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Deutsche Zusammenfassung

In vielen Bereichen des Ingenieurwesens ist die Berücksichtigung mehrerer Phasen eines
Materials und deren Interaktion untereinander für eine adequate kontinuumsmechanische
Beschreibung unerläßlich. Betrachtet man etwa ein Beispiel aus dem Bereich des Bauinge-
nieurwesens, das Versagen einer Böschung verursacht durch einen starken Regen, so muß
für eine realitätsnahe Beschreibung dieses Vorgangs die poröse Struktur des Bodens in den
Modellierungsprozeß mit einbezogen werden. Neben Geomaterialien, wie z. B. Böden oder
Steinen, weisen weitere Materialien, die in unterschiedlichsten Bereichen ihre Anwendung
finden, eine ausgezeichnete poröse Matrixstruktur auf. So finden etwa im Bereich der
Automobilindustrie mehrphasige Materialien, wie z. B. hochporöse Kunststoffschäume,
ihre Anwendung als Energieabsorber für den Insassenaufprallschutz. In der Medizin tre-
ten poröse Materialien beispielsweise in Form von blutdurchströmtem Muskelgewebe oder
Knorpel- bzw. Knochenmaterialien auf.

In den oben genannten Fällen ist das charakteristische Verhalten des betrachteten Mehr-
phasenmaterials durch das gleichzeitige Wirken von unterschiedlichen Effekten gekenn-
zeichnet, die aus den einzelnen Phasen des porösen Werkstoffs stammen. So müssen etwa
für eine korrekte Modellierung des oben genannten Böschungsbruchs insgesamt drei unter-
schiedliche Phasen berücksichtigt werden: Festkörperskelett, Wasser und Luft. Auf Basis
dieser Wahl kann ein kontinuumsmechanisches Modell entwickelt werden, mit dessen Hilfe
teilgesättigte Zustände in Böden abgebildet werden können. Des weiteren kann somit der
Regen als die Ursache des Versagens der Böschung über eine Randbedingung im Rahmen
einer numerischen Berechnung direkt modelliert werden.

Die numerische Simulation mit Hilfe der Finite-Elemente-Methode (FEM) von Anfangs-
Randwertproblemen mit den eben beschriebenen mehrphasigen Materialien wird auf-
grund der rasanten Entwicklung in der Computertechnologie immer interessanter. Gleich-
zeitig wachsen allerdings auch die Ansprüche hinsichtlich der Genauigkeit der numeri-
schen Simulationen im Vergleich mit der Realität. So kann etwa der oben beschriebene
Böschungsbruch mit Hilfe einer 2-dimensionalen Simulation auf der Basis eines einfachen
mechanischen Modells grob beschrieben werden. Ausgehend von diesem Ansatz sind be-
liebige Erweiterungen der Komplexität der numerischen Simulation und als Folge davon
beliebige Verbesserungen der Qualität der Ergebnisse denkbar. Um etwa die Geometrie
der Böschung und deren Versagen genauer abbilden zu können, wird eine 3-dimensionale
Diskretisierung der Böschung unerläßlich sein, wobei die Zonen, in denen das Versagen
stattfindet, räumlich sehr genau aufgelöst werden müssen, um die dort auftretenden ho-
hen Gradienten in den Feldfunktionen abbilden zu können. Wenn zusätzlich noch das zu-
grundeliegende mechanische Modell zu dem oben genannten Mehrphasen-Materialmodell
erweitert wird, können viele Effekte des wirklichen Böschungsbruchs numerisch simuliert
werden. Gleichzeitig hat allerdings die Komplexität des Problems und der Aufwand der
numerischen Simulation im Vergleich zu dem anfänglichen 2-d Modell enorm zugenom-
men.

Aus diesen Überlegungen kann gefolgert werden, daß selbst die schnelle Entwicklung in
der Computertechnologie alleine den ständig wachsenden Anforderungen an die Qualität
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II Deutsche Zusammenfassung

der Ergebnisse nicht gerecht werden kann. Es müssen vielmehr gleichzeitig die Algorith-
men und Strategien der numerischen Umsetzung weiterentwickelt werden. Im Hinblick
auf effiziente numerische Lösungsmethoden sind in diesem Zusammenhang etwa orts- und
zeitadaptive Ansätze, parallele Strategien und die Weiterentwicklung auf dem Gebiet der
linearen Gleichungslöser zu nennen. Adaptive Verfahren passen die Orts- bzw. Zeitdis-
kretisierung automatisch an die Bedürfnisse des jeweiligen Anfangs-Randwertproblems
an und können somit die Effizienz einer numerischen Simulation deutlich steigern. Ein
großer Nachteil bei der alleinigen Anwendung von adaptiven Strategien liegt in der Be-
schränkung der realisierbaren Problemgröße. Die obere Grenze einer solchen Problem-
größe ist dabei durch den auf einem Rechner vorhandenen Arbeitsspeicher bzw. dessen
Prozessorgeschwindigkeit gegeben. Eine offensichtliche Lösung dieses Nachteils ist durch
das gleichzeitige (parallele) Verwenden von mehreren Rechnern für die Ermittlung der
Lösung einer numerischen Simulation gegeben. Im Rahmen einer solchen parallelen Rech-
nung müssen die einzelnen Rechenknoten über ein leistungsstarkes Netzwerk miteinander
verbunden sein, um ein effizientes Verhalten zu erzielen.

