table 5.1.

The third method is the experimental method. In this method, L is a free parameter
determined from the experiments. It will denoted as L.;, which can be implicitly defined
as

k(Lem) = E (543)
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Figure 5.8: The information function I(L) of the eight digitized samples.

Hence, L, is the length at which the estimated value from the MLLPT equals the ex-
perimental (exact) conductivity. Then, L., will be used as the fix length in estimating
the effective material parameters of other physical problems. For example, from the mea-
surement of the effective thermal conductivity, L., can be found. Now, L., is used as an
input parameter into (5.37) to estimate the effective magnetic permeability.

The fourth method is the percolation length method. In this case, the length scale is
obtained from p(L) (Hilfer et al. [91], Widjajakusuma et al. [186]). The idea behind this
method is that, since p(L) is often of sigmoidal shape, one can use the inflection point of
p(L) at which p(L) changes most rapidly from its trivial value p(0) = n® at small L to
its other trivial value p(oco) = 1 at large L (here, the porous medium is assumed to be
globally connected). The length scale related to this method is called percolation length
L,, which can be defined as

d?p

— = 0. 5.44

dL?|, _ Ly (5.44)
The first derivative of p(L) is approximated by central differences. These curves are
displayed in Figure 5.9 for different samples. The corresponding maxima are the inflection

points of p(L) as given in Table 5.1.

In addition to L,, there are two other important length scales which contain informa-
tion of the connectivity of the microstructure. Both of them are also obtained from the
function p(L). The first length scale is the threshold length L. which is defined by

p(Lc) = De;, (545)

where p, is the percolation threshold of the underlying lattice. Within the EMA, p. = 1/3.
Since ,1}1% p(L) = nf", L, may not exist for samples whose porosity is nf" > p.. Wherever
—



5.2 Complex-valued permittivity 101

0.07 0.05 T
C ——

0.045 - R1 —— 4
0.04 b

0.05 - 0.035 - A -
0.03 [

0.04 -
0.025 |-

0.03 [
0.02

002 - 0015
0.01 [

0.01 [
0.005 -

0 0 1 1 1 1 1 1
0 0 5 10 15 20 25 30 3B 40

L in Mm

Figure 5.9: First derivative of function p(L) (in unit of pixels) for the samples. The maxima are
corresponding to the inflection points.

it exists, we have k = 0 for L < L,. Therefore in the LPT, L, can be considered as a lower
bound of the relevant intermediate range of lengths. The second length scale L; is the
length at which p(L) approaches its asymptotic value p(co) to a given degree of accuracy
d. For a percolating sample, p(cc) = 1 and for a non-percolating sample, p(cc) = 0. Here,
Ly is defined through

Ls = sup{L : |p(c0) — p(L)| < 6} (5.46)

for small § > 0. L; represents the size of an averaging (smoothing) region that is needed
to ensure that the fluctuating microscopic connectivity can be replaced by an averaged
connectivity field defined on the continuum. Therefore, Ls can be used as the size of
the RVE with respect to the connectivity. The small parameter § controls the degree
of smoothness. The length L; can be considered as an upper bound of the relevant
intermediate range of lengths at least if ¢ is chosen small (e. g., § < 0.05). For small
values of 6 , L, always lies between L. and Ls, i. e., L, < L, < Ls. This can easily be
verified from Figure 2.8 in Section 2.4 with 6 = 0.05 and using (5.46). For the samples
A and B, the scales Ls = 17.23 and Ls = 25.33 are found, respectively, and for the other
samples, Ls > 40.

5.2 Complex-valued permittivity

This section discusses the scalar transport properties in dissipative or lossy media using
a quasi-static approximation. The permittivity problem is taken as representative for the
scalar transport properties. The lossy media treated here are of conducting type (for an-
other type of loss mechanism, see Robert [151]). In addition to the hitherto requirement
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Sample | Len | Leo | L, | Lo
A 6.0 | 80 | 10.0 | 4.46
B 8.0 | 84 |14.0 | 8.42
C 10.0 | 18.4 | 20.0 | 13.56
D1 18.0 | 13.8 | 28.0 | 24.72
D2 18.0 | 21.8 | 26.0 | 22.35
D3 18.0 | 13.9 | 32.0 | 23.85
R1 10.0 | 18.2 | 28.0 | 23.49
R2 6.0 | 6.7 | 34.0 | 24.37

Table 5.1: The length scales (in the units of a) which are used by mixing laws based on local
porosity theory.

for quasi-static analysis in the lossless media, which requires the inclusions to be small
compared to the wavelength in the effective material, one must demand that the penetra-
tion depth or the skin depth of the electric field must be much larger than the size of the
inclusions. The reason is discussed in Section 3.3.3. One knows that in the conducting
medium, the loss decays exponentially, and quick decay is not compatible with the de-
termination of the electric field within the inclusion in the framework of the quasi-static
approximation. Under these conditions, the mixing laws derived in the last section for
the lossless media can be applied straightforwardly to the lossy media by replacing the
corresponding real permittivity and the static fields by the frequency-dependent complex-
valued permittivity and the frequency-dependent fields, respectively. Note that in order
to emphasize that the permittivity is frequency dependent, the frequency w will be ex-
plicitly written in the following mixing laws.

In this case, the BEMA can be written as

L EW) - EFW) s Fw) - ()
w1 e @) " ) 1) (547)
The MGT takes the form
) - W) s () - P (W) .

Fo(w) 1 26 (@) ES(w) + 26T ()

The two-component DEM method is given by

E5(w) —&w) (EFwW\" . .
S (=) 049

In the cases of the MGT and the DEM, the phase ¢! is taken as host and the spherical
inclusions of the phase ¢° are randomly distributed in . If the phase ¢! is the fluid
phase and ¢° is the solid phase, then, these cases can be seen as suspension problems of
perfectly rigid spheres.



5.3 Linear elastic case 103

The mixing law based on the LPT may be written as

1

[ 9" 1) peta” 1

0

g (gF (w), 89 (w); 1 — nt) — &¢

—dn® +
geo(éef (w),é%%(w); 1 — nf") + 2&°

+ oo s ) S

where
3% (w) 4 2nF[EF (w) — €5 (w)]

FEE W), 1 =) =€) Sr Gy () — 6]

(5.51)

Root finding in the complex-valued case

As in the real case, the mixing law (5.50) for the complex-valued case (dissipative medium)
can only be solved numerically. The downhill method, which was originally proposed by
Ward [183] and later modified by Bach [10], is chosen to find the root of the complex-
valued equation (5.50). The downhill method is chosen here because it is robust, does not
require the calculations of any derivative and is global which means that it converges to
the solution from almost any starting point. The only requirement is that the function
must be analytic.

The idea behind the downhill method is to find a local minimum by sliding downhill
on a single surface. Consider that the root of the function f(z) has to be found. This
local minimum will be the root of the function f(z). In order to construct such a surface
function, one can use the following theorem: If f(2) is analytic, then the function w(z) =
IR(f(2))| + |S(f(2))| has no minimum value such that w # 0. Here, R(z) and J(2)
represent the real and imaginary part of the complex-valued number z = x + iy. The
surface w(z) is always above the zy-plane and has zero as the minimum value. It implies
that the local minimum is equal to the root of the function w(z). The root zy of the
function w(z) is also the root of the function f(z), and vice versa. A detailed description
can be found in Bach [10].

5.3 Linear elastic case

In the previous sections, the computation of the overall thermal conductivity & and electric
permittivity £ in the framework of the EMT has been discussed. In this section, the
discussion will be focused on the computation of the effective elasticity moduli. The
method remains the same, but somehow, it is more complicated than the conductivity
problem, because the elastic case is a tensorial problem, meanwhile the conductivity
case is a vectorial problem. For a problem in isotropic linear elasticity, one needs two
equations to determine two independent elasticity constants. Other elasticity constant
are obtained immediately using the relations (3.109). In this section, it is considered that
the constituents ¢ and ¢° are isotropic linear elastic materials which have bulk moduli
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KF and K° and shear moduli G¥ and G°, respectively. For a linear isotropic elastic
composite, one can determine the effective bulk modulus K from a uniform dilatation
experiment €y = (¢ -I)I and the effective shear modulus G from a deviatoric applied field
u = v(Xe; — Xqe9).

5.3.1 Average stress in a coated sphere

Many mixing laws based on the EMT are established using the solution of a coated spher-
ical particle or a single spherical particle embedded in an infinite homogeneous effective
medium. Therefore, this subsection is devoted to the solution of such boundary-value
problems.

From the solution of the single inclusion problem, the displacement fields within the
inclusion are known. For an ellipsoidal inclusion, the strain field is constant (Eshelby [64],
Markov [115]). Furthermore, this constant strain field induced in the inclusion can be
connected with the uniform applied field at infinity by the so-called Wu’s tensor [194]. In
the elastic case, the Wu’s tensor is a fourth-order tensor and it has a close relationship
with the Eshelby’s tensor (Eshelby [64], Berryman [24], Markov [115]).

Consider that a core with radius R®, bulk modulus K®, and shear modulus G®
is surrounded by a shell with radius R" and elastic moduli K and GV, This coated
sphere is embedded in an infinite homogeneous medium of bulk modulus K® and shear
modulus G®. The whole system (coated sphere + homogeneous medium) is imposed
by an uniform deformation load at infinity as displayed in Figure 5.10. In the Cartesian
coordinates (1, T2, x3), the load is given by

ux) =(eg-I+7)X1e1+ (e0-I—7) Xoes + (g9-I) X33, (5.52)

where e, e, and e3 are unit vectors in x1-, 9- and x3-direction, respectively. In the frame-
work of linear elasticity, this problem can be decomposed into dilatation and deviatoric
problems with the corresponding dilatation

lld(X) = (60 . I) (X1 e + X2 €y + X3 63), (553)
and the corresponding deviatoric field
us(x) =7 (X1 e — X2 eg), (554)

respectively.

Dilatation state

Due to the spherical symmetry, it is convenient to formulate this problem in spherical
coordinates (r,1,¢). This representation of the spherical coordinates is chosen here to
be compatible with the common representation of a spherical coordinate system. Then,
(6%,6%,63) in the appendix are set to 0 = r, 2 = 9 and #* = . At infinity, the outer
boundary displacement (5.54) for the dilatation case is given by

u; = (eo-Dre,, (5.55)
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Figure 5.10: Coated spherical inclusion in a homogeneous medium is subject to an uniform
displacement load at infinity. Long arrows denote the uniform dilatation and short
arrows denote the deviatoric applied field.

where e, is the unit vector in r-direction. Since the body and the load are spherically sym-
metric, the equilibrium equations without body forces (B.39) reduce to a one dimensional

equation. Hence,
Otrr 2
— (T — tgg) = 0. 5.96
or + T ( ) (5.56)
The equilibrium equation (5.56) can be expressed in terms of the radial displacement ul?
of each layer. Thus,

2u  20u? 2

4+ =, 5.57
or? r or r2 T (5:57)

At the interface between the i-th and (i + 1)-th layer, the continuity of the displacement

and of the normal stress have to be fulfilled, which can be formulated as

u(i) (R(z’—l—l)) — u£i+1)(R(i+1)),

r

. . . . (5.58)
KI(REM) = i I(RED),
The solution of (5.57) is given by Love [112] as
. , (@)
u¥(r) = (@97 + —)e,, (5.59)

with constant coefficients a(® and b®. The corresponding stress tensor is given by

) AGTHY ed 0

TO(r) = (3K o e, @ e, + (3KW o) +

3 ) (€9 ® €y + e, ® e,)(5.60)
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Using the internal boundary conditions (5.58), the external boundary condition (5.55) and
by = 0 to avoid the singularity at r = 0, the coefficients a®® and b® can be determined.

By taking the average of (5.60) over the coated inclusion, the average stress T" in
the inclusion reads

. 1 3
T = Tr)dyv= ———— TW(r)d /T<2> dv | =
Vine /B () dv = L Ry (/Bl (r)dv+ | T(x)dv
1

= W{sxw a1 [(RW)? — (RP)3] 4+ 3K® gy (RP)V I (5.61)
with
B (3K© +4G©)(4GM + 3K?) I
U= GGO 1 3KM)AGD + 3K®) + 12(ROROP (GO — GOk — k) 0 1)
(5.62)
3KO +4G®)(3K® 4+ 4GM
g = ( ) ) (€0-1).

(4GO + 3KW)(4GM + 3K®@) + 12(R@ /RW)3 (GO — GO) (K1) — K(2))

In the case of a single sphere, i. e., K = K@ GO = G® and R®/RM = 1, (5.61)
reduces to

=inc

100 1 3K0 (eo-I)L (5.63)

Deviatoric applied field

In spherical coordinates (r, 9, ¢), the displacement corresponding to the shear deformation
(5.54) is given by

u,(r, 9, ) = yrsind (sind cos2p e, + cos) cos2p ey — sin2pe,) . (5.64)

Due to the form of the boundary condition (5.64), the displacement in the i-th phase
takes the form (Love [112])

u(r,0,¢) = a9 (r)sind cos2pe, + af;') () sind cost) cos2p ey —
- ag? () sind sin2¢p e, (5.65)

By substituting the expression (5.65) in the Lamé-Navier equations and considering van-
ishing body forces, the following system of differential equations is obtained :

*al(r)  20a7(r) 2a”(r) 30a)(r)  3ay(r)
2(1-v) or? +; ar r2 r or * 72

- =0, (5.66)

or T r

30 - 2v) [aaf;') (r) . iy 2a9(r)
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- —~ -
or T

4(1-v) [aa@(r) 20 (r)  3a(r)

2al(r)y 20a0(r) 283 (r)
1—2p) |0 ) 2% 1) 2O =0
+ ) o2 T or roor ’
where v is the Poisson’s ratio. The condition (5.66); yields
19 = —4). (5.67)

Then, by (5.66); and (5.67), the jump conditions (3.61) and the requirement that the
displacement across the interface must be continuous (for a perfect bonding between the
phases) reduce to

ud = ),
N
_ _ (5.68)
t = Y,
i i+1
thy = 1.
The ansatz functions solving (5.66) can be given by
. @ @ 5 _ 40 W
S0y = D T @) s G v
' (r) = ¢'r o0 " +3r4 +1—2V(i) o
ug)(r) = cg) o) cg) rd — —ri —r; , (5.69)
W) =~y (),

where cgi), cg), cgi) and cff) are constants. Analogously to the dilatation case and to the
heat conduction case, ng); ng), C;(),z) and cff) can be evaluated and the average stress T in

the whole coated inclusion can be computed. T is given by

T 2 [GOERWY
inc — (1) _ (1) (1) 2]
T SR {(2y<1> 5 [5¢{" (2 = 1) + 21V (RO))?]
GO (R2)H3
- ﬁ [5c§1)(2y(1) —1)+ 210&1)(R(2))2} _
G@(R2)3
_ ﬁ [5cg2)(2y(2) -1+ 210&2)(1{(2))2} } (e1®e —e;®ey). (5.70)

For a single inclusion, the coefficients c,(;) become

(1) 15 (ZJ(O) — 1)G(0)
500 GO —7G0) +10G00 —gGm

(5.71)

OO
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==inc
and the average stress T ~ reduces to

—ine 309 - 1) GO GW
T = 5,060 —700 1 10U, —8GD 7 (

et e —er® ez). (572)

5.3.2 Bruggeman effective medium approximation

In this subsection, the application of the BEMA to the elastic case is presented. In elastic
problems, this approach has been developed by Budiansky [38], Hershey [86], Kriner
[103] and Hill [93]. This method is known as the self-consistent method in the mechanical
community; however, because of historical reasons, in this thesis this method is called the
BEMA.

Consider a biphasic random material composed of phases ¢ and ¢° with volume
fractions ¥ and m°, respectively. Their bulk and shear moduli are K and G¥, and K*°
and G, respectively. To derive the equations for the effective bulk modulus K and the
effective shear modulus G in the framework of the BEMA, it is assumed that the grains of
o and ¢° are roughly spherical. These spherical particles are taken out and embedded
into an effective medium, on which uniform boundary conditions are prescribed.

If the uniform boundary condition is a uniform dilatation €y = (€¢-I)I, then, by using
(5.63), the average stress field in the inclusion K" of phase " and in the inclusion K of
phase ¢ can be computed. They are

_ 3K + 4G
T.r = Ve 3K' = I T,
K w 3K ek oD
(5.73)
_ 3K + 4G
Ty.s = Vis3K"° 1)1,
K w 3 e ars o

where Vir and Vi are the volume of the spheres K¥ and K¥, respectively. Here, it is
again assumed that each inclusion behaves as if it is isolated. According to the assumption
of the self-consistent condition that the average stress deviation (due to the presence of
the inclusions) should be zero (cf. Figure 5.3), i. e.,

mF S

A MUCE 3Ke(x)] dv + m7 BUCE 3Ke(x)]dv =0,

which becomes to

3K’ 3K 3K? 3K — =
al s

23 I = - = 3K+4G I)I=0.
[n <4G+3KF 4G + 3K ) " (4G+3K5 4G 3K5>]( ) (g0°'1)

(5.74)
This leads to the equation for the effective bulk modulus K:
KF - K KS-K
—F —S
" 3KkF 4G " 3K5+4G (5.75)
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To determine the effective shear modulus G, one can prescribe a displacement load
u = y(X;e; — Xq€y) at infinity on a homogeneous effective medium. The deviations of
the stresses within the inclusions K and K°, due to the fact that their elastic moduli
differ from those of the surrounding effective material, are

307 —-1)G(GF - Q)

AT.p = Ea G Re — e ®e),
w W G- TG+100Gr _sgr | G ®e T @)
(5.76)
307 -1)G (G -G)
AT = — — e1Re —eRey),
K GG+ 100G _gGs | 18 T @®e)

respectively. Here, 7 is the effective Poisson ratio. By employing (5.76), the average
stress deviation over all spheres in the system can be calculated. Once the average total
deviation is calculated, the equation for the effective shear modulus G can be obtained by
considering that this total deviation should vanish (self-consistent condition). This yields

G _o. (5.77)

with - o
GOK+8G
6K +12G
The mixing laws (5.75) and (5.77) are also known as Krdner’s self-consistent method
103, 104].

5.3.3 Mazwell-Garnett theory

In this subsection, another way to derive the MGT will be presented (cf. 5.1.3). Consider
that the matrix phase is ¢° and that the spherical inclusions of phase ¢ are randomly
distributed in . The system is subjected to a uniform dilatation €y = (¢ - I)I. Each

4
inclusion is assumed to be affected by a certain external strain field €y = G,&¢, which is
equal to the mean strain of the matrix phase ¢°. It should be emphasized that &, # €.

4
Here, G,, is a fourth-rank transformation tensor, which is known as Wu’s tensor [194].
It connects the mean field strain &, with the induced strain €;. Then, the average strain
can be expressed as

4
E=ey=n"E 4+ E =7 Gyé+ 1" &. (5.79)
4
The first expression G,,&g follows from the assumption that each inclusion is treated as a
single inclusion under the strain &,. By inserting K(© = K%, GO =G%, KU = K¥ and
4
€o - I =1 into (5.63), G, can be obtained:

4 3K%+4G4
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Applying (5.79), (5.80) and considering the definition of K, i. e., T = 3K €, the MGT
for K in the case of the spherical inclusions can be written as

KS-K . KS5—-KF
— =pf— (5.81)
3K+4GS 3KF+4G*S

Similarly, under the deviatoric applied field, the MGT for G can be found:

S S F
-G & -G (5.82)
G+ B9 GF + S
Therein,
G%9K*® + 8G*
S __
P =6 K12 (5:83)

The system of equations (5.81) and (5.82) is also attributed to the Mori- Tanaka method
(MTM) [133]; however, due to the historical reason, in this thesis the method called MGT.
As in the conductive case, the MGT corresponds to the Hashin-Shirikman bounds, which
will be further discussed in Chapter 6.

5.3.4 Differential effective medium

In Section 5.1.4, the basic idea of the differential effective medium (DEM) in the frame-
work of the thermal conductivity has been discussed. This idea can be straightforwardly
translated to the elastic case. If the phase ¢! is taken as the inclusion phase and ¢
as the matrix phase, the DEM method for spherical inclusions can be described by the
following system of the differential equations

dK  (K"-K)(3K+4G)
dn” ~ (1-af)(3KF +4G)’

(5.84)
dG 5G (GF — G) 3K + 4G)

dn? (1-n")6GF (K +2G)+G (K +8G)]’

with the initial conditions K (0) = K and G(0) = G°. Integration of the system of the
differential equations (5.84) leads to

KF_F KS+4§ ’ -
KF — KS <F+45) = o
(G—S>z/5<GF_§> (3F+4G5>c o _aF (5.86)
q GF -GS 3K+4G B |

with o
A4GF +3K

cC=—7—.

20GF +15 K
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5.3.5 Generalized self-consistent method

As discussed in Subsection 5.1.2, the BEMA has several shortcomings. Firstly, the BEMA
actually violates the RVE principle. Secondly, the BEMA does not provide realistic results
in the infinite-contrast cases, i. e., in the cases where the inclusions are either voids or
rigid particles. However, this shortcomings can be overcome by introducing the so-called
generalized self-consistent method (GSSM). In this case, the inclusion inserted in the
effective medium is composed of the core material and of the shell material (cf. Figure 5.6).
To this end, consider that the matrix phase is ¢° and the inclusion phase is .

Under a uniform dilatation strain field, the average stress in the particle is given by
(5.63). By inserting the average stress and average strain into the average constitutive
relation, T = 3 K g, and upon algebraic simplification, the equation for K takes the form

Al (KT — K9)(3K® + 4G”)
3n°(KF — K5) + (3K° +4G5)’

K=K+ (5.87)

The effective shear modulus can be determined by prescribing a deviatoric field. The
average stress in the inclusion can be found. Applying the similar procedure to determine
the equations for the effective material parameters, one can obtain the following quadratic
equation for G-

G\’ G

Therein,
Ay = 8cer(4—5v%) @) —2(63cey+ 2¢1¢3) (@3 +252¢ ¢, (AF) —
—50cey[T — 1205 + 8(v%)?] A" + 4y ez (T — 1007),

Ay = —decer (1 =505 £ 4(63cey + 2¢1¢3) (@73 — 504 cep ()3 +
+150ccy (3 — )5 af +3(150° = 7) ¢y cs,

As = dcey (505 = 7) ()03 —2(63cey + 2¢1 ¢3) ()2 4+ 252 c ey (A3 +
+25ccy[(v9) =T A" — (T+50°) caes
with

GF
C = a—l,
o = c(7T—1007) (7+507) +105 (vF —v°),
o = c(T+50) +35(1—vF),

s = c(8—100%) +15(1 —v%).
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Chapter 6

Rigorous bounds and cross
properties

The purpose of this chapter is to summarize the bounds methods. Like the effective
medium approximation discussed in Chapter 5, the bounds method also uses only partial
microstructural information in predicting the effective material properties. Compared to
the effective medium approximation that gives a predicted value of the effective material
parameter, the bounds method confines the actual value of the effective material param-
eter using lower and upper bounds. Therefore, these bounds can be used to test the
accuracy of an approximation method in estimating the effective material parameters.

The upper and lower bounds can be attained by substituting appropriate trial fields
into the principle of the minimization of the potential energy W and the principle of the
minimization of the complementary energy W€, respectively. However, the admissable
trial fields that yield tight bounds are hard to find since they must satisfy certain physical
conditions and boundary conditions which will be discussed later. Therefore, finding an
alternative way to improve the bounds with the same effort is necessary. This can be done
by introducing a second (reference) homogeneous medium and using the energy potential
of this reference medium Wj to formulate an energy functional difference between the
energy of the original heterogeneous medium and that of the reference medium. Note that
the capital letter W and the small letter w are used to denote the effective energy potential
and the local energy potential. Upon finding this difference, the bounds can be obtained
by seeking its minimal and maximal values. In the literature, this method is known
as Hashin-Shirikman (HS) variational principle [82]. In the HS principle, the obtained
lower or upper bound is determined by the choice of the reference medium. If the energy
difference functional is greater than zero (/W —W, > 0), the lower bound is attained; if the
energy difference functional is less than zero (W — Wy < 0), the upper bound is attained.
Even though the type of the obtained bounds depends on the choice of the trial fields (how
much microstructural information is contained in these trial fields). In general, the HS
variational principles yield 2n-point bounds, whereas the classical variational principles
yield 2n — 1-point bounds. 2n-point bounds and 2n — 1-point bounds mean that the 2n-
point correlation functions and the 2n — 1-point correlation functions of the heterogeneous
medium are needed in evaluating the corresponding bounds, respectively.

113
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Compared to other approximation methods, this method is more advantageous since it
can be improved systematically by incorporating more microstructural information. In the
simplest forms, these bounds are only functions of the constituents’ volume fractions and
the constituents’ material parameters. They can be improved in various ways. However,
this improvement depends on the geometrical and/or physical quantities that can be given
as input parameters.

If the microgeometrical information is known, the simplest bounds can be enhanced
by incorporating additional information, which can be given in form of higher point cor-
relation functions of the constituents (Beran [17], Torquato [170], Milton [129]) or phase
connectivity information (ZTorquato [171]).

If the effective material parameter can be measured, for example, the effective ther-
mal conductivity, this measured conductivity can be used to improve the bounds on the
yet unknown effective material property such as effective magnetic permeability, effective
elastic moduli or effective hydraulic conductivity. In the literature, this way of deriving
bounds is known as cross-property relationships. The cross-property relationship is im-
portant in estimating the effective properties that are more difficult to obtain using the
effective properties which are easier to measure (Markov [115], Berryman & Milton [26],
Torquato [171], Gibiansky & Torquato [73]). The cross-property relationship is valid under
the assumption that the same heterogenous material under different physical processes
keeps its microgeometry significantly unchanged. Otherwise, one cannot use them because
the effective material parameters depend strongly and nonlinearly on the microgeometry
of the heterogeneous material.

For dissipative media, for which the fields and material parameters are expressed in
terms of the complex-valued variables such as the representation of the frequency depen-
dent permittivity or of the dynamic viscoelastic moduli in the Fourier space, there is no
direct complex-valued analogy to the variational principles for the real-valued problems.
The reason is that one cannot order the complex-valued variables and thus, there ex-
ist no minimum or maximum values. To avoid this problem, the bounds on the effective
complex-valued permittivity will be derived based on the analytic methods. This method,
which was pioneered by Bergman [19] and Milton [128] independently, is based on the ex-
ploitation of analytic properties of the effective material parameter, such as k, as function
of the phase material parameters k" and k. Recently, there are further approaches such
as the field equation recursion method, the translation method and the compensated-
compactness method to treat such complex-valued problems (Milton [131, 132], Cherkaev
[42]).

Finally, this chapter is organized as follows. Section 6.1 presents some results from
the convex analysis (Fkeland & Teman [61]), which is needed to derive the bounds on
the effective material parameters. Section 6.2 reviews some bounds which are narrower
than the elementary bounds on the class of material parameters, in which the material
parameter is a proportionality factor between a divergenceless and an irrotational vector.
Here, the thermal conductivity is chosen to represent this class. Section 6.3 discusses some
bounds on complex-valued material parameters for dissipative systems. These bounds will
be derived using the analytic method. Section 6.4 summarizes the bounds on the effective
elastic moduli. Finally, Section 6.5 discusses some of the cross-property relations among
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various overall material parameters of the heterogeneous materials.

6.1 Duality concept

6.1.1 Classical variational principles

To apply variational principles in deriving the upper and lower bounds, one can use the
principle of the potential energy and the principle of the complementary energy, which
are dual (conjugate) to each other (Ponte Castanieda & Suquet [39], Willis [192]). Both
principles are related through the Legendre-Fenchel transformation (FEkeland & Teman
[61]).

For a heterogeneous medium, the effective potential energy W (p) is expressed as the
average of the local potential energy w(p):

1

W(p) = %613 w(x, p) = gleigV/Bw(x, p) dv. (6.1)

Here, B is the region of the heterogeneous RVE, V its volume and p the solution for (6.1).
The function p can be a vector (e. g., temperature gradient) or a tensor quantity (e. g.,
strain field). The function p has to satisfy certain physical and boundary conditions; for
example, if the function p represents the strain field, then it has to be compatible with the
corresponding displacement field and the displacement boundary condition. The set A is
the collection of such admissable functions p. The minimum condition in (6.1) implies the
principle of minimum microscopic potential energy, i. e., among all admissable functions
p, the true field p should minimize the potential energy. The true local field p needs not
be the same as the macroscopical field p.

Similarly, the effective complementary energy W¢(p*) is defined as the average of the
local complementary energy w®(x, p*); hence,

1

W (p*) = pqleiﬁ* we(x, p*) = prpeiﬂ* v /B w(x, p*) dv. (6.2)

The solution for (6.2) is denoted by p*. The functional p* is referred to as the dual
variable of p. As in the case of p, p* can be a vector field (e. g., heat flux) or a tensor
field (e. g., stress tensor) and has to fulfill certain physical and boundary conditions. The
minimum condition in (6.2) implies the principle of minimum microscopic complementary
energy, i. e., among all admissable functions p*, the true field p* should minimize the
complementary energy. The true local field p* needs not be the same as the macroscopical
field p*.