Untersucht man den numerischen Aufwand für das Berechnen eines Zeitschritts in ei-
ner numerischen Simulation, so stellt man fest, daß der rechenzeitintensivste Teil durch
das Lösen des linearen Gleichungssystems innerhalb des Newton-Raphson-Verfahrens ge-
geben ist. Neben relativ neuen Entwicklungen auf diesem Gebiet, wie etwa sogenannte
Mehrgitterverfahren, die im Vergleich zu den klassischen Gleichungslösern eine enorme
Zeitersparnis liefern, beinhaltet der parallele Ansatz auch für dieses Problem einen viel-
versprechenden Lösungsansatz. Durch die Zerlegung des gesamten Rechengebiets in viele
Teilgebiete und die Verteilung dieser Teilgebiete auf die einzelnen Rechner können die
Lösungen der daraus resultierenden kleinen Unterprobleme parallel auf genau den Rech-
nern durchgeführt werden, auf denen die jeweiligen Teilgebiete definiert sind.

Basierend auf den oben skizzierten Überlegungen motiviert sich der Inhalt der vorliegen-
den Arbeit. Es sollen alle wichtigen Punkte diskutiert werden, die notwendig sind, um
realistische numerische Simulationen von Lokalisierungsphänomenen der Bodenmecha-
nik mit Hilfe von kontinuumsmechanischen Modellen für Mehrphasenmaterialien effizient
durchführen zu können.

Dabei wird zu Beginn der Arbeit in Kapitel 2 ein kontinuumsmechanisches Modell
präsentiert, das auf Basis einer makroskopischen Betrachtungsweise hergeleitet wird: der
Theorie Poröser Medien (TPM) [20, 21, 53]. Wie allgemein üblich wird die Herleitung die-
ses Modells in drei Abschnitte unterteilt: kinematische Beziehungen, Bilanzrelationen und
konstitutive Annahmen. Während die kinematischen Zusammenhänge und die axiomati-
schen Überlegungen aus den Bilanzgleichungen in einem allgemeinen Kontext betrachtet
werden können, sind in den konstitutiven Annahmen die speziellen Eigenschaften der
in dieser Arbeit betrachteten Klasse von Anfangs-Randwertproblemen, mit z. B. quasi-
statischen und isothermen Bedingungen, und der betrachteten Klasse von Geomateria-
lien, wie z. B. lehmiger Schluff, enthalten. Basierend auf Arbeiten von Ehlers [53] und
Ehlers et al. [62] wird ein Dreiphasenmodell präsentiert, das in der Lage ist, teilgesättigte
Zustände in Böden abzubilden. Die hierfür nötigen Konstituierenden des Dreiphasenma-
terials bestehen aus einem porösen, elastoplastischen (elastoviskoplastischen), inkompres-
siblen Festkörperskelett, einem viskosen, inkompressiblen Porenliquid (Wasser) und einem
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viskosen, kompressiblen Porengas (Luft).

In Kapitel 3 wird die Orts- und Zeitdiskretisierung der Gleichungen diskutiert, die aus
den kontinuumsmechanischen Überlegungen des vorherigen Kapitels stammen. Im Rah-
men dieser Arbeit werden dabei die Diskretisierungen im Ort und in der Zeit nacheinander
und mit Hilfe von zwei unterschiedlichen Methoden durchgeführt. Für die Ortsdiskretisie-
rung wird die Finite-Elemente-Methode gewählt, wohingegen die Zeitdiskretisierung mit
einem finiten Differenzenschema, dem impliziten Euler-Verfahren, realisiert wird. Spe-
ziell bei der Diskussion der FEM wird auf die besondere Struktur des resultierenden
Gleichungssystems für das betrachtete Dreiphasenmodell eingegangen. So muß etwa die
Tatsache berücksichtigt werden, daß durch die numerische Umsetzung des zugrundelie-
genden Modells eine sogenannte gemischte Formulierung entsteht, d. h. eine Formulie-
rung resultiert, die nicht nur aus den Freiheitsgraden für die (Festkörper-)Verschiebung
besteht, sondern die sich auch noch zusätzlich aus den Porendrücken der beiden Poren-
fluide Wasser und Luft zusammensetzt. Für diese unterschiedlichen Freiheitsgrade können
keine beliebigen FE Ansatzfunktionen gewählt werden, da ansonsten instabile und somit
unphysikalische Ergebnisse aus den numerischen Berechnungen resultieren. Es müssen
vielmehr sogenannte Taylor-Hood-Elemente gewählt werden, die z. B. quadratische An-
satzfunktionen für die Verschiebungen und lineare Ansatzfunktionen für die Druckterme
vorsehen, vgl. z. B. Brezzi & Fortin [35] oder Braess [34]. Das vollständig diskretisier-
te System liefert für das gewählte Materialmodell ein nichtlineares Gleichungssystem, das
mit dem Newton-Raphson-Verfahren gelöst werden muß. Die Struktur und die detaillierte
Beschreibung des Verfahrens wird in Abschnitt 3.3 ausführlich und mit Hinblick auf die in
Kapitel 5 folgende Abhandlung der parallelen FEM diskutiert. Dabei wird insbesondere
eine lokale, d. h. eine auf der Ebene eines finiten Elements definierte Assemblierungs-
schnittstelle vorgestellt, die auf eine Arbeit von Wieners et al. [151] zurückgeht und in
der Diskussion über die Parallelisierungsstrategie ein zentrale Rolle spielt.