The effective complementary energy and the effective potential energy are connected
via the Legendre-Fenchel transformation:

We(p*) = max {p-p*—W(p)}. (6-3)
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Applying the Legendre-Fenchel transformation to the effective complementary energy, one
obtains the so-called second conjugate form of W (p), We(p):

we(p) = max {p-p*—W(p")}. (6.4)

Geometrically, the second conjugate functional W (p) can be seen as the lower convex
envelope of the functional W (p), i. e., the highest function lying under W (p) which is
convex. Hence,

we(p) < W(p). (6.5)

Equality is attained in (6.5) when the functional W (p) is convex. If W (p) is convex, then
the maximum conditions in (6.3) and (6.4) lead to the following relations between the
dual variables

o)
e (6.6)
5 = avg;g*). (6.7)

Analogously, for the local forms, the complementary energy w(x, p*) can be obtained by
applying the Legendre-Fenchel transformation to the local potential energy w(x, p):

w(x, p*) = max {p-p"—w(x,p)}. (6.8)

The second conjugate functional of the local potential energy, w®(x,p), can also be

obtained:
cc — . *x 4 * . 69
w*(x, p) Jax, {p-p*—w(x,p")} (6.9)

The functionals w*(x, p) and w(x, p) are related by the following inequality equation:

w*(p) < w(p). (6.10)

And, if w(x, p) is convex in p, equality is attained. If w(x, p) is convex, then similar
relations for p and p* as in (6.6) and (6.7) follow from the maximum conditions (6.8) and
(6.9):

. Ow(x,p)

- 6.11
owe(x, p*)
— = 12
p 90 (6.12)

Note that the above definitions and results can be directly transcribed to a concave
function ¢ since in that case —g is a convex function.

Since only the actual solution p of the energy problem (6.1) gives the minimal potential
energy, a one-sided upper bound on the effective energy (and thus the effective material
parameters) can be attained by inserting any p € A:

W(p) < w(x, p). (6.13)
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Analogously, an upper bound on the effective complementary energy can be obtained for
any p* € A*:
We(p*) < we(x, p). (6.14)

Especially, by taking p = p and p* = p* and having regarded the fact that a conjugacy
operation is order-reversing (p and p* are conjugate pair), it leads to

(we)*(p) < W(p) < w(p). (6.15)

These simple bounds are analogous to the Wiener bounds of a linear conductive material
or to the Reuss and Voigt bounds of a linear elastic material.

6.1.2 Hashin-Shtrikman variational principles

In most cases, unfortunately, the simple bounds (6.15) are far apart from each other;
meanwhile, to get more restrictive bounds by choosing the admissable fields, which contain
more detailed microgeometrical information, is a difficult task. To overcome this problem,
the Hashin-Shtrikman variational principle, an approach which has been proved to be
highly successful, is applied. This principle utilizes a homogeneous reference material (of
the same shape and size) with energy density wo(x, p) such that the difference potential
(w —wp) is a convex function. Note that in general (w — wyg) needs not to be convex. As
a starting point, the Legendre-Fenchel transformation of (w — wy) can be used:

(w —wp)é(x,T) = mgx {T-p—(w—wy)(x,p)}. (6.16)

If (w — wy) is differentiable, the maximum is attained for

r(x) = A =wo)x p)} (6.17)

op

Therein, 7 is a polarization vector or a polarization tensor field. Here, 7 is dual to p
for the difference of the potential energy (w — wp), meanwhile p* is dual to p for the
potential energy w. As an example in the linear elastic case, if the stress and strain fields
of the actual heterogeneous medium are denoted by T(x) and &(x), respectively. The
polarization tensor 7 is defined by

(%) = T(x) — Cye(x), (6.18)

where éo is the elastic stiffness of the homogeneous reference medium. The polarization
may be interpreted as the necessary condition if it is erroneously assumed that stress
and strain in the actual heterogeneous medium are related by the stress-strain-law of the
homogeneous reference medium. The term polarization is borrowed from the electromag-
netics theory where the polarization is used to compare the magnetic field in vacuum and
a matter. Instead of permeability of vacuum, Hashin and Shirikman [81] introduced the
comparing medium, which allowed them to choose an arbitrary reference medium.
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By rewriting (6.16) as

w(x,p) 2 7 p+wo(p) — (w—wo)(x,7) (6.19)

and inserting this into the minimum principle of the potential energy (6.1) gives

W(p) = min / - p+ wolp) — (w — wo)(x, 7)] dv (6.20)

for given .

An upper bound on the effective energy density can be obtained by choosing a reference
homogeneous medium whose difference potential (w — wp) is a concave function (for
simplicity, the same notation wy is used for the energy density of the reference medium)
The Legendre-Fenchel transform of this difference potential is defined by

(W — wo)e(x,T) = gelg{f p — (w —wo)(x, p)}. (6.21)

Equation (6.21) can be rewritten as an inequality for w(x, p). Substitution of this into
(6.1) leads to

) < m1n —/ [T-p+wo(p) — (w— wp).(x, 7)]dv. (6.22)

Note that using similar ideas, upper and lower bounds on the effective material parameters
can be derived from the complementary energy principle. However, the attained bounds
can be proved to be equivalent to those obtained from the potential energy principle as
described above.

6.2 Bounds on the thermal conductivity

In this section, the mathematical formalism, which was discussed in the previous section,
is applied to derive the bounds on the effective thermal conductivity. In this case, the
variable p is the temperature gradient grad f(x) and its dual variable is the heat flux
vector —q(x).

In the context of a linear isotropic conductive material, the dissipative potential can

be formulated as

W(gradf(x)) = min w(gradf(x)). (6.23)
grad desp

The effective energy density W (grad #) reads

W (grad 6) = % grad 0(x) - (kgrad 0(x)) (6.24)

and the average of the local energy density w(grad §(x)) is

w(grad 8(x)) = ! /grad&( ) - [k(x) grad 6(x)] dv. (6.25)

2V
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Here, §(x) is the real temperature field and k is the effective thermal conductivity. The
thermal conductivity is k(x) = Z7(x) k" + Z%(x) k°, where Z”(x) and Z°(x) are the
indicator functions of phases ¢! and ¢°, respectively, and k¥ and k° the corresponding
thermal conductivities. If the Dirichlet boundary condition # = pg - x is prescribed, the
admissable trial temperature field @ (hereafter the sign tilde is used to denote the trial
field) should satisfy this boundary condition and the average of its gradient should be py
(cf. Section 3.5.1). Thus, the set Sp is

Sp = {grad 0(x) | grad(x) = p, for x € B, 0(x) = po - x for x € B}. (6.26)

The maximum conditions (6.6) and (6.11) can be written as

B _8W(grad0) I —r
= ol - % grad 0, (6.27)
a(x) = —ma”gza‘dd;(i’;)) = —k(x) grad 0(x). (6.28)

These maximum conditions imply the global and local constitutive equations (cf. Sec-
tion 3.7.1). Thereby, q is the true average macroscopic heat flux and q(x) is the true
local heat flux.

The principle of the complementary potential can be formulated as

We(q) = min we(q(x)). (6.29)

qEST

The set St of the admissible heat fluxes q can be given as

Sr={qlax) =—qp, divg(x)=0 for xe B, q(x)-n=—qo-n for x € 0B}
(6.30)
with qq as the prescribed heat flux and n as the outward-pointed surface normal.
Using Legendre-Fenchel transformation (6.3) and considering the maximum conditions
(6.27), the effective complementary energy functional W¢(q) can be obtained:

we@ =-q-(k . (6.31)

N~

The local complementary energy w®(q(x)) reads

w(q(x)) = Sa(x) - (7' (x) a(x)). (6.32)

To get (6.32), the Legendre-Fenchel transformation (6.8) and (6.28) are used. The average
of the local complementary energy is defined by

1

0 (ab) = 57

/B a(x) - [k (x) a(x)] dv. (6.33)
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Considering q(x) = —qp and grad 6(x) = py (cf. Section 3.5.1), both oriented mini-
mum principles can be easily cast in the following inequalities:

V/ x) grad 0(x) - grad 0(x)dv
<k<

7 [0 - aeode Do Py

Upon this formulation, the next step is to find appropriate trial fields to solve (6.34).
To this end, it is necessary to expand the temperature field # and the heat flux vector q
in functional series (Markov [116]):

(6.34)

0(x) = po-x+ Y kn(x)0(x), (6.35)
Q(X) = —qo+ Z Zn(x) dn (X)a (6'36)

respectively. Here, the coefficients /vcn and lun depend on the local geometry and the local
material parameters (i. e., thermal conductivity £ and thermal resistivity 1/k, respec-
tively), while én and q,, in addition to the dependence of the geometry and material
parameters, depend on the prescribed temperature and prescribed heat flux, respectively.

By truncating the functional series (6.35) and (6.36) after the constant term and
taking these uniform fields as trial fields, i. e., (x) = po - x and q = —qq, the variational
inequalities (6.34) give the lower (harmonic) and upper (arithmetic) bounds:

kF kS
< k )inv
Therein, the shorthand notation (%), and (k),,, are used:

<k<(k),. (6.37)

(k nfkf +nSkS,

~
Il

n

(6.38)
(k)i = TS +7KF.

This shorthand notation will be used throughout this chapter. These bounds are referred
to as the Wiener upper and lower bounds, because they were first noticed by Wiener
[188]. The Wiener bounds are one-point bounds because they only include the one-point
correlation functions, i. e., the volume fractions. These bounds are the tightest bounds if
only the conductivities and volume fractions of the constituents are known.

To improve the bounds, the trial fields which contain some microgeometrical informa-
tion of the heterogeneous medium should be chosen. Following Beran [15], the simplest
class of the trial temperature fields which contain geometrical information is

5 APo / k(y)
0=po-x+ . rad d 6.39
R YR S i (6:39)

n
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where the operator grad, is the gradient with respect to the dummy variable y and
0k = k — (k),. The constant parameter A\ will be chosen to optimize the obtained
bounds. It can be seen that the information about the geometry of the heterogeneous
medium is contained in the term grad, 6k(y). Such trial fields are admissible because,
for A = 1, the trial field coincides with the actual temperature field of a weak-contrast
heterogeneous medium (Beran [15]) and thus matches the series expansion (6.35) till the
first order term. A weak-contrast heterogeneous medium means that variations of phase
properties of the medium are small. Substituting (6.39) into the right-hand side of the
inequality (6.34) gives

Po-Po(k), +2Apo- [k(x) grad 0~] + M2 grad g - [k(x) grad é}
Po - Po

k<

(6.40)

The optimal trial field can be gained by minimizing the right-hand side with respect to
the parameter A\. This procedure is the same as the Rayleigh-Ritz procedure with trial
functions based on the solution of the weak-contrast case. By substituting the obtained
optimal A-value into (6.40), the Beran upper bound on the effective conductivity k can

be found. Thus,
T ((dk)*) (k)
b=, ll_W/ <1+WI3>]’ (641

n

where

k 1 x
1= o L[ (00 sk dk(y))
1

grad x grad x (M) -grad y grad y, (ﬁbﬂ) dvdv,
((6k)*) = ' (k" — k)2,
((6k)*) = n"@%)*(m" —n°)(k® — k")
The three-point correlation function for 6k is (0k(0) 0k(x) dk(y) ), which is a function of

the distance between x and the origin 0 and of the distance between y and the origin 0.
The integration is taken with respect to x and y.

This upper bound can be simplified by introducing the so-called Milton-Torquato pa-
rameters (" and (% (Milton [128], Torquato & Stell [174]), which is related to I¥ via

1
3 )
¢ = 1-¢", (6.42)

9 *dr [*ds (!
L S A T dy.
C 4ﬁF(1 _ ﬁF) /0 r /() s /;1( Y ) 3(T’ Sa’)/) Y

¥ = 2¢" + 30" —nf),
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The three-point correlation function Ss(r,s,<y), which is given in the polar form, is dif-
ferent than the former three-point correlation function (dk(0) 6k(x) dk(y) ), because the
former one is the correlation function for the random variable dk(x) and Ss(r,s,7) is

the correlation function for the indicator function Z%(x). Ss(r,s,~) may be interpreted
as the probability that all three vertices of the triangle determined by (r,s,) lie in the
phase . Thereby, r and s are the two side-lengths of this triangle and «y is the angle
between r and s. The parameters (¥ and ¢° lie in the closed interval [0, 1]. Note that this
representation of (¥, as in (6.42)3, is chosen to be suitable for computing ¢ of digitized
heterogeneous media (for other representations of (¥ see Helsing [85]). By means of the
parameters ¢(I" and (%, (6.41) is simplified to

ﬁFﬁS (kF _ k.S)Q

< =y T 2R, (6.43)

=

in which the shorthand notation
(k)= CTkT + C°F° (6.44)
is introduced.

In a similar fashion, the Beran lower bound can be attained by firstly selecting the
trial fields as

a(x) = —qo — A (l’i—l;n qo + { /B [grady (k(y) grady ﬁ)] dy} 47;\&0)”- (6.45)

For A = 1, this trial field is the solution of the variational principle (6.29) in the case
of a weak-contrast heterogeneous medium. Substituting (6.45) into the left-hand side of
the inequality (6.34) and minimizing this expression with respect to A, the Beran lower
bound can be obtained. In terms of the Milton-Torquato parameter (¥, the lower Beran
bound can be expressed as

2P RS (1/kF — 1/k5)2) -
{Wk)n_ 2 (1/k )iy + (1/k )¢ } =k (646)

Since the Beran bounds use three-point correlation functions in terms of the Milton-
Torquato parameter ¥, the Beran bounds belong to the three-point bounds; however,
these bounds are not the optimal bounds for a n-component medium with n > 3 (Markov

[116]).

The bounds introduced by Hashin-Shitrikman [82], which are the optimal two-point
bounds, can be obtained directly from the Beran bounds. Inserting (¥ = 0 and ¢¥ =1
into (6.46) yields the Hashin-Shtrikman lower and upper bounds

IN

-1
27" (1/k" —1/k5)? n'n’ (k" — k%)

{<1/k>” ST B R

in which it is assumed that k° > k. The lower and upper bounds can be reformulated
into the forms, which are equal to the Mazwell- Garnett mixing rules for isotropic spherical



6.3 Bounds on the complex-valued permittivity 123

inclusions. Note that, if the two-point correlation functions are isotropic, the HS bounds
involve only the material parameters and the volume fractions of the components (Markov
[115]).