Kapitel 4 behandelt die Probleme und deren Lösungsmöglichkeiten, die mit entfestigen-
dem Materialverhalten einhergehen, d. h. mit einem Materialverhalten zusammenhängen,
das sich in einem Spannungs-Dehnungs-Diagramm nach Überschreiten der kritischen Deh-
nung und dem damit verbundenen Erreichen der Fließspannung durch eine sinkende Span-
nungsantwort bei einer weiterhin steigenden Verzerrung äußert. Die direkte Implementie-
rung der in den beiden vorangegangenen Kapiteln diskutierten Gleichungen resultiert in
Kombination mit diesem Materialverhalten in einem sogenannten netzabhängigen Ver-
halten, d. h. die numerische Lösung zeigt eine starke Abhängigkeit von der gewählten
Ortsdiskretisierung mit finiten Elementen. So wirkt sich etwa eine stetige Verfeinerung
des FE Netzes immer auf die Rechenergebnisse einer numerischen Simulation aus. Be-
trachtet man z. B. ein Anfangs-Randwertproblem, bei dem sich eine Zone mit konzen-
trierten plastischen Verzerrungen, d. h. ein Scherband, ausbildet, so zeigt die Dicke des
Scherbands eine starke Abhängigkeit zum verwendeten FE Netz. Dieses unphysikalische
Verhalten wird in Abschnitt 4.1 an einem einfachen 1-dimensionalen Beispiel veranschau-
licht. Um diese Problematik zu umgehen, muß das aus mathematischer Sicht schlecht
gestellte Problem mit Hilfe eines Regularisierungsverfahrens in ein gut gestelltes Problem
überführt werden. Die in der Literatur vorhandenen Regularisierungsverfahren können
in drei Hauptgruppen unterteilt werden, die in Abschnitt 4.2 im Sinne eines Überblicks



IV Deutsche Zusammenfassung

ausführlich diskutiert werden.

Ein sehr weit verbreitetes Verfahren, um das schlecht gestellte Problem zu regularisieren,
besteht darin, ein ratenabhängiges (viskoses) Materialverhalten gezielt in der Modellie-
rung der plastischen Materialantwort zu berücksichtigen, vgl. Perzyna [118]. Auf diese
Weise werden in Abhängigkeit eines zusätzlichen Materialparameters, der Viskosität, so-
genannte Überspannungen zugelassen, d. h. Spannungen erlaubt, die über der eigentlichen
Fließspannung liegen. Somit kann über die Viskosität als charakteristischen Parameter des
betrachteten Materials die Breite eines Scherbands unabhängig von dem zugrundeliegen-
den FE Netz definiert werden [113]. Eine weitere Regularisierungsmethode ist durch die
mikropolare Theorie gegeben, die auf die Gebrüder Cosserat [38] zurückgeht und die eine
physikalisch motivierte Erweiterung des bekannten Boltzmann Kontinuums darstellt. Die
Grundidee dieser Theorie besteht darin, neben den translatorischen Freiheitsgraden eines
materiellen Punkts zusätzlich noch dessen rotatorische Freiheitsgrade zu berücksichtigen.
Dadurch müssen in der mikropolaren Theorie neben Verschiebungen auch noch Verdre-
hungen als Freiwerte in numerischen Simulationen ermittelt werden. Der regularisierende
Einfluß der Cosserat-Theorie kann über eine sogenannte interne Länge gesteuert wer-
den, die in der konstitutiven Beziehung zwischen den Momentenspannungen und den
elastischen Krümmungen als Materialparameter beinhaltet ist [24]. Schließlich werden als
dritte Hauptgruppe der Regularisierungsverfahren nichtlokale Modelle diskutiert, die für
die punktweise Ermittlung bestimmter Größen die Umgebung des jeweiligen Punkts mit
berücksichtigen. So werden etwa die plastischen Verzerrungen, die innerhalb der FEM an
den Integrationspunkten der numerischen Quadratur ermittelt werden, in ihrer nichtlo-
kalen Darstellung unter Berücksichtigung der Werte der plastischen Verzerrungen an den
umliegenden Integrationspunkten berechnet. Die Größe der zu betrachtenden Umgebung
ist dabei, ähnlich zu der mikropolaren Theorie, durch eine interne Länge definiert. Für
die Berücksichtigung der Umgebung findet man in der Literatur zwei unterschiedliche
Strategien. Es existieren zum einen Ansätze, die für die punktweise Berechnung von Gra-
dienten die Umgebung um diesen Punkt benötigen. Des weiteren findet man Arbeiten,
die eine nichtlokale Größe an einem Punkt durch die Auswertung eines Integrals über ein
begrenztes Gebiet um diesen Punkt ermitteln. Die Äquivalenz der beiden, auf den ersten
Blick unterschiedlichen Ansätze wurde von Mühlhaus & Aifantis [110] hergestellt, indem
sie eine integralbasierte in eine gradientenbasierte Formulierung überführten.

Abschließend werden in Abschnitt 4.6 anhand von zwei numerischen Beispielen die Lei-
stungsfähigkeit und das Verhalten von insgesamt drei Regularisierungstechniken einge-
hend untersucht und diskutiert. Dabei wird je ein Vertreter aus den oben erläuterten drei
Hauptgruppen gewählt: ein viskoplastischer, ein mikropolarer und ein integralbasierter
nichtlokaler Ansatz.