6.3 Bounds on the complex-valued permittivity

In this section, the bounds on the effective complex-valued permittivity £ of a biphasic
medium with permittivity £ (phase ¢f') and % (phase ¢°) will be derived based on
the analytical method initiated by Bergman [19]. The key step in the analytical method
is to express the effective permittivity in its resolvent representation. For this purpose, it
is useful to define the following functions:

écS

e Ee(eer, &%) £°(s)
oF ~c S (S E°(s
F(sF,sS)zl—T or F(s)=1- Zes

(6.49)

In terms of the new variable s, the complex-valued permittivity £€¢ can be expressed as

IF
Ex) =IF(x)eF + T9(x) % = [1 — %} ges (6.50)
and the boundary-value problem for the calculation of £¢ is
div [¢°(x) grad U] = 0, (6.51)

where U is the electric potential. Using (6.50), (6.51) can be rewritten as
1
divgrad U = - div [Z7 (x) grad U]. (6.52)
s

(6.52) can be solved using the Green’s function G(x,y). For the Laplacean, the Green’s
function G(x,y) is defined as

divgrad G(x,y) = —8%(x,y), (6.53)

where §%(x,y) is the three-dimensional Dirac-delta function. The Dirac-delta function
is defined as 1 for x = y and zero otherwise. The Green’s function can be interpreted
as the electrostatic potential, evaluated at the position x when its charge is located at y
represented by 63(x,y). It is assumed also that G(x,y) vanishes at the outer boundaries.
By imposing the boundary condition of an external potential Uy = x5 (unit electric field
in the es-direction), the solution of the boundary-value problem (6.52) can be expressed
as an integral equation:

Ux) = z3— E/BG(X, y) divy [Z7 (y) grad, U (y)] dv

= z3+ %/IF(y) grad, G(x,y) - grad, U(y) dv. (6.54)
B
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Thereby, the divergence, the gradient and the integration over B are taken with respect
to y. To obtain the last line of (6.54), the integration by parts together with the bondary
conditions are used. In the abstract operator language, the last term of (6.54) can be
defined as

U = / " (y) grady, G (x, y) - grad, U(y) dv. (6.55)
B
(6.54) can be written as
1
U=ay+ LU (6.56)
or equivalently,
U=s(s—T) 'as. (6.57)

If the scalar product (¢, 1) of two functions ¢ and v is defined by

(p,0) = /BIF grad ¢* - grad ¢ dv, (6.58)

where ¢* is the conjugate complex of ¢, the linear operator ['U becomes self-adjoint, i. e.,
(¢, T9) = (1, ['p). This can be easily shown by applying the fact that G(x,y) is real and
symmetric, i. e., G(x,y) = G(y, X).

Consider ¢, and f, be the eigenfunctions and eigenvalues of T, i. e., "¢, = f, dn,
then (s —I')'x3 and F(s) can be represented as

(s—T)lzg=) (:?:fc") bn (6.59)
and
_ L F % _ l 333, ¢n _ Fn
F(s) = sv/BI - dv = 7 (s, (5= 1) g VZ Zn:s—fn’ (6.60)

respectively (Bergman [21] or Heuser [87], p. 208, in the context of the linear operator).
It was proven in Bergman [21] that F,, and f, have the following properties:

0< fu<l, 0<F, Y F,<1, F(1)<L (6.61)
Furthermore, F(s) can be expanded in powers of 1/s:
Fﬂ nFn T_IFTL
F(s):Z:’j9 +Z";; +---+Z:"J;++---. (6.62)

The m-th moment of the pole spectrum ) fF,, can be expressed by the operator I’
thus

> frF, = (23, T™as). (6.63)

Here, the m-th moment denotes the power of f,. Using this relationship the following
lower moments can be deduced easily (Bergman [21]):

> F,=n", anF = —ﬁF ns. (6.64)
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The second equation in (6.64) (the first moment) is valid only for the statistically isotropic
material, while the first equation (the zero moment) is applicable for every heterogeneous
medium. It can be seen from (6.64) that such m-th moment conveys information about
the random variable.

Following Bergman [19], by taking the first variation of (6.60) yields
OF, F,és
6F — n n n .
=X (e 059

where it was assumed that both the morphological information and the imaginary part
X(F(s)) are given. This implies S(dF(s)) = 0. Then, the bounds can be found by
minimizing and maximizing the real part of F'(s). For a detailed treatment, one is referred
to the work of Bergman [19, 21] and Milton [127, 128]. All of the bounds obtained
using this method will lead to a sequence of narrowing bounds on the effective complex-
valued permittivity £°. The more morphological information is available, the narrower
the confined region of the bounds will be.

Geometrically, the bounds can be constructed as follows. At order £ the bounds always
restrict £° to a region of the complex plan enclosed by circular arcs joining two points A*
and B*. If the arcs are extended to complete circles, then one circle (which through B¥)
passes through A*1, while the other one (which through A*) passes through B¥ !. At
order (k + 1) the points A**! and B**! each lie on one of the arcs joining A* and B*
(cf. Figure 6.1). Hence, the allowed region Q¥ of bounds of order k is bounded by the pair
of arcs A¥B¥A¥~1 and A*B*B*~!. The points A° and B° are defined by

A® = &F, BY = ¢gs (6.66)
and the points A! and B! by
Al = (&%), B! = (&%)} (6.67)

inov

in which the shorthand notations from the previous section are used. Furthermore, for
a statistically isotropic material, the points A? and B? can be defined to attain tighter
bounds. Thus,

3ﬁ5 é:cF(é:cS _ é:cF) 3 S SﬁF ch (écF _ é:cS)

A2 — 5cF = .
3EF 4 pff (g5 — ger)’ 385 + m¥(geF — g°5)

(6.68)

If the Milton- Torquato parameter ¢ is known, the third-order bounds can be constructed
geometrically by defining the points A% and B3:

1+ (275 + CF + 1) Bor + (405 +2¢F — 2) 82,
1— (7% — CF —1) Ber + [(@° — 207)(1 - (F) — 27°] 32,
g1+ (207 +2¢F 1) Brs + 2 (20" — 1%) (T — 7" B,

3 _
v 1= (ﬁF —2¢F + 1) Brs + (ﬁF —2 CF) ﬁ%s : (6'69)

A3 — érCF

Therein,
ger _ zej o
ﬂij:7~- — ’L,_]:F,S.
get + 289



126 Chapter 6: Rigorous bounds and cross properties

In Figure 6.1, & = 87.74 +187.74 and £ = 4.7 are used; the real part (permittivity)
is in unit of vacuum dielectric constant £y and the imaginary part in unit Siemens/meter
[S/m].

Note that for the real-valued permittivity, these lens-shaped bounds reduce to the
well-known bounds on the real-valued thermal conductivity in Section 6.2. The points A!
and B! correspond to the Wiener bounds, A? and B? are equivalent to the HS bounds
and A® and B? are Beran bounds.
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Figure 6.1: Geometrical construction of the complex-valued bounds.

6.4 Bounds on the elastic constants

As in the thermal conductivity problem, the bounds on the overall elastic moduli will be
deduced using variational principles; hence, the corresponding variational principles will
be formulated firstly. For an elastic composite, the principle of the potential energy can

be formulated as
W(€) = min w(&(x)), (6.70)
E€cSp
where W (€), w(&(x)), € and &(x) denote the effective elastic potential density, the local
elastic potential density, the average strain field and the admissable trial strain field,
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respectively. For the prescribed strain at the boundary, e(x) = €y, according to (3.147)
the average strain reads € = (. In this case, the set of the admissable trial strain fields
Sp is given by

Sp = {?: 12(x) = g0, &(x) =& for x € aB} . (6.71)

In the case of the linear isotropic composite, the minimization of the potential energy
(6.70) can be cast into the form:

_ _ 1 1
%[K(E-I)Q—FQGED-ED]SW/BK(é-Ide—l—W BQGE:D-éde. (6.72)

The principle of the complementary energy, which relates the effective complementary
energy W¢(T) and the local complementary energy w®(T(x)), is defined by

W¢(T) = min we(T(x)), (6.73)

TeSy

where T and T(x) are the average stress tensor and the admissable trial stress field,
respectively. If the surface traction t; = Tyn is prescribed, according to (3.149) the
average stress field is given by T = T,. The admissable stress fields can be collected in
the set Sy, which has the following properties

Sr = {T IT(x) =T, divT(x)=0 for xe€B, T(x)n="Tyn for x € 33} . (6.74)

For a linear isotropic heterogeneous material, the minimization of the complementary
energy (6.73) can be formulated as

| [E-L(T-1? G-'TP.TP] 1 [ K-'(T-1? 1 [ G-LTP. TP
- + < [ ey — [ == qu.
2 9 2 oV Js 9 2V /s 2

(6.75)

_ Using a uniform trial strain function &(x) = oI and a uniform trial stress function
T(x) = —pI, which describe dilatation states, the lower and upper bounds on the effective
bulk modulus K can be obtained directly from (6.72) and (6.75) as

KFKS
(K)

<K <(K) (6.76)

in which the shorthand notation (6.38) is used. The bounds on the effective shear modulus
can be attained upon substituting constant trial fields, &(x) = e, and stress fields T(x) =
Ty, with the properties €g - I = 0 and Ty - I = 0 (shear state), into the variational
inequalities (6.72) and (6.75). Thus, G is bounded by

GFGS
(G)

<G <(G) (6.77)

n-
nv
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These lower and upper bounds are also known as Reuss [150] and Voigt [182] bounds,

respectively. Reuss [150] and Voigt [182] gave the bounds on the effective elastic tensor
4

C for an anisotropic material:

4 4 4 4 4
@R"CT !t +RCS )T <C< (AFCF +m°CY). (6.78)

These bounds reduce to (6.76) and (6.77) for an isotropic material. In this work, these
bounds will not be explicitly used because they are far apart from each other.

As in the thermal conductivity case, the real strain and stress fields can be represented
in some functional series and the uniform trial stress and strain fields can be seen as the
first truncated term of these functional series. Using trial fields based on the expansion of
the actual solutions of a weak-contrast heterogeneous medium, Beran and Molyneuz [16]
developed three-point bounds, which are an elastic counterpart of the three-point Beran
bounds (6.43) and (6.46). Milton [129] later simplified these bounds and gave them in
the form

4n'n¥(1/KS — 1/KT)?
4(1/K )i, +3(1/G),

3ﬁFﬁS(KS _ KF)2
" 3(K ), +4(G)

(1/K), - <K< (K) (6.79)

inv

Analogously, the three-point bounds on the effective shear modulus, which are called
McCoy bounds [62], can be developed and simplified (Milton [129]). Thus,

6ﬁFﬁS(Gs _ GF)2

s (1/GS —1/GF)?21 ™"

e = BRI e
in which

_ 10(K )2 (1/K ), +5(G), (3G +2K),(1/G) + (3K +G).. (1/G),
- (9K +8G)? ’
o 10(G)(K).+5(G), (3G +2K), (G) + (3K +G). (G),

B (K+2G) ’
(G), = n"GF+n°G%.

n

Here, the parameter n and n° (not to be confused with the entropy quantity n) are
defined as

F
nt = 5< 28n / / / (357* — 3042 +?>)Sg(7"3fy)d7%g

(6.81)

0 = 1-n

The family of HS bounds can be derived similarly to bounds derived using classical
variational principles. It is considered that the strain field £(x) can be expanded into a
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series (the counterpart of the series (6.35) and (6.36)). By inserting this series into the
polarization tensor 7*, one has a series expansion for 7:

7(x) = (C— Co) [eo + 3 Cal() &,(x), (6.82)

n=1

where C,, is the function of the local geometry and the elastic constants and &, (x) depends
on the geometry, elastic constants and the prescribed boundary conditions. Since there

is no restriction on 7, one can take T = )\(é‘ - (430) €9, as in the case of deriving Beran
bounds on the conductivity. By taking the extreme value of A and by choosing the elastic
constants so that the difference of the energy potentials w — wy < 0 (w — wy > 0),
one obtains a lower (upper) bound. Usually, the energy potential of one of the composed
phases of the heterogeneous medium is chosen as wy. Hence, for the effective bulk modulus
K, the HS bounds are given by

2 — 2 —

n — n
2 m] — Kin < K < [Z m] — Kopaa, (6.83)

=1 =1

where K = 3 min{G¥,G%}, Koy = 3 max{G¥,G%}, and i = F, S. For the effective
shear modulus G, the HS bounds can be written as

2 i
;Gi+G

mein

-1

—1

— Gmaz» (6.84)

2 ik

=1

where

5 1 10 B
Gmin - 5 <m1n{GF,GS} + 9 min{KF,KS} + 8 mln{GF,GS}> ’

3 1 10 o
Gmam = 3 .
2 (maX{G’F,Gs} * 9 max{K*¥, K5} +8 maX{GF,GS})
For a detailed discussion, one is referred to Markov & Zvyatkov [118] or Nemat-Nasser &
Hori [135].
Note that for the so-called Hill medium [92], i. e., GF = G¥ = G, K can be calculated
exactly. By inserting G = G° = G into Beran-Molyneuz bounds (6.79) yields
3(K), +4G

K = (k), (6.85)

6.5 Cross-properties relationship

As discussed before, from cost and time considerations, performing experimental measure-
ments on each material sample of various microstructures, phase properties and different
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physical boundary-value problems is barely a feasible task. Therefore, it is important in
practice to predict the unknown effective physical properties and geometrical quantities
using some other known properties (both geometrical and physical), which is known as
the cross-property relationship.

A typical example is the occurrence of a cross-property relationship due to the mathe-
matical similarity among the potential equations which govern different physical phenom-
ena such as electromagneticsm, diffusion, fluid flow, heat conduction and so on. For this
case, the bounds can be written as

B ) L ASKE (KF — kS)2
F< = k=) e e

(6.86)

ko >(1/k),

[ ((1/k+>n—1/E+)(1/kF_1/kS)2(ﬁF/ki) ]_1
(0 JK5) (L/KF — 1/kS)(L/KE — 1/kS) + (1/ky — 1/kS)(1/(KERS) — 1/ (65kF)) ]

where the following condition has to be fulfilled:

F S
k- > k_ (6.87)
K kS

The sign + indicates that the material parameters of the phases ki and kf: and its effec-
tive material parameter k, are known. The detailed derivation of the bounds (6.86) can
be found in Prager [144]. Note that the above results can be straightforwardly transcribed
to the other phenomena by only changing the corresponding physical interpretation. Ob-
viously, the tighter bounds can be attained by putting in more information of this type.

_ The simplest form of the cross-property relationship between the thermal conductivity
k and elastic moduli K, G and E can be given as

K k
75 < 5 (6.88)
G 3k
= < == 6.89
5 S o (6.89)
FE 3k
%S < e (6.90)

where E is the effective Young’s modulus. Here, it is assumed that the Poisson ratios v;
are positive and KT /K% < k¥ /k®. Using these assumptions, the above relationship can
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be extended to obtain the tighter bounds, if the effective Poisson ratio 7 is known:

G 3k (1 - 2v)
— — = 6.91
K$ 2kS (1+7D) (6.9
E 3k (1 - 2v)

The three-points bounds (6.43), (6.46) and (6.79) are related by the geometrical pa-
rameter (. By exploiting this fact, one can attain a general cross-property relationship
among thermal conductivity and elastic moduli. Note that in this case, there is no need
to assume that K¥'/K® < k¥ /k% and v; > 0. These cross-property bounds are tighter
than the well-known HS bounds (Berryman & Milton [26]).

Consider that the effective thermal conductivity can be measured and (k¥ — k%) > 0.
Then, the Beran upper (6.43) and lower bounds (6.46) can be reformulated to derive
lower and upper bounds on the geometrical parameter (¥, respectively:

;SR = k%) 5 (k)i +F° <(F < 2" (/K" —1/k%)  2(1/k),,, +1/k°
(k) —k (kF—kS)y —° = (1/k), —1/k 1/kF —1/kS

(6.93)

For (k" — k%) < 0, the inequalities in (6.93) are reversed. If the effective bulk modulus
K can be measured and (G — G®) < 0, the bounds on ¢ can be obtained from the
Beran-Molyneuz bounds (6.79):

¢ > 1/GF i 1/G5 [g Z;Zf_ J/—;F)Q - (%(1/K>mv+ 1/GS) }
(6.94)
¢ < GF - GS FﬁF<ﬁ:((iS__FKF)2 - (% (K Ding +G5>} .

In the case of (G — G®) > 0, the inequalities in (6.94) should be reversed. Using the
fact that 5¢¥'/21 < n¥ and 5¢%/21 < n® (Milton and Phan-Thien [125]), which can be
rewritten as p "
i < 77F < M’
21 21
relates the McCoy three-point bounds on the shear modulus (6.80) to the other three-point
bounds.

(6.95)
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Chapter 7

Examples

Various methods which are applied to estimate the effective material parameters of hetero-
geneous media have been thoroughly discussed in the previous chapters. The aim of this
chapter is to quantitatively verify these various methods and to compare the methods with
each other by using real material data. Through this comparison, one can conclude the
reliability of the approximation method in predicting the effective material parameters.
The real materials discussed here are digitized spatial images of real natural sandstones,
which have been discussed in Section 2.4. The samples are two different kinds of weakly
consolidated sandstones Sst06d and Sst20d which are denoted as A and B, respectively,
Berea sandstone (C) and three slices of the Fontainebleau sandstone that are indicated as
D1, D2 and D3, and two reconstructions of the Berea sandstone (R1 and R2). The data
sets of these samples are tabulated in Table 2.1. Section 7.1 is devoted to the case of linear
conductive materials. Section 7.2 focuses on the effective electromagnetical property of
dissipative solids. Section 7.3 discusses the effective response of linear elastic solids.

7.1 Thermal conductivity

Since detailed information of the geometries of the samples were known within the limits
of the experimental resolution, the heat conduction equation (4.1) was solved using a
finite volume method (FVM) as described in Section 4.1. The outer boundary conditions
were chosen as follows: Two opposite boundaries were maintained at § = 6; and 0 = 6,
such that a temperature gradient existed across the sample. The potential gradient was
applied in z1-, £9- and x3-direction. The other four faces were assumed to be insulated,
i. e., g -n = 0. In each direction, the corresponding volume average of the temperature
gradient and of the heat flux were taken. The corresponding effective conductivity k
was determined from these average quantities. For all samples, the obtained effective
conductivity is anisotropic. The effective isotropic conductivity was constructed by taking
the arithmetic average of this anisotropic conductivity, which is complied with the result
of Schulgasser [156]. Table 7.1 displays the (normalized) effective conductivities of these

samples for six different conductivity contrasts, ranging from k¥ /k® = 2.0 to k¥'/k% =
o0o. Because the effective conductivity function satisfies the homogeneity property, i. e.,

133
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kKT, NES) = Mk(KT, kS) (Milton [132]), the thermal conductivity of phase ¢ can be
taken as k¥ = 1.0W/mK. Table 7.2 presents the deviation of the arithmetical average
effective conductivity from that in x;-, zo- and z3-direction. It is interesting to observe
that at lower contrast ratio the connectivity information can be ignored. This can be
verified from the samples C, R1 and R2, which have almost the same porosities but very
different connectivity properties (cf. Section 2.4). As the contrast ratio increases, the
discrepancy between the effective conductivities of these three samples (C, R1 and R2)
becomes significant. At k¥'/kS = 10% and k¥ /k% = oo, the effective conductivity of
sample C is approximately three to four times larger than the effective conductivities of
samples R1 and R2, respectively. This implies that the connectivity plays an important
role in determining the effective conductivity if the contrast ratio is high. Note that at the
infinite contrast, one might think of the material parameter & as the electric conductivity
instead of the thermal conductivity.

Samples kF kS
18.6681
0.193043
0.148954
0.112065
0.093615
0.104717
0.091920
0.102498
0.097128

2.0
0.631896
0.599673
0.570113
0.547499
0.558877
0.545953
0.569115
0.566999

10.0
0.252684
0.207937
0.169611
0.147621
0.160331
0.145685
0.162087
0.156613

100.0
0.124521
0.081470
0.046674
0.034355
0.042741
0.033401
0.033760
0.029526

10000.0
0.104032
0.060319
0.024353
0.013924
0.022830
0.013774
0.007441
0.003793

00

0.103796
0.060059
0.024021
0.013584
0.022563
0.013448
0.006836
0.003084

= 8|R| 2 o= >

R2

Table 7.1: Numerically exact values of k [W/mK] at different contrast ratio k' /k° for the eight

samples.

Samples Kt /kS

2.0

10.0

18.6681

100.0

10000.0

(0. 9]

+0.001230

+0.004642

£0.004996

£0.004704

+0.004189

+0.004178

+0.003502

+0.012303

+0.013253

+0.013128

+0.012326

+0.012307

+0.000296

+0.001339

+0.001527

+0.001903

+0.002550

+0.002597

£0.000487

+0.001707

+0.002083

+0.002952

£0.004198

£0.004247

£0.000543

£0.002288

+0.002659

+0.002965

+0.003278

+0.003292

+0.000230

£0.000587

+0.000606

+0.000858

£0.001570

+0.001600

+0.000055

+0.000202

+0.000238

£0.000211

+0.000136

+0.000109

+0.000021

+0.000096

+0.000115

+0.000116

£0.000530

+0.000604

Table 7.2: The standard deviation of & [W/m K] for the eight samples.

The accuracy of an approximation method or a micromechanical model in predicting
the effective conductivity can be justified by checking if the predicted effective conductivity
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is within the HS bounds. Therefore, as the first step the HS bounds should be evaluated.
In the case of a statistically isotropic material, the HS bounds and the approximation from
the Mazwell-Garnett theory (MGT) for spherical inclusions are the same. Therefore, the
HS bounds (6.47) can be calculated using the MGT. The lower bound can be found
by considering that the inclusion phase is ¢ and the host phase is ¢°, the results for
these eight samples are presented in the Table 7.3. The upper bound can be attained
by taking ¢° as the inclusion phase and ¢’ as the host phase. This case can be seen
as the solid particles that are embedded in the fluid such as in the suspension problem.
The upper bounds for different contrast ratios are tabulated in Table 7.4. As discussed
in Section 5.1.3, the MGT is an unsymmetrical mixing law and therefore, it is difficult
to choose which phase is the continuous phase and which phase is the dispersed phase
for such bicontinuous heterogeneous samples. Nevertheless, the MGT can be used as the
bounds on the effective conductivity.

kF/kS
18.6681

Samples

2.0 10.0 100.0 10000.0 | oo

0.630435

0.194737

0.114081

0.023515

0.000241

0.0

0.598721

0.168211

0.096582

0.019460

0.000198

0.0

0.569653

0.146071

0.082313

0.016244

0.000165

0.0

0.546711

0.129888

0.072073

0.013985

0.000141

0.0

0.557471

0.137344

0.076772

0.015016

0.000152

0.0

0.545237

0.128884

0.071444

0.013847

0.000140

0.0

2992 0=

0.569982

0.146310

0.082466

0.016278

0.000165

0.0

R2

0.569694

0.146101

0.082332

0.016248

0.000165

0.0

Table 7.3: The predicted effective conductivity using the MGT with the phase ¢ as the host
phase.

Samples kP /kS

2.0

10.0

18.6681

100.0

10000.0

(0. 9]

0.640845

0.323009

0.284160

0.247317

0.238891

0.238806

0.607335

0.268064

0.227110

0.188374

0.179530

0.179441

0.576213

0.218115

0.175383

0.135061

0.125868

0.125775

0.551368

0.178966

0.134929

0.093453

0.084008

0.083912

0.563051

0.197296

0.153861

0.112916

0.103586

0.103492

0.549763

0.176459

0.132341

0.090795

0.081333

0.081238

2 R 2|al=| >

0.576567

0.218677

0.175965

0.135660

0.126471

0.126378

R2

0.576257

0.218185

0.175456

0.135136

0.125943

0.125850

Table 7.4: The predicted effective conductivity using the MGT with the phase ¢f as the host

phase.

The next step is to apply a symmetrical mixing law such as the BEMA (5.21) in
predicting the effective conductivity of the bicontinuous medium. Table 7.5 presents the
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predicted effective conductivity using the BEMA. For the case of the lower contrast, the
BEMA provides good prediction results, but as the contrast ratio increases, the predic-
tion of the BEMA becomes less accurate. In the limit of infinite contrast, the effective
conductivities calculated from the BEMA for all samples vanished although the samples
are fully connected. The reason is that the BEMA has a percolation threshold at 1/3,
while all of the samples have the porosities below this percolation threshold (7" < 1/3).

Samples kF kS

2.0 10.0 18.6681 100.0 10000.0 | oo
A 0.634198 | 0.240179 | 0.167632 | 0.063697 | 0.002252 | 0.0
B 0.601132 | 0.192794 | 0.122630 | 0.032178 | 0.000385 | 0.0
C 0.570974 | 0.157363 | 0.093135 | 0.020269 | 0.000214 | 0.0
D1 0.547348 | 0.134587 | 0.076263 | 0.015340 | 0.000157 | 0.0
D2 0.558404 | 0.144730 | 0.083577 | 0.017351 | 0.000179 | 0.0
D3 0.545837 | 0.133268 | 0.075335 | 0.015096 | 0.000154 | 0.0
R1 0.571313 | 0.157721 | 0.093413 | 0.020360 | 0.000215 | 0.0
R2 0.571016 | 0.157407 | 0.093170 | 0.020280 | 0.000214 | 0.0

Table 7.5: The predicted effective conductivity using the BEMA.

To overcome a percolation threshold problem, it is very common to use the DEM
method (5.31). Here, the phase " is taken as the initial host phase. Table 7.6 displayed
the estimated effective conductivity for all the samples using the DEM. As in the case of
the mixing law which uses only the average porosity as the geometrical input parameter,
the predicted effective conductivities for the samples C and its reconstruction R1 and R2
remain the same. It can be taken from Tables 7.3-7.6 that predicted results using the
BEMA and the DEM are always located within the HS bounds, cf. Tables 7.3 and 7.4
and Markov [115].

Samples KE /K5
2.0 10.0 18.6681 100.0 10000.0 00
A 0.637720 | 0.290807 | 0.242404 | 0.193115 | 0.181142 | 0.181019
B 0.604419 | 0.237706 | 0.187325 | 0.135640 | 0.122888 | 0.122757
C 0.573747 | 0.192190 | 0.141005 | 0.088230 | 0.074921 | 0.074782
D1 0.549471 | 0.158885 | 0.108016 | 0.055662 | 0.042129 | 0.041986
D2 0.560861 | 0.174188 | 0.123049 | 0.070311 | 0.056847 | 0.056706
D3 0.547910 | 0.156835 | 0.106021 | 0.053751 | 0.040215 | 0.040071
R1 0.574094 | 0.192685 | 0.141502 | 0.088731 | 0.075427 | 0.075288
R2 0.573790 | 0.192252 | 0.141067 | 0.088292 | 0.074984 | 0.074845

Table 7.6: The predicted effective conductivity using the DEM.

The Looyenga’s formula (5.8) [111], which has been widely used and has been observed
to match well with the experiments, was applied to calculate the effective conductivity.
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The results are presented in Table 7.7. As can be seen, this formula gives good predic-
tions for a wide range of the contrast ratio and also gives a non-zero effective conductivity
in the limit of the infinite contrast. In general, the estimation of the effective conduc-
tivity using this formula is better than that of the DEM method. In the case of the
reconstructed samples, the Looyenga’s formula gives the best estimation compared to all
mixing formulae.

Samples kY kS
2.0 10.0 18.6681 100.0 10000.0 o)
A 0.635427 | 0.256808 | 0.191437 | 0.101522 | 0.043452 | 0.032768
B 0.602616 | 0.212254 | 0.149598 | 0.068533 | 0.022414 | 0.015069
C 0.572446 | 0.174931 | 0.115895 | 0.044626 | 0.010033 | 0.005592
D1 0.548592 | 0.147942 | 0.092485 | 0.029854 | 0.004221 | 0.001763
D2 0.559782 | 0.160323 | 0.103112 | 0.036345 | 0.006557 | 0.003216
D3 0.547059 | 0.146285 | 0.091077 | 0.029024 | 0.003950 | 0.001606
R1 0.572787 | 0.175333 | 0.116251 | 0.044864 | 0.010139 | 0.005668
R2 0.572489 | 0.174981 | 0.115940 | 0.044656 | 0.010046 | 0.005602

Table 7.7: The predicted effective conductivity using the Looyenga’s mixing law.

The effective conductivities which were predicted by the MLLPT could be obtained by
solving (5.37). These predicted effective conductivities are still depending on the length

scale L, which can be seen in Figure 7.1 (for contrast ratio k¥ /kS = 2) and Figure 7.2
(for the contrast ratio k¥ /k% = 00).

0.7 T T T T T T T 0.7 T T T T T T T

A —— D1 —H&— D3—4&— c
0.68 1 0.68 [

B —— D2 —<— R1 ——
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Figure 7.1: The prediction of the MLLPT for the eight digitized samples at contrast ratio
kP JES = 2.0.