Um große Anfangs-Randwertprobleme im Rahmen der FEM rechnen zu können, ist es,
wie oben bereits erwähnt, zwingend notwendig, daß parallele Lösungsstrategien eingesetzt
werden. Aus diesem Grund wird in Kapitel 5 die Parallelisierung von FE Berechnungen
ausführlich diskutiert. Nach einiger generellen Bemerkungen zur parallelen FEM, werden
dabei in Abschnitt 5.2 die grundlegenden Ideen zur Parallelisierung des bislang nur sequen-
tiell lauffähigen FE Programms PANDAS (Porous media Adaptive Nonlinear finite element
solver based on Differential Algebraic Systems) [58, 117] vorgestellt. Dieses Programm



Deutsche Zusammenfassung V

wurde am Institut für Mechanik (Bauwesen), Lehrstuhl 2, der Universität Stuttgart ent-
wickelt und eignet sich in besonderer Weise, geometrisch oder materiell nichtlineare Mehr-
phasenprobleme numerisch umzusetzen. Durch die Kopplung von PANDAS mit einem FE
Programm, das sowohl über parallele Datenstrukturen als auch über effiziente parallele
lineare Löser verfügt, ist es gelungen, parallele Rechnungen basierend auf den in PAN-

DAS implementierten Materialmodellen durchzuführen und somit das Spektrum der mit
PANDAS numerisch realisierbaren Anfangs-Randwertprobleme enorm zu vergrößern. Das
parallel lauffähige Programm M++ (Meshes, Multigrid and more), mit dem diese Kopplung
realisiert wurde, geht auf Wieners [147] zurück und wurde dabei so konzipiert, daß die
Kopplung mit PANDAS auf Basis der in Kapitel 3 beschriebenen lokalen Assemblierungs-
schnittstelle umgesetzt werden konnte. So sind etwa für den Aufbau des linearen Glei-
chungssystems innerhalb des Newton-Raphson-Verfahrens in M++ insgesamt drei Funk-
tionen notwendig, um die hierfür erforderlichen Informationen von PANDAS zu erhalten.
Eine Funktion liefert die Dirichlet-Randbedingungen des Anfangs-Randwertproblems, die
zweite Funktion ermittelt das Residuum zusammen mit den Neumann-Randbedingungen
und schließlich wird mit der dritten Funktion die algorithmisch konsistente Tangente be-
rechnet. Dabei wird jede der drei Funktionen für jedes finite Element des FE Netzes
aufgerufen. So wird etwa für die Ermittlung der Dirichlet-Randbedingungen in M++ ei-
ne Schleife über alle Elemente des FE Netzes durchgeführt, und die darin elementweise
ermittelten Informationen in das globale Gleichungssystem assembliert.

Das besondere an der gewählten Vorgehensweise ist einerseits, daß durch diese Art der
Parallelisierung in PANDAS keinerlei Änderungen mit Hinblick auf die Parallelisierung
durchgeführt werden mußten. Des weitern ist diese Strategie natürlich nicht auf die Par-
allelisierung von PANDAS beschränkt, sondern kann auf weitere sequentiell implementierte
FE Programme angewandt werden.

Neben der Schnittstelle M++/PANDAS werden in Abschnitt 5.2 zusätzlich noch die M++

zugrunde liegende parallele Datenstruktur, die sogenannten
”
Distributed Point Objects“

(DPO), und die einzelnen Schritte bei dem parallelen Lösen eines linearen Gleichungssy-
stems ausführlich erläutert.

In Kapitel 6 wird schließlich anhand von drei numerischen Beispielen die Anwendbar-
keit und Effizienz der in dieser Arbeit erläuterten theoretischen Ausführungen aufgezeigt.
Dabei wird basierend auf einer Arbeit von Ehlers et al. [60] in einer 2-dimensionalen
sequentiellen Simulation eines Biaxial-Versuchs das Entstehen von dilatanten und kon-
traktanten Scherbändern in einem mikropolaren Material diskutiert. Des weitern wird
anhand von zwei 3-dimensionalen Anfangs-Randwertproblemen die Effizienz der Schnitt-
stelle M++/PANDAS demonstriert. Diese beiden Beispiele gehen auf Arbeiten von Ehlers et
al. [62] und Wieners et al. [153] zurück und behandeln Versagenszustände von Böschungen,
wie sie z. B. durch ansteigende Grundwasserspiegel oder starke Regenfälle verursacht wer-
den.
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Chapter 1: Introduction and overview

1.1 Motivation

In many branches of engineering, one often has to deal with problems, in which it is
inevitable to consider the multiphasic character of the underlying material for a proper
modeling. For example, within a civil engineering context, one may be interested in the
description of a failure mechanism of a natural slope, which is caused by an extreme
rainfall event, cf. Figure 1.1. Furthermore, the interest may be directed towards the
investigation of the deformation of foamed shock absorbers or automotive seat cushions
as well as towards biomechanical problems like the investigation of bones, cartilage or
intervertebral disks. In such cases, the characteristic behavior of the respective problem
under study is governed by the simultaneous action of different effects coming from the
single phases of the multiphasic material. In the above mentioned investigation of a
slope failure problem, the necessary phases for a proper modeling are defined by a solid
skeleton and two fluid phases representing air and water, namely, a materially compressible
gaseous and a materially incompressible liquid phase. By this choice, partially saturated
soil conditions can be adequately described, including the possibility to model the driving
force, which actually leads to the failure mechanism, i. e., the possibility to describe a
rainfall event due to a boundary condition corresponding to the liquid phase.

Figure 1.1: Slope failure initiated by an extreme rainfall event
(www.dot.ca.gov/hq/esc/geotech/photos/north/north.htm).