As discussed in Subsection 5.1.5, there are several criteria to determine the length scale
L. The first three length scales, i. e., the entropy length scale L.,, the correlation length
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Figure 7.2: The prediction of the MLLPT for the eight digitized samples in the limit of the
infinite contrast ratio k¥ /&% = oc.

scale L. and the percolation length scale L,, are given in Table 5.1. The estimated effective
conductivities at these length scales are tabulated in Table 7.8 (at L.,), in Table 7.9 (at
L.), and in Table 7.10 (at Ly).

Samples KE /K5

2.0 10.0 18.6681 100.0 10000.0 00
A 0.635676 | 0.250020 | 0.180348 | 0.083206 | 0.032650 | 0.031459
B 0.602311 | 0.204875 | 0.138522 | 0.050682 | 0.002502 0.0
C 0.573724 | 0.169446 | 0.107229 | 0.031046 | 0.000493 0.0
D1 0.547035 | 0.142215 | 0.085862 | 0.022529 | 0.000325 0.0
D2 0.561543 | 0.158207 | 0.099027 | 0.028867 | 0.000522 0.0
D3 0.547442 | 0.143419 | 0.087168 | 0.023510 | 0.000360 0.0
R1 0.572762 | 0.164719 | 0.101638 | 0.026158 | 0.000326 0.0
R2 0.570610 | 0.158761 | 0.095563 | 0.022582 | 0.000257 0.0

Table 7.8: The predicted effective conductivity using the MLLPT at the entropy length L., for

different contrast k¥ /k5.

It is obvious that for the lower contrast ratio, the estimated effective conductivity at

the smallest length scales are in better agreement with the exact values. Because L,
is the smallest length scale of the three length scales (L., L., and L,) for almost all of
the samples, the effective conductivity k at L., gave the best predicted results. As the
contrast ratio increases, the length scale at which the best predicted effective value is
obtained will also increase (cf. Figure 7.3). Therefore, for the limit of the infinite contrast
ratio, the effective conductivities of all of the samples at L, are the best estimation of
the MLLPT. Moreover, the MLLPT at L, gave the non-vanishing effective conductivity
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Samples kY [kS

2.0 10.0 18.6681 100.0 10000.0 00
A 0.637416 | 0.263302 | 0.198706 | 0.113316 | 0.079674 | 0.079217
B 0.602367 | 0.206219 | 0.140411 | 0.053555 | 0.006904 | 0.004712
C 0.576230 | 0.187307 | 0.130782 | 0.037571 | 0.037570 | 0.037181
D1 0.547101 | 0.140531 | 0.083470 | 0.019936 | 0.000238 0.0
D2 0.561983 | 0.162262 | 0.104377 | 0.028296 | 0.002290 0.0
D3 0.547005 | 0.140590 | 0.083543 | 0.019999 | 0.000239 0.0
R1 0.573300 | 0.169213 | 0.107772 | 0.033105 | 0.000676 0.0
R2 0.570645 | 0.158802 | 0.095715 | 0.022844 | 0.000263 0.0

Table 7.9: The predicted effective conductivity using the MLLPT at the correlation length L,
for different contrast k' /k5.

Samples kT /K5
2.0 10.0 18.6681 100.0 10000.0 o0
A 0.638687 | 0.278290 | 0.219968 | 0.148374 | 0.125254 | 0.124988
B 0.603744 | 0.227919 | 0.170846 | 0.102120 | 0.078864 | 0.078580
C 0.576644 | 0.191039 | 0.135842 | 0.071349 | 0.048700 | 0.048402
D1 0.547447 | 0.150578 | 0.097085 | 0.036990 | 0.011926 | 0.011319
D2 0.562381 | 0.167030 | 0.110820 | 0.044727 | 0.016235 | 0.015601
D3 0.548663 | 0.156191 | 0.104190 | 0.046997 | 0.027069 | 0.026782
R1 0.575525 | 0.180634 | 0.122208 | 0.051539 | 0.019957 | 0.019263
R2 0.570981 | 0.179435 | 0.123621 | 0.058747 | 0.034459 | 0.034099

Table 7.10: The predicted effective conductivity using the MLLPT at the percolation length L,
for different contrasts k¥ /K.

and the MLLPT at L, and L., gave the zero effective conductivity (except for sample
A). The reason for these results is that, as long as the used length scale is larger than
the threshold length L.,, the effective conductivity at that length scale is not equal to
zero. From Figure 7.2 and Table 7.10, it can be seen that the MLLPT at L, can dif-
ferentiate the effective conductivities of samples C, R1 and R2. However, the predicted
effective conductivities of R1 is three times and that of R2 is eleven times larger than
their corresponding exact values, respectively.

Figure 7.3 plots the experimental length L., against the ratio k¥ /k* for all the eight
samples. For the samples R1 and R2, the ranges of the experimental length L., are quite
wide. Therefore, it is difficult to choose a length scale using the experimental method
and then applying this chosen length scale to estimate the effective material parameter.
Moreover, this implies that there is no good criterion to determine an appropriate length
scale L, at which the MLLPT gives good predicted effective values for the whole range of
the contrast ratio.
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Figure 7.3: The experimental length L., of the eight digitized samples.

It is interesting to note that at lower contrast the MLLPT does not give any im-
provement if compared to the traditional mixing laws. This can be traced back to the
fact that for the lower contrast the morphology such as the porosity distribution and the
connectivity information plays a less important role than one might think. For the high
contrast, the prediction of the LPT at L, gives reasonable results.
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Figure 7.4: The estimated effective conductivity & for different contrasts for sample C (Berea
sandstone) from various mixing laws and from simulated data (exact).
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Figure 7.5: The effective conductivity predicted by the DEM, the Looyenga, the LPT (at L,)
and by the simulated effective conductivity (exact) for the eight samples in the case
of the infinite contrast.

For elucidatory purposes, Figure 7.4 displays the results from different mixing laws
and from the simulation (exact calculation) for the particular case of sample C (Berea
sandstone). These effective permittivities are plotted as a function of the contrast for the
Berea sandstone. All of the prediction results are within the HS bounds. For all of the
contrast ratio, the predictions of the DEM are overestimated, while the predictions of the
Looyenga’s formula and of the BEMA are underestimated. In the case of low contrast,
all the approximation methods provided similarly good results. As the contrast ratio
increases, the results of the approximation methods begin to differ. For the low contrast,
the MLLPT gives almost the same results at any length scales. However, at the infinite
contrast the MLLPT at L., gives a zero effective conductivity.

Figure 7.5 shows the results from different mixing laws which give the non-zero effective
conductivities for the infinite contrast and from the simulation. This includes the DEM,
the Looyenga and the MLLPT at L,. For all the samples, the DEM gives overestimated
results, while the Looyenga’s formula gives underestimated results. The MLLPT gives
the best results for many samples. However, for samples D3, R1, and R2, the Looyenga’s
formula gives the best results.

Finally, the improved bounds on the effective conductivity are discussed, if a measured
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effective conductivity at a different temperature is known. If the effective conductivity
for the contrast ratio k¥ /k° = 2.0 is known, then, using (6.86), the stricter bounds for
another contrast ratio can be found. This is demonstratively done using the samples C,
R1 and R2 for the contrast ratios k¥ /k% = 10.0, 18.66681, 100.0 and co. The results

are tabulated in the Table 7.11.

Samples

k¥ /kS | bounds C R1 R2
10.0 b 0.147092 | 0.144465 | 0.140687
ub 0.197095 | 0.192921 | 0.186076
18.6681 1b 0.083058 | 0.081133 | 0.078472
ub 0.151968 | 0.147264 | 0.139661
100.0 b 0.016433 | 0.015944 | 0.015294
ub 0.109265 | 0.104030 | 0.095671
10000.0 b 0.000167 | 0.000161 | 0.000155
ub 0.099512 | 0.094152 | 0.085615

Table 7.11: The lower and upper bounds on k at different contrasts kf'/ k° using the known k
of the contrast ratio k¥ /k% = 2.0.

Compared to the HS bounds of Tables 7.3 and 7.4, the attained bounds are slightly
tighter for all of these three samples. Figure 7.6 displays the upper bound on % in the limit
of the infinite contrast by using the information of the measured & at other contrast ratios.
The solid lines without symbols represent the simulated exact results of the samples.
The lower bound is always equal to zero; however, the upper bound can be used as an
approximation of the effective conductivity. The attained upper bounds are improved
by using the measured k of the increased contrast ratio k¥ /k%. Obviously, the upper
bound which is attained using the k of the contrast ratio k' /& = 10000 gives very good
predicted values of k. It should be emphasized that, contrary to the HS bounds, the
Prager method gives different bounds for samples C, R1 and R2.

7.2 Complex-Valued permittivity

For a dissipative medium and a low frequency case, the electric field is governed by the
Laplace equation. As in the case of the real-valued conductivity, the effective complex-
valued permittivity were obtained by solving the Laplace equation with the complex-
valued permittivity on the digitized samples. The boundary conditions were chosen such
that a potential gradient was applied across the sample and the fluxes were set to zero on
the other faces of the sample, i. e., 0U/0n = 0. The complex-valued permittivity of phases
o and ¢ are &F" = 87.74 4+ 187.74/w (brine water) and £°° = 4.7 (rock matrix), respec-
tively. The permittivities are given in the units of the dielectric permittivity of the vacuum
g0 = 8.854 x 10712 F/m. The effective frequency-dependent permittivities (the real parts
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Figure 7.6: The improved upper bound on the effective conductivity for the infinite contrast us-
ing the knowledge of the measured effective conductivity from five different contrast
ratio.

of the effective complex-valued permittivities), which were normalized by dividing by the
factor 87.74, of the four samples (A,B,C and D1) for six different frequencies, ranging
from w = 10?/s to w = 107%/s, are presented in Table 7.12. The corresponding effective
frequency-dependent conductivities, which were obtained by multiplying the imaginary
parts of the effective complex-valued permittivities with their corresponding w and nor-
malized by 87.74, are given in Table 7.13. For a large w, the complex-valued permittivity
is approximately equal to its real part. In this case, the effective permittivity can be ob-
tained from the quasi-static case with the contrast ratio £/ ~ 87.74/4.7 = 18.6681.
This could be verified by comparing the real effective permittivity of the second column
(w = 100) of Table 7.12 with the real valued effective conductivity of contrast ratio
18.6681 (cf. Table 7.1). Similarly, the case of a very small w (in the limit of w — 0) corre-
sponds to the case of the infinite contrast ratio, because the complex-valued permittivity
is dominated by its imaginary part. It can be easily seen by comparing the last column of
Table 7.13 with the effective conductivity of the infinite contrast for the quasi-static case
in Table 7.1.

Figure 7.7 shows the estimated frequency-dependent effective complex-valued permit-
tivity using the MLLPT at different length scales for the sample A. The left hand side
of this figure plots the effective electric permittivity (the real part of the complex-valued
permittivity) and the right-hand side gives the effective electric conductivity (the imag-
inary part of the complex-valued permittivity). For the lower frequency (w < 0.1), the
estimation by the MLLPT are the best at the length scale L > 12 a; however, for higher
frequencies, the estimations at I. = 8 a are in good agreement with the exact numerical
results (symbol ©) in the Figure 7.7. Here, a is the resolution. The predicted electric
conductivity of the MLLPT at the length scale L = 9a are in good agreement with
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Table 7.12: The frequency-dependent electric permittivities for different frequencies obtained by

Samples
10? 1 101 1072 1073 1074
A 0.193044 | 0.198781 | 0.224930 | 0.230480 | 0.230604 | 0.230605
B 0.148955 | 0.154478 | 0.187802 | 0.199264 | 0.199580 | 0.199583
C 0.112065 | 0.117166 | 0.162189 | 0.195960 | 0.206099 | 0.206726
D1 0.093616 | 0.097424 | 0.138156 | 0.194101 | 0.198950 | 0.199005

direct numerical simulation.

Samples
102 1 1071 1072 1073 1074
A 0.118806 | 0.115367 | 0.104841 | 0.103812 | 0.103796 | 0.103796
B 0.075951 | 0.072877 | 0.061707 | 0.060089 | 0.060060 | 0.060059
C 0.041362 | 0.038774 | 0.027175 | 0.024144 | 0.024025 | 0.024021
D1 0.028205 | 0.026379 | 0.017290 | 0.013759 | 0.013586 | 0.013584

Table 7.13: The frequency-dependent electric conductivities for different frequencies obtained
by direct numerical simulation.

the numerical exact result (denoted by cross in the Figure 7.7) for the lower frequency
(w < 0.1). However, for the higher frequency, the MLLPT at L = 8 a gives the best result
as in the electric permittivity (the real part). As in the quasi-static case, it is difficult
to determine the appropriate length scale at which the MLLPT gives good estimations
for the both material parameters and for the whole range. The same behaviour is also
observed for the sample B.

In Figure 7.8, the estimated frequency-dependent effective complex-valued permittiv-
ity for the sample C using the MLLPT is plotted. As in the case of the sample A, the best
predicted values of the effective permittivity and the effective conductivity were obtained
at different length scales.

Figure 7.9 displays the prediction of the MLLPT for the frequency-dependent effective
complex-valued permittivity for the sample D1. For the higher frequencies (w = 1 and
w = 100), the same length scale L = 26 gives the best predicted effective permittivity
and the effective conductivity. In the case of the low frequencies, the length scale L = 32
gives the best predicted effective permittivity, while the length scale L = 28 yields a quite
good estimation of the effective conductivity.

To testify the validity of the MGT and the BEMA approximation, the sample D1 was
used. Figure 7.10 gives the Cole-Cole plot, which represents the relation between the
real part (permittivity) and the imaginary part (conductivity) of the simulated effective
complex-valued permittivity, the predicted effective complex-valued permittivity using
the MGT and the BEMA. Here, MGF and MGS indicate the MGT using ¢! and ¢°
as the host phases, respectively. It also plots the predicted £ using the MLLPT at the
length scale L = 26 a and L = 32 a. The estimations of the BEMA and the MLLPT yield
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Figure 7.7: The effective complex-valued permittivity predicted using the MLLPT for the sample

log,,(c/87.74)

A.

09
o
_1 1 1 1 1 1
4 3 2 1 0 1
log,,(w)

(a) effective permittivity

10%10(‘7/87-74)

<&
-15r
o
3 3 3
_1.7 1 1 1 1 1
-4 -3 -2 -1 0 1
log;o(w)

(b) effective conductivity

Figure 7.8: The effective complex-valued permittivity predicted using the MLLPT for the sample

C.

more or less the same predicted values for all frequencies.