As a result of the rapid development in computer technologies in the last years, the
numerical simulations of engineering problems, like, e. g., the above described multi-
phasic problems, become more and more interesting. However, at the same time, the
requirements towards the complexity of the problems rapidly increase. For example, the
numerical description of the slope failure problem shown in Figure 1.1 can be carried out

1
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on different accuracy levels. Starting from a 2-dimensional modeling with a rather simple
mechanical model, almost no limits are given for an expansion of the complexity and,
thus, an increase of the accuracy of the numerical simulation. In order to model the given
geometry of the slope and the failure mechanism more accurately, e. g., a 3-dimensional
discretization of the slope under study has to be carried out, where the zones, in which the
failure occurs, have to be discretized on a rather fine level in order to exactly describe the
high gradients in the field functions coming from the failure of the slope. By furthermore
expanding the mechanical model to the class of multiphasic material models mentioned
above, many effects of the realistic problem are numerically represented but also the
complexity of the numerical problem is significantly increased. Obviously, the rapid in-
crease on the requirements of the quality of numerical simulations is not only restricted to
geotechnical problems. Thinking about crash test simulations of the automotive industry,
the accuracy, by which a car is numerically modeled, also strongly influences the quality
of the solution. Nowadays, in order to improve the agreement with the expensive crash
test experiments, the discretization of a car for the numerical simulation of such crash
tests even includes a detailed description of, e. g., the frontal bumper including its foamed
(multiphasic), shock absorbing inlay. Expanding this to many other small elements within
a car, the discretization of a whole car leads to a very high number of degrees of freedom
and, thus, to an enormous numerical effort, which can also be increased arbitrarily due
to the demand for improved numerical simulations.

Following this, the rapid development of the semiconductor industry cannot satisfy all
these requirements alone. In addition, new results and improvements coming from the
research of numerical strategies have to be taken into account. Very important develop-
ments in this context are adaptive and parallel strategies as well as the improvements of
efficient linear solvers. Therein, adaptive methods automatically adapt the spatial and/or
temporal discretizations with respect to the requirements of the problem under study and,
therefore, they can significantly improve the efficiency of a numerical solution procedure.
However, only applying adaptive strategies, the overall size of a problem is restricted by
the system memory and the processing speed of a single computer. A straightforward so-
lution of this drawback is to simultaneously use more than one computer for the solution
procedure, which directly leads to the term “parallel computing”. Finally, within each
nonlinear code, the solution for the respective linear systems occurring in the Newton-
Raphson method is the most time-consuming step. Apart from rather new strategies, like,
e. g., the multigrid methods, which strongly improve the efficiency of solving a linear sys-
tem compared to the standard solution methods for linear systems, the parallel approach
is also a promising strategy for this problem. By decomposing the overall problem into
many subproblems, the solutions for the small linear systems of these subproblems can
be determined in parallel on those different computers, where the respective subproblems
are defined.
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1.2 Scope, aims and state of the art

It is the aim of this contribution to describe the whole procedure of the numerical sim-
ulation of localization phenomena. Starting from the continuum mechanical modeling,
the spatial and temporal discretization by the finite element (FE) method and a proper
time integration method are discussed in detail. Furthermore, the numerical problems
coming along with softening material behavior are illustrated and methods to solve these
problems are shown. Finally, an efficient numerical realization of the proposed mechanical
models is presented based on parallel solution strategies.

Within this thesis, the numerical simulation of localization phenomena is going to be
exemplarily illustrated using the example of multiphasic materials, whose continuum me-
chanical description is based on the well-founded Theory of Porous Media (TPM). The
TPM in its current understanding is based on the publications by Bowen [32, 33] and
was improved and developed continuously in the last years by de Boer & Ehlers [21] and
Ehlers [48, 49, 51, 53]. An excellent survey of the historical development of the Theory of
Porous Media is given in the book of de Boer [20]. By choosing the TPM as the continuum
mechanical basis, volumetrically coupled multifield problems are obtained, which cannot
be uniquely classified within the well-known disciplines of either solid or fluid mechanics.
Furthermore, the problems under study in this thesis are mostly related to geotechnical
problems, like, e. g., biaxial experiments or slope failure problems, and, therefore, the
observed materials are soils, which are modeled by a solid and a fluid phase. Therein,
the description of the solid skeleton is carried out within a geometrically linear approach
and the solid skeleton is assumed to behave as a porous, incompressible and elasto-plastic
material. In addition, the fluid phase is subdivided into a viscous, materially incompress-
ible pore-liquid and a viscous, materially compressible pore-gas. To be more precise, a
biphasic and a triphasic model are presented for the continuum mechanical description of
soils, whereby in the biphasic model, the materially compressible gaseous phase is omit-
ted. Both the biphasic and the triphasic models presented in this thesis are taken from
the literature. Important publications dealing with the biphasic model and its numerical
realization are given, e. g., by Diebels et al. [44] or Ehlers & Ellsiepen [59]. The triphasic
model is intensively discussed in the works by Ehlers [53], Blome [18] or Ehlers et al. [62].

The discussion of the spatial and temporal discretization of the underlying porous media
models is mainly based on the works by Ellsiepen [66], Ehlers & Ellsiepen [59] and Wieners
et al. [151, 152]. Therein, the numerical difficulties within the spatial discretization by the
finite element method coming from the multiphasic character of the considered models
are discussed in detail.

The main focus of this thesis is put on the discussions of the numerical problems coming
along with the FE simulations of localization phenomena. Therein, a major problem
is given by the proper numerical description of the softening material behavior, which
occurs within such failure mechanisms. Generally speaking, localization phenomena are
characterized by concentrations of plastic strains within narrow zones. As a consequence of
these localizations, softening material behavior is obtained, which leads to a change of type
of the underlying partial differential equations resulting from the numerical realization of
the respective continuum mechanical model. In order to solve the numerical problem in
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such cases, additional methods, so-called regularization techniques, have to be applied,
which preserve the well-posedness of the respective problem under study. Therefore,
in this thesis, three different regularization techniques are implemented in the FE code
PANDAS (Porous media Adaptive Nonlinear finite element solver based on Differential
Algebraic Systems) and compared with each other considering their effect on the shear
band development.