Now, attention is paid to the bounds method. Again the sample D1 was used. For
w=1.0 (6F = 87.74 +i87.74 and £° = 4.7), (6.66)-(6.68) give the required points for
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Figure 7.10: The Cole-Cole representation of the effective complex-valued permittivity predicted
using various mixing laws for the sample D1.

attaining the bounds:
A0
Al
A2

87.74 +187.74,
14.731232 +110.598992,
11.843674 + i 7.367486,

B =47,
B! = —0.006481 —i0.006434,
B? = 6.461553 + 10.155642.



7.3 Elastic moduli 147

14

10

.<_A‘_':+

Figure 7.11: The effective complex-valued permittivity predicted using different mixing laws and
the bounds method.

To obtain points A% and B3, one needs the Milton-Torquato parameter of sample DI,
which can be estimated applying (6.93) and (6.94), and the measured effective thermal
conductivity. The case of the contrast ratio k'/k% = 2.0 (k¥ = 1.0 and k% = 0.5) was
chosen, because it gives the tightest bounds on ¢¥. Hence,

0.118523 < ¢ < 0.211927.

By substituting (¥ = 0.118523 and (¥ = 0.211927 into (6.69), the corresponding points
A3 and B3¢, and A% and B? were found. Thus,

A% = 6.597617 410.185218, B3 = 7.945902 + i 2.329847,
A% = 6.729925 +10.216804, B3% = 8.790632 + i3.498335.

Due to the uncertainty of ¥, the region Q3 of the third order bounds is a union of the
lens-shaped region confined by arcs A3¢B3%A% and A3*B3¢B2 and of the region confined
by arcs A%®B3%A? and A% B3 B2, The bounds are shown in Figure 7.11. The points A2
and B? are the same as the prediction using the MGT with ¢ and ¢° as the host phases,
respectively. The simulated (£°) and estimated results using the BEMA (£%,,,) and the
MLLPT (£¢(L = 26) and £¢(L = 32) at the length scales L = 26 and L = 32, respectively)
are also depicted in Figure 7.11. The point £(L = 26) lies within the region Q3, which
implies that in this case the prediction of the MLLPT at the length scale L = 26 gives a
very good result (cf. also 7.9).

7.3 Elastic moduli

The last numerical example is concerned with the prediction of the elastic moduli using
various methods. For the direct numerical estimation, the FEM is applied. The effective
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bulk modulus K and the effective shear modulus are estimated by employing different
micro-mechanical models. These include the BEMA (5.75) and (5.77), the MGT (5.81)
and (5.82), the DEM (5.85) and (5.86), and the GSCM (5.87) and (5.88). The bounds on
K and on G are also discussed. This includes the Reuss and Voigt (RV) bounds (6.76)
and (6.77), the Hashin-Shtrikman (HS) bounds (6.83) and (6.84) and the Beran-Molyneuz
(BM) and the McCoy (M) bounds (6.79) and (6.80).

As the sample, the digitized biphasic medium with the dimension 64 x 64 x 64 voxels
and the resolution 7.5 pm was used. The volume fractions of phases ¢! and ¢° are
nf = 0.10642 and n° = 0.89358, respectively. Two different contrast ratios of the bulk
moduli and of the shear moduli were investigated. The first case is that K = 1.0 and
GF = 2.0 for phase ¢ and K° = 20.0 K¥ and G° = 25.0 G¥ for phase ¢° were chosen.
The second case is that K¥ = 17.5 and G¥ = 8.0, K° = 100 K¥ and G° = 100G*
for the phases ¢ and ¢°, respectively, were selected. All of them are given in units of
10° N/mm?.

For the simulation purpose, the periodic boundary conditions were chosen. Here, the
periodic boundary conditions mean that the displacement vectors u* can be decomposed
into its average u and a fluctuation term u*(x) which is periodic on dB. In order to satisfy
the equilibrium state, the tractions t = Tn are opposite on opposite sides of B (anti
periodic). Note that the external normal vectors n also have the opposite signs. This kind

Figure 7.12: Periodic boundary conditions applied to an REV under simple shear strain.

of boundary conditions is pointed out to give a more accurate estimation of the effective
moduli than those using uniform displacements or uniform traction boundary conditions
(Terada et al. [169], Miehe et al. [124]). The estimation of the effective elastic moduli
using FEM are tabulated in Table 7.16.

To estimate the Milton-Torquato parameter (¥, the inverse relationship of the Beran
bounds (6.93) was applied. If the thermal conductivities of phases ¢! and ¢ were taken
as k' =2.0W/mK and £° = 1.0 W/mK, then, by applying the FVM, the corresponding
effective conductivity was found. Using k& = 1.082998 W/mK , the bounds on (¥ were
attained. Thus,

0.083262 < (I < 0.153725. (7.1)

From the relationship (6.95), the bounds on 7 were obtained:
0.019824 < 5 < 0.798506. (7.2)
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From this microgeometrical information (n¥, ¢ and n¥) and from the elastic moduli of
the components, the lower and upper bounds up to the third-order bounds were attained.
They are tabulated in Table 7.14 (on K) and in Table 7.15 (on GG). Obviously, the upper

(i) (i)
bounds RV HS BM RV HS BM
lower 6.618177 | 11.943330 | 15.986586 | 151.704552 | 222.664803 | 499.148975
upper | 17.978020 | 17.485412 | 17.444625 | 1565.627350 | 1340.618682 | 1323.861420

Table 7.14: The upper and lower bounds on the effective bulk modulus K.

(i) (ii)
bounds RV HS M RV HS M
lower | 14.068338 | 19.922870 | 27.569061 | 69.350653 | 125.713345 | 177.188080
upper | 44.891840 | 40.268140 | 39.979112 | 715.715360 | 654.465783 | 651.473758

Table 7.15: The upper and lower bounds on the effective shear modulus G.

and lower bounds on the elastic moduli are quite far apart from each other. However,
the upper Beran-Molyneuz and McCoy bounds give good approximations of the effective
bulk modulus K and the effective shear modulus G, respectively.

The prediction using various models are presented in Table 7.16. All of the predicted
results are within the HS bounds, but only the estimation results using the BEMA and the
DEM lie within the third order bounds. However, in case (ii) the predicted effective bulk
modulus (K = 662.960275) using the DEM is very underestimated. Compared to the re-
sults obtained by other methods, the BEMA produces results in best accordance with the
simulated data. The reason can be that the BEMA treats both components symmetrically
which is compatible with the symmetric microstructure (aggregate microstructure) of the
sample. Meanwhile, all other methods treat the components unsymmetrically (assuming

that one phase is a host phase and another phase is an inclusion phase).

Method (i) (ii)
K [€] K G
FEM | 16.749559 | 36.500698 | 1136.912262 | 593.339692
BEMA | 17.358724 | 39.308028 | 1295.105534 | 639.933747
MGT | 17.485412 | 40.268139 | 1340.618681 | 654.465783
DEM | 17.191944 | 39.777817 | 662.960275 | 636.895921
GSCM | 17.485412 | 40.222095 | 1340.618681 | 652.808635

Table 7.16: The effective elastic moduli obtained by direct numerical simulation (FEM) and
using various models.
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Chapter 8

Summary and conclusions

8.1 Summary

In this thesis, the effective material parameters of a heterogeneous medium, whose local
properties may be considered as random function of the position, have been determined.
The material parameters studied in this thesis can be divided into three different classes.
The first class is the material parameter that relates a divergenceless vector to an ir-
rotational vector. This includes the dielectric constant, the electric conductivity, the
thermal conductivity, the magnetic permeability, and the diffusion constant. The second
class is the complex-valued material parameter which also relates a solenoidal vector to a
irrotational vector. The complex-valued material parameter is used to describe the time-
harmonic (dynamic) behaviour, but it is limited only to the low-frequency situations. The
third class are the moduli of an elastic material.

These effective material parameters have been predicted using three different methods.
The first one was by directly solving the balance equations together with the constitutive
equation. In order to solve these equations, the information of the microgeometry of the
heterogeneous medium has to be known. The detailed information of the microgeometry
was obtained using either computer assisted tomography or micromechanical models. The
computation has been carried out by applying the finite volume method and the finite
element method. Upon solving these equations, the average field quantities were obtained.
By assuming that these macroscopical average fields follow certain constitutive equations,
the effective material parameters can be determined.

The second method is the self-consistent approximation. In this case, various mixing
laws based on the effective medium approximation were applied. Except for the mixing
law based on the local porosity theory which uses the information of the porosity and
connectivity distribution, all of the mixing laws use porosity as the only structural input
parameter. In the case of the thermal conductive material, the following models were used:
Bruggeman effective medium approximation (BEMA), Mazwell-Garnett theory (MGT),
the differential effective medium (DEM) and the mixing law based on the local porosity
theory (MLLPT). The same models were applied to estimate the effective complex-valued
permittivity. The effective elastic moduli were obtained by the Krdner’s self-consistent
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method, the Mazwell-Garnett theory (Mori- Tanaka method) and the three-phase model
(Christensen & Lo [46]).

The third applied method was the bounds method which was used to confine the
effective material parameters. These methods need only partial information of the ge-
ometry of the heterogeneous medium. The advantage of these methods over the mixing
laws is that they can be improved successively by adding more microstructural informa-
tion. Furthermore, the bounds can also be improved by utilizing the effective physical
properties of another class of material properties. This kind of improvement is called the
cross-property relationship. For the effective thermal conductivity, the bounds given here
are the Hashin-Shtrikman, the Beran and the improved Prager bounds. For the effective
elastic moduli, the Reuss and the Voigt, the Hashin-Shitrikman, the Beran-Molyneux, the
M¢cCoy, and the cross-property bounds are presented. The last three of them are tighter
than the Hashin-Shitrikman bounds. In the case of the effective complex-valued permit-
tivity, the bounds based on the Bergman representation were applied. These bounds have
lens-shaped forms in the complex plane, which reduce to the well-known bounds on the
thermal conductivity in the case of the real-valued permittivity (the imaginary part is
vanished).

To verify the difference of the presented methods, eight digitized samples of sandstone
were employed. Six samples (A, B, C, D1, D2, D3) are obtained from the computer
assisted tomography. The remaining two samples (R1 and R2) are generated from the
same given medium C, but with different length scales. The generated samples R1 and
R2 have the same two-point correlation functions and porosities as the original sample C.

In the case of the prediction of the effective thermal conductivity, all of the eight dig-
itized samples were employed. FEach sample was investigated with six different contrast
ratios which ranges from k% /k = 2 to k¥ /k® = co. In the case of the low contrast, all of
the approximation methods provided similarly good results for the effective conductivity.
It is worth emphasizing, that although the mixing law based on the local porosity the-
ory contains more microstructural information, it did not give a better estimation than
other mixing laws. Therefore, it can be concluded that for the lower contrast ratio, the
morphology (connectivity) of the heterogeneous medium does not play such an important
role as one might think. With increasing contrast ratio the results of the approximation
methods began to differ. Therefore, for the higher contrast ratio, the morphology has an
extremely important role. The upper Prager bound using the effective moduli of the lower
contrast ratio (k¥'/k% = 100 or k¥ /kS = 10000) yielded a very good estimation of the
effective conductivity for the contrast ratio k¥ /k® = co. Since the numerical methods in
the case of the infinite contrast ratio converged very slow, the upper Prager bound could
be combined with the numerical method to estimate the effective thermal conductivity.
For the samples with similar porosities, the classical mixing laws provided more or less
the same effective thermal conductivity, even though the measured effective conductivities
were very different (cf. samples C, R1 and R2), while MLLPT gave different predictions
for these three samples. However, MLLPT yields overestimated predictions.

In the case of estimating the effective complex-valued permittivity, this thesis used
only four samples which were denoted as A, B, C and D1. All of the mixing laws based



8.2 Directions for future work 153

on the effective medium approximation did not give satisfactory predictions for the whole
frequency range from w = 107* to w = 10%. The mixing law based on the local poros-
ity theory predicted reasonable results depending on the chosen length scales. In other
words, the accuracy of the results depended on the length scale. It should be empha-
sized that the main problem arising in MLLPT is the determination of the length scale
L, because it depends on the frequency and also on the physical process. It has been
seen that two different length scales had to be chosen in order to achieve the best real
part of the effective complex-valued permittivity (the real-valued effective permittivity)
and the best imaginary part of the effective complex-valued permittivity (the real-valued
effective conductivity), respectively. This dependence was also clearly seen in the case
of the determination of the effective thermal conductivity. It has been shown that other
commonly used mixing laws which are based on the effective medium approximation failed
to accurately predict the effective complex-valued permittivity (see also Ma et al. [114]).
Contrarily, in this case, the bounds methods gave reasonable good results.

For the estimation of the elastic moduli, the predictions of the self-consistent method
were in good agreement with the computational results. Contrary to Christensen’s results
[45], the generalized self-consistent method did not provide better results than the self-
consistent method. The reason can be traced back to the different microstructures of
the heterogeneous systems. The systems investigated by Christensen [45] are suspensions
of particles, which have the dispersion microstructures. Therefore, the unsymmterical
mixing law such as the generalized self-consistent method gives better results than those
based on the self-consistent method. Meanwhile, the sample investigated here has an
aggregate microstructure, where the symmetrical mixing law such as the self-consistent
method is more compatible with the microstructure. It has also been verified that the
self-consistent method provides good predicted effective moduli of polycrystals (Zaoui
[197]). For the bounds methods, the attained third-order lower and upper bounds on the
effective moduli were still apart from each other; however, the upper bounds could be
used to predict the effective moduli.

8.2 Directions for future work

In this section, there are some proposals for improving and extending the present work.

To compute a larger three-dimensional sample, a straightforward extension has to
be introduced. A straightforward extension means that the numerical algorithms are
implemented on a parallel or vector computer. Through parallelization or vectorization,
one can use the faster solvers which need large storage capacity. This can be multi-grid
solvers or wavelet based preconditioning solvers. Since wavelet functions can capture
local properties very well (Van Den Berg) [18]), it will be useful to exploit this properties
directly by developing wavelet-Galerkin methods (Amaratunga & Williams [4], Williams
& Amaratunga [189)]) for solving the balance equations of the heterogeneous medium.