The above mentioned regularization techniques are a viscoplastic ansatz, a micropolar
continuum theory and a non-local model and are taken from the literature. In case
of the viscoplastic ansatz, the main publication concerning the theoretical background
is given by Perzyna [118]. The suitability of this ansatz as a regularization method is
proved by Needleman [113], and this fact is confirmed by many researchers, who applied
the viscoplastic ansatz within their numerical simulations, cf., e. g., [44, 121, 146]. The
micropolar theory dates back to the work by Cosserat & Cosserat [38], who established the
theoretical basis of this theory. The regularizing effect of this theory within the numerical
simulation of strain-softening problems was discovered almost 20 years ago, thus leading
to many publications with emphasis on this topic, cf., e. g., Mühlhaus & Vardoulakis [111],
de Borst [24, 25, 26], Steinmann & Willam [133], Ehlers & Volk [64] or Ehlers et al. [60].
Finally, the first ideas of non-local formulations in the context of elasticity models date
back to the works by Kröner [97] and Eringen & Edelen [70]. The first application of a
non-local ansatz as a regularization technique for strain-softening problems is published
by Belytschko et al. [10]. An excellent overview on different non-local models is given
by Jirásek [95]. In this work, for a clear classification of the different models, the single
approaches are divided into integral- and gradient-type models. Within this classification,
the non-local model presented in this thesis is an integral-type model, which is mainly
taken from Brinkgreve [36] and Schanz [123].

Due to the enormous computational expense of the numerical simulations of realistic
problems based on advanced continuum mechanical models, the efficiency of the numerical
realization is increased within this thesis by the application of parallel solution strategies.
Therein, based on the works by Wieners [150] and Wieners et al. [152, 153], a novel
strategy is presented for the parallelization of sequential FE programs. To be more precise,
an interface is implemented and illustrated in detail, which couples the existing sequential
FE code PANDAS with the solver M++ (Meshes, Multigrid and more), which contains
parallel data structures and efficient parallel linear solvers.

1.3 Outline of the thesis

The thesis is divided into five main chapters with the respective topic and its state of the
art being discussed in detail at the beginning of each chapter.

In Chapter 2, the continuum mechanical models are presented, which serve as the basis
for the later numerical investigations. As usual, the set of governing equations is subdi-
vided into kinematical equations, balance relations and constitutive assumptions, whereby
the multiphasic character of the underlying material has to be considered in each part.
Especially within the part concerning the constitutive relations, the assumptions for the
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proper modeling of the considered geotechnical problems are motivated in detail.

Chapter 3 is concentrated on the spatial and temporal discretization of the equations
coming from the continuum mechanical considerations of the previous chapter. Again,
the correct treatment of the underlying equations, which have a special structure due
to the application of the TPM, is emphasized. Starting with the transformation of the
strong into the weak formulations, the finite element method together with the single steps
within the nonlinear solution procedure are discussed in detail. In addition, a standard
time integration method, namely the implicit Euler method, is introduced for the proper
temporal discretization.

The problems related to the numerical simulation of softening material behavior together
with the possible solution strategies for these problems are explicitly pointed out in Chap-
ter 4. First, the ill-posed behavior of the standard numerical realization procedure is
demonstrated at a simple 1-dimensional example. After this, a comprehensive overview
of existing regularization techniques is presented, whereby three different regularization
methods, namely a viscoplastic ansatz, a micropolar continuum theory and a non-local
model, are discussed in detail with respect to their theoretical aspects and their numerical
realization. The effects of the single approaches are shown at the example of a tensile
bar, which is described both in one and in two dimensions.

In order to complete the discussions on the numerical realization, in Chapter 5, parallel
solution strategies are presented. After some general remarks on parallel computing, the
special character of the interface between the two programs PANDAS and M++ is explained,
where, again, the particular structures of the equations coming from the multiphasic
modeling have to be considered. In addition, the underlying parallel data structure of
M++, the so-called Distributed Point Objects, is presented together with its effect on the
parallel solution strategy.

In Chapter 6, it is shown that, when using the presented theoretical and numerical
methods for the solution of typical geotechnical questions, the numerical simulations
of large scale problems can be efficiently carried out. In particular, at the example of
a 2-dimensional biaxial experiment, the developments of both dilatant and contractant
shear bands within a micropolar continuum are shown. Furthermore, the efficiency of
the interface M++/PANDAS is demonstrated by two 3-dimensional initial boundary-value
problems, both dealing with failure mechanisms of natural slopes.

Finally, Chapter 7 gives the summary of the thesis and presents an outlook on possible
further developments based on this work.





Chapter 2:
Porous media models in soil mechanics

Geomaterials such as soil, sand stone, rock and rock salt consist of a porous solid skeleton
matrix, whose pores are saturated with one or more pore-fluids. In order to describe the
behavior of these materials, their multiphasic character has to be considered. Because
the exact structure of the pores usually is not known, one has to proceed from homoge-
nization methods, where the real microstructure is statistically smeared out through the
considered domain on the basis of a real or virtual averaging process. One possibility to
model such materials in the context of a macroscopic approach is given by the Theory of
Porous Media (TPM), which is based on the classical Theory of Mixtures including su-
perimposed continua. By introducing the volume fractions as scalar structural variables,
the microscopic volumetric composition of the overall material can be incorporated for a
proper macroscopic modeling process.

Looking at the historical evolution of the TPM and the included theories, the first consid-
erations about the Concept of Volume Fractions date back to the 18th and 19th centuries,
whereas these ideas were applied to geotechnical problems in the last century by Biot [16]
and Heinrich & Desoyer [86, 87, 88]. The origins of the Theory of Mixtures trace back
to the work of Truesdell & Toupin [143], Bowen [31] and Truesdell [142]. The TPM
in its current understanding is based on the publications by Bowen [32, 33] and was
improved and developed continuously in the last years by de Boer & Ehlers [21] and
Ehlers [48, 49, 51, 53]. An excellent survey of the historical development of the Theory
of Porous Media is given in the book of de Boer [20].

Obviously, the range of applications of the TPM is not limited to geotechnical problems.
One can directly apply the concepts of the TPM to other fields, in which the porous
structure of the considered materials has also to be taken into account for a suitable
modeling. Possible further applications in this context are for example problems from
mechanical engineering or biomechanics, cf. Ehlers et al. [57, 63].

Within this chapter, the governing equations of two porous media models, which are used
as a basis for the numerical studies in this thesis, are introduced briefly. On the one hand,
this will be a rather simple biphasic model, by which fully saturated soils can be described,
and on the other hand, a more sophisticated triphasic model will be introduced, by which
it is possible to model partially saturated conditions in soils.

2.1 Kinematical relations

2.1.1 Mixture and Concept of Volume Fractions

Within the Theory of Mixtures, a multiphasic aggregate (mixture) ϕ is defined via a
combination of its components (constituents) ϕα:

7
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ϕ =
⋃

α

ϕα . (2.1)

Therein, α = 1, . . . , k is an index defining the k constituents. In the framework of this
thesis, α can take the following values: S (solid), F (fluid), L (liquid) and G (gas).

PSfrag replacements

REV in reality

Homogenization

Concept of Volume Fractions

Solid (ϕS)

Fluid (ϕF )

dv

dvS

dvF

Figure 2.1: Homogenization and Concept of Volume Fractions.

All considerations concerning the behavior of the viewed material are based on a Represen-
tative Elementary Volume (REV), cf. Figure 2.1. In this context, one proceeds from the
assumption that the constituents ϕα of a mixture ϕ are smeared out over the whole REV.
Consequently, each spatial point x is occupied at the time t by parts of all constituents
ϕα (superimposed continua) and each constituent follows its own motion function χα. As
a result of the homogenization process, the mathematical functions for the description of
the geometrical and physical quantities are field functions defined over the whole mixture.

Remark: In the framework of this thesis, all necessary field quantities are assumed to
be already given from proper averaging or homogenization techniques forming the local
averages of the respective microscopic informations. The reader who is interested in more
information on this topic is referred to the work by Hassanizadeh & Gray [85], de Boer
et al. [22], Miehe et al. [105] and Schröder [126]. 2

As the Theory of Mixtures does not provide a description of the inner structure of the
considered multiphasic body B, the volume fractions nα are introduced as statistically
averaged scalar variables. By doing this, one can, for example, define the fraction of the
pore space in a fluid saturated solid, cf. Figure 2.1. Usually, the volume fractions nα are
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introduced via the partial volume V α of the constituent α:

V α =

∫

B

nα dv . (2.2)

The volume V of the whole multiphasic body B corresponds to the sum of the partial
volumes of all constituents ϕα:

V =

∫

B

dv =
k∑

α=1

V α =
k∑

α=1

∫

B

nα dv =

∫

B

k∑

α=1

nα dv =

∫

B

k∑

α=1

dvα . (2.3)

From the above equation, it follows that nα is defined as the ratio of the volume element
dvα of a constituent ϕα with respect to the volume element dv of the mixture ϕ:

nα =
dvα

dv
. (2.4)

Furthermore, as a result of Equation (2.3), the regarded mixture is saturated and contains
no vacant space, which leads to the so-called saturation condition:

k∑

α=1

nα = 1 . (2.5)

An analogous relation to (2.4) can be found for the incremental surface elements da of
the mixture ϕ and daα for the constituent ϕα:

daα = nαda . (2.6)

Assuming superimposed continua, one finds also

daα = n daα ,

da = n da ,
(2.7)

with the outward oriented unit surface normal n.

The Concept of Volume Fractions as defined in Equations (2.3) and (2.4) leads to two
different density functions for a constituent ϕα:

ραR =
dmα

dvα
, ρα =

dmα

dv
. (2.8)

The material (realistic or effective) density ραR represents the ratio of the local mass dmα

to the local volume element dvα, whereas the partial (global or bulk) density ρα represents
the ratio of the local mass dmα to the volume element dv.
When using Equations (2.4) and (2.8), the following relation between the two density
functions can be established:

ρα = nα ραR . (2.9)
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Corresponding to this, it is obvious that changes in the partial density can take place via
a change in the volume fraction as well as via a change in the material density, which is
an interesting fact in case of material incompressibility of a constituent (ραR = const.).
In such a case, Equation (2.9) shows that material incompressibility does not necessarily
lead to bulk incompressibility, since the partial density ρα can still change due to a change
in the volume fractions nα.

The overall density ρ of the multiphasic body results from a sum of the partial densities
ρα over all constituents ϕα:

ρ =

k∑

α=1

ρα =

k∑

α=1

nα ραR . (2.10)

Within the framework of this thesis, a biphasic and a triphasic model will be discussed.
The biphasic model consists of a deformable, materially incompressible solid skeleton
and a materially incompressible pore-fluid (Diebels et al. [44], Ehlers & Ellsiepen [59]),
whereas in the case of the triphasic model, the overall fluid phase is split into a materially
incompressible liquid phase and a materially compressible gaseous phase (Ehlers [53],
Blome [18], Ehlers et al. [62]). For a suitable description of the triphasic model, the
so-called saturation functions sβ have to be introduced for both the liquid constituent
(β = L) and the gaseous constituent (β = G):

sβ =
nβ

nF
, where nF = nL + nG . (2.11)

From the above equation, it is evident that the saturation constraint

sL + sG = 1 (2.12)

holds for the saturation functions sβ. Furthermore, one can recognize that (2.12) relates
the saturation condition to the pore content, whereas (2.5) relates it to the overall medium.