The approaches used in this thesis are based on the quasi-static treatment of the fields.
For high frequency problems or wave phenomena in heterogeneous media, the approaches
have to be extended, in order to take into account the dynamical effects. To solve the
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wave equations in heterogeneous media, the corresponding numerical algorithms have to
be implemented. Some approximation methods for the dynamic problem based on the
effective medium exist (Sheng [162], Kanaun [99]), however, a detailed study which com-
pares the results of these approximation methods with those obtained by the simulation
or by experiments should be done, since this is the only way to justify the approximation
method based on the effective medium approximation. Contrary to the effective medium
approach, bounds cannot be attained in the general time-dependent case ( Willis [190]).
Note that due to the inhomogeneity, the waves might be scattered and localized, which
makes the study of the waves phenomena in inhomogeneous media more difficult. The
studies of such phenomena are an active research field (Rossum & Nieuwenhuizen [180],
Sheng [160]).

Another extension of this work is the treatment of anisotropy and of the nonlinear case.
If only the material nonlinearity is taken into account and the medium is assumed to be
isotropic and rigid such as the nonlinear heat conductivity or nonlinear electromagnetical
heterogeneous media, the geometrical parameter such as the Milton-Torquato parameter
¢F and ¢® which can be obtained from the linear case, can still be used. Therefore,
it is useful to establish the third-order bounds for such materials. Note that for the
power-law materials, the third-order bounds and some self-consistent approximation exist.
However, some comparisons with the experimental and simulation results are still needed.
In general, further work on the bounds methods for the nonlinear case are expected to be
done. Furthermore, the energy functionals in the nonlinear cases are not always convex,
which makes the establishment of the bounds for the nonlinear material more complicated.
In addition to the material nonlinearity, the geometrical nonlinearity can be taken into
account. Obviously, in this case, the microstructure of the heterogeneous medium will
always change at every stage of the deformation process. This makes the analysis of such
problems very tedious and complicated. Further study is needed in this field.

Many heterogeneous materials show coupled effects such as thermomechanical, piezo-
electric or magnetoelectric effects. Therefore, the mixing laws or the bounds methods
which take into account such effects should be developed. The corresponding existing
mixing laws (Nemat-Nasser & Hori [135], Sithvola [164]) which are heuristically obtained
need to be further examined in order to specify the range of the application of these mix-
ing laws. It is also useful to develop cross-property relationships which link the values of
different overall properties for such coupled material parameters.

Another interesting extension is to use the results of the homogenization process in
designing advanced materials. Through the bounds on the effective materials, one can
gain some insight into the microstructure of the design material and also learn the limits
of the improvement in the material properties of such heterogeneous materials due to
the variation of the microstructures. Therefore, the bounds on the the effective material
parameters are important to design an optimal material or structure.



Appendix A

Some useful formulae of vector and
tensor calculus

This appendix summarizes some basic results of vector and tensor calculus, which are
used in this thesis. The notation used here and in the next section is based on de Boer’s
notation [48, 49] and the detailed treatment will be found there. The capital bold and the
small bold letters designate tensor and vector fields, respectively. The vector n indicates
the unit normal vector of the surface, meanwhile the symbols dv, da and dx denote the
volume element, the surface element and the line element, respectively.

Double cross tensor product of tensors

The cross tensor product of two second-rank tensors T and S is given by

(T# S)(u1 X 112) = T\lll X SUQ - T\I.lz X S'I.ll. (Al)

The adjunct tensor and determinants
+
The adjunct tensor T'is defined through the cross tensor product:
e
T =5 (T#T). (A.2)
The determinant of a tensor T can be written as
det T = % (T#T)-T. (A.3)

Through (A.2) and (A.3) the inversion of tensor T can be given by (de Boer [49], p. 537)

T = (det T) (T7) . (A.4)
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Some useful identities

u-(vxw) = v-(wxu)=w-(uxv), (A.5)
div(pv) = v-gradd+ ¢divv, (A.6)
div(iu®v) = (grad u)v+ (divv)u, (A7)
rot (uxv) = udivv—gradvu— vdivu+ graduv, (A.8)
/ divTdy — / Tda, (A.9)
B B

divadv =

—

/a .

rotu-da = ?{ u - dx, (A.11)
)
J

J :
/Bgradudv = Su® da, (A.12)
/Bgradev = /aSOda. (A.13)



Appendix B

Spherical basis system

This appendix discusses the spherical coordinate system, i. e., the system which is suitable
to analyze the n-layered spherical inclusion problem. A brief summary of transformation
laws between the Cartesian and the spherical coordinate systems and of tensor analysis
in spherical coordinate systems is given. A comprehensive treatment of vector and tensor
analysis can be found elsewhere (Betten [28], de Boer [48,49]). This appendix also provides
some equations of physics in a spherical coordinate system, which are extensively used in
this thesis.

B.1 Transformation laws

In spherical coordinates, a point P is represented by coordinates #', #%, and 2 (Fig. B.1).
Thereby, ! is the distance from P to the origin O, #? is the angle between the radial line
OP and the positive z3-axis, and 6% is the angle between the plane containing P and the
r3-axis and the z;z3-plane. The notation (0',6% 6) is chosen here because it allows for
a compact representation of doing the tensor analysis. However, in the rest of this work,
0! = r, 62 = 9 and 0 = ¢ are set to be compatible with the common representation of
spherical coordinate system in engineering and science.

The transformation relations between Cartesian (x1, 2, z3) and spherical (6,62, 63)
coordinate systems according to Fig. B.1 take the form

r1 = 6'siné? cos6?,
Ty = 0'sinf? sin6?, (B.1)
z3 = 0'cosb?

Hence, the position vector x and the corresponding line element dx are given by

x = 0'sinf? cos@®e; + 0 sin6? sin B3 e, + 6' cos b? e,
(B.2)
ox ., Ox .o, 0Ox o L 9 3

respectively.
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X3

02

i

Figure B.1: Spherical polar coordinates

The covariant basis vectors (natural tangential basis) of spherical coordinates are
defined by the differentiation of the position vector with respect to the coordinates 6*, 62
and 63:

h, = % = sin 6 (cos 6° e; + sin 6’ ;) + cos 6” e,
hy = 2X Z 0 cos6? (cost? in 63 e,) — 0" sin 62 (B.3)
2 = Gpz =0 cos (cos 6 e; + sin 6’ e,) sin 6 e, .
h; = 8_x:91 sin02(—sin93e +Cos€3e)
3 203 1 2) -

The unit basis vectors are obtained by dividing the basis vectors by their lengths

hi = sin6?cos®e; + sin 6 sin > e, + cos 6° es,

*

ho = cosf”cosfe; + cosf?sin6° e; — sin 6” e3, (B.4)
hs = —sinf#e; + cosh?e,.

Note that the usual representation of the unit basis vectors of the spherical coordinates
e,, ey and e,, which respectively, define the radial, the meridional and the circumferential
directions, are related as

* *

e, = hi, ey = ho, e, = hs. (B.5)

By solving (B.4), one has the orthonormal Cartesian basis vectors in terms of the unit
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basis vectors of the spherical coordinate system

e, = sin#%cos#®hi + cos#?cos#® ha —sin 6° hs,
e, = sin#?sin@® hi + cos#?sin 6° he + cos 6° hs, (B.6)
e; = cos0?h; — sin6? ho.

*
Note that these basis vectors e; and h; coincide with their corresponding reciprocal basis

vectors, i. e.,
*

e,=e and h; =h" (B.7)
From the relations (B.4) and (B.6), one can determine the tensors A and B, which give
the relationships between every vector or tensor in the Cartesian system and those in the
spherical coordinate system and vice versa, respectively. These tensors A and B are given
by
sinf?cos#® sin#%sinf®  cos6?
A =07 (h; ®h;) with aY = | cosf?cos®® cosf?sinf® —sin6? (B.8)
—sin §? cos 63 0
and
sin 62 cos #® cos6? cos #® —sin 63
B=b;(e;®e;) with b;=| sinf*sin@® cosf?sinf® cos@® |. (B.9)
cos 6? — sin #? 0

In component form, an arbitrary vector u and an arbitrary second-rank tensor T may
be expressed in the Cartesian basis system by

u = U €;,
B (B.10)
T = tz'j e €;
and in spherical coordinate unit basis by
u = Z’Z i;z"
(B.11)

T = t h ®hy,

where Einstein’s summation convention is used. Note that u' and Zij are physical co-
efficients of u and T. Since for the orthonormal basis system the covariant and the
contravariant basis vectors are equivalent (e; = €’), the vector coefficients can be written
in covariant form. The coefficients transform according to the equation
ﬂi = aij ﬂj,

(B.12)

%
u; = bz'j u?
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and the tensor coefficients are subject to the transformation law

Zij = gF g Tt
(B.13)
Ltij = bzk bjl tkl.
The contravariant basis vectors are defined by
h;-h' =57, (B.14)

where 67 is the Kronecker symbol. By employing (B.3) and (B.14), the contravariant basis
vectors of the spherical coordinate system can be calculated as

h' = sin6* (cos’ e; + sin 6° e;) + cos 6% es,
1 1
h? = g7 €08 0% (cos@®e; +sinf’ey) — o sin 62 es, (B.15)
1
h? = T (—sin6®e; +cosf’e,).

The covariant metric coefficients can be computed via

1 0 0
0 0 (0Y)?sin?6?

Similarly, the contravariant metric coefficients yields

S 1 0 0
h? =h"-h = | 0 ()2 0 : (B.17)
0 0 (0")2sin 26?

The covariant and contravariant metric coefficients are inverse to each other, which can
be proved easily by multiplying (B.16) with (B.17).

B.2 Tensor analysis in spherical coordinates

For a tensor analysis in convective coordinates, a suitable differentiation procedure, which
is known as covariant derivative, is required. Covariant derivatives play the role of regu-
lar partial derivatives in convective coordinate system and reduce to the regular partial
differentiation in a Cartesian coordinate system. Hence, the coefficients produced by the
covariant derivative have to fulfill the transformation laws for tensor quantities. The
covariant derivative can be done conveniently by introducing Christoffel symbols of the
second kind, which can be defined as the vector coefficients of the derivative of the co-
variant basis vectors h; given in the covariant basis vectors hy. Thus,

hz’,j = ka hk y (B18)
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where (+) ; indicates partial differentiation with respect to the coordinate 67. For example,
the Christoffel symbols Fi'j'k can be computed via

Fz’jk = %hkl (hitj + hjii — hig)- (B.19)

By substituting the covariant and contravariant metric coefficients (B.16) and (B.17) into
the defining equations (B.19) for the Christoffel symbols, one obtains that all of Fi'j"“ =0
except

Ly = =0,
Iyt = —0'sin? 62,
1
Fis* = T’ = gp
2 o (B.20)
;3 = —sin6” cosb”,
1
Ly = i’ = op
3 _ .3 _ cost?
1—123 - F32 _m

From now on, the fields are assumed to be functions of the coordinates #°. The gradient
of a scalar field 6 is given by

*

de * 1 * 1
grad0 = d_X = 07]9 hk = 071 hi + ﬁ 0,2 ho + m 0,3 hs. (B21)

The gradient of a vector field u = u' h; can be found as
du i Ip..i k
gradu:d—:(uk—f—u ;") h; @ h". (B.22)
X bl
In a contravariant basis system, the gradient of a vector field u = u; h? yields

d .
gradu = d—z = (uip — w T ) h' @ h*, (B.23)

The gradient of a tensor field T = ¢¥ h; ® h; is given by

dT y o
grad T = —— = (7 +t9 T + 1T ) h; @ h; @ h*. (B.24)

The divergence of a vector field u is defined by
divu=gradu-1I, (B.25)

where I is the second-rank fundamental unit tensor. Thus, if the vector u is expressed in
terms of covariant basis vectors (u = u'h;), its divergence is given by

divu =div (v'hy) = v’; + o' T, (B.26)
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and if u = u; h? the divergence of u takes the form
divu = div (u; h?) = (uge — u TjY) B, (B.27)
The divergence of a tensor field T = ¢¥ h; ® h; can be evaluated via
divT =div (t7h; ® hy) = (¢, + 9 Tj;* + ' T;;7) by (B.28)

In general, the values of covariant and contravariant basis vectors are no unit vectors,
therefore, they should be normalized in physical and engineering applications. The rela-
tions between the covariant or contravariant coefficients and the coefficients of unit vectors
(physical components) can be expressed as

ul = ui\/h(u‘) = u;Vh(),
t9 = 19 [l by = ti VRO RGD,

where the brackets (i7) and (jj) indicate that there is no sum over i and j, respectively.

(B.29)

B.3 Some applications

B.3.1 Laplace equation

For the case of an inhomogeneous but isotropic thermal conductivity k(x), the governing
partial differential equation is

div [k(x) grad 6(x)] = 0, (B.30)

where 6(x) is the temperature field. In spherical coordinates, (B.30) takes the form

(k 9,1),1 + W (k 9,2),2 + W (k 9,3),3 + ﬁ 0,1 + W

(B.31) is obtained by substituting u = k grad 6 in (B.27), where grad  is given by (B.21).

6, =0. (B.31)

B.3.2 Linear isotropic elasticity
In spherical coordinates, the displacement vector u can be expressed as
u=1h;. (B.32)

Plugging (B.32) into the kinematical relation between displacement and strain,

e = L [gradu + (gradu)’], (B.33)

)
and by combining using (B.29), (B.22), (B.20) and (B.7), the linear strain tensor € can
be computed and written as
e=¢" h; ® h; (B.34)
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with
oo,
*22 L%y *1
g = ﬁ (U, ,2 + u ),
33 3 1 2
e¥ = u —u
psing? 2T T gitang (5.35)
e = 21_5(@ u'y+ u?l—ﬁﬁ),
13 _ %31 _ 1 3 3
cT e _§<Hlsln02 3 1_ﬁu)’
23 _ *32 _ 1 2 L ox3 3
= E zgwmm“3+m“3 8 tan 67 )
4
For an isotropic body, the fourth-rank elasticity tensor C is given by
. T
C = 2G |(I®I IR®I
]
e [aik R 5'”] B ® by ® By © by (B.36)
-2
4
Using the Hooke’s law T = Ce, the stress tensor T can be calculated as
T =2G (&7 Emm 5 ) h; @ hy . B
GG—H_%E 5>h®m (B.37)
The equilibrium equation reads
divT + pf =0, (B.38)

where pf = p f! }*1Z is the body force. Using (B.28) and (B.29),, (B.38) can be formulated
in component notation as

1 = 1 * 1 * * * p
11 12 13 11 22 33 12 1
—(2 - - = 0,
it gttt g tat @t — 17—t g mt +of
PRy imy o my Sy Gy, f o (B39)
1Tt 2T piginge 8T g 0" tan 02 pro= 5%
13 23 33 13 23 3
1 3 2 _—
titgtetganetstat Tt TP

Substituting the relations (B.35) into (B.37) and plugging this in (B.39), the equilibrium
equations can be expressed in terms of the displacement components.
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