2.1.2 Motion function

In the Theory of Porous Media, a multiphasic body B is defined as a coherent set of the
material points Xα, whereas the set of all material points on the surface of B is called ∂B.
In order to describe the motion function of a constituent ϕα within the proper Euclidian
vector space V3, a fixed origin O and the reference position Xα of the constituent has to
be defined, cf. Figure 2.2. By doing this, the motion function of a constituent ϕα can be
introduced via the following relation:

x = χα(Xα, t) . (2.13)

From Equation (2.13) and Figure 2.2, the consequence of the assumption of superimposed
continua can be recognized. Each spatial point x at time t is only occupied by one single
material point Xα of each constituent ϕα. The independent motion functions χα(Xα, t)
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Figure 2.2: Motion of a biphasic mixture.

indicate that the same material points Xα at the position x originate from different
referential positions Xα at time t = t0.

The requirement of a unique motion function causes the existence of a unique inverse
motion function

Xα = χ−1
α (x, t) , (2.14)

which is based on a non-singular Jacobian determinant Jα:

Jα = det
∂χα

∂Xα

6= 0 . (2.15)

Remark: (2.13) and (2.14) show the two different possibilities to express geometrical
and physical quantities within a continuum mechanical model. If a quantity is expressed
with regard to the reference configuration, cf. (2.13), it is specified by the Lagrangean
(or material) description, whereas, if a quantity is expressed with regard to the current
configuration, cf. (2.14), it is specified by the Eulerian (or spatial) description. 2

Since each constituent defines its own motion function, they consequently both have their
own velocity field. The velocity of a material point Xα is defined via the material time
derivate of the motion function χα:

′
xα=

d

dt
χα(Xα, t) . (2.16)

Using the inverse motion function (2.14), the Eulerian representation of the velocity field
results in

′
xα =

′
xα [χ−1

α (x, t), t] =
′
xα (x, t) . (2.17)
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Analogously, the acceleration field is defined via the material time derivative of the velocity
field:

′′
xα =

d

dt

′
xα (Xα, t) or

′′
xα =

′′
xα [χ−1

α (x, t), t] =
′′
xα (x, t) . (2.18)

The so-called mixture velocity

ẋ =
1

ρ

k∑

α=1

ρα ′
xα (2.19)

indicates the barycentric velocity of ϕ, and the diffusion velocity

dα =
′
xα − ẋ (2.20)

defines the relative velocity of a constituent ϕα with respect to the mixture velocity.

The definitions of the velocities
′
xα and ẋ lead to the introduction of the so-called material

time derivative. If Γ is an arbitrary, continuous and sufficiently often continuously differ-
entiable scalar function of (x, t), the material time derivative of Γ following the motion
of ϕα is given by

(Γ)′α =
dα

dt
Γ =

∂Γ

∂t
+ gradΓ· ′

xα . (2.21)

Therein, the operator “grad ( · )” denotes the partial derivative of ( · ) with respect to the
actual position x. For a vector-valued field function Γ(x, t), the material time derivative
reads

(Γ)′α =
dα

dt
Γ =

∂Γ

∂t
+ (gradΓ)

′
xα . (2.22)

Describing coupled solid-fluid problems, one usually starts from a Lagrangean description
of the solid matrix by introducing the solid displacement vector uS as the primary kine-
matic variable, whereas the pore-fluids are specified in a modified Eulerian setting by use
of the seepage velocities wβ describing the fluid motions with respect to the deforming
solid skeleton:

uS = x − XS , wβ =
′
xβ − ′

xS . (2.23)

From (2.13) and (2.14), one obtains the material deformation gradient Fα and its inverse
(Fα)−1,

Fα =
∂χα(Xα, t)

∂Xα
= Gradα x , (Fα)−1 =

∂χ−1
α (x, t)

∂x
= gradXα , (2.24)

with the operator “Gradα ( · )” defining the partial derivative of ( · ) with respect to the
reference position Xα. The inverse material deformation gradient exists, if the constraint
(2.15) for the Jacobian determinant holds. Furthermore, the range of Jα = detFα is
limited to positive values, as the relation detFα(t0) = 1 is valid.

Using the material deformation gradient Fα, differential line dXα, area dAα and volume
dVα elements of the reference configuration can be mapped to the respective quantities
dx, da and dv of the actual configuration and vice versa. As the transport mechanism of
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differential line elements is given by the definition of the material deformation gradient
(2.24)1 itself, the other transport theorems can be derived by using Fα, cf. de Boer [19]:

dx = Fα dXα ,

da = (detFα)FT−1
α dAα ,

dv = (detFα) dVα .

(2.25)

Remark: Note that the material deformation gradient is a so-called two-field tensor,
where, in the framework of a natural basis system, one basis system is located in the
reference configuration and the other one in the current configuration. With this prop-
erty, it is possible to transport geometrical and physical quantities from the reference
to the actual configuration and vice versa. Very often, these transport mechanisms are
called push-forward (reference to current configuration) and pull-back (current to refer-
ence configuration) operations. Within a natural basis system, even a further specification
of the transport characteristics can be found. Therein, one recognizes immediately that
one also has to differentiate between covariant or contravariant push-forward or pull-back
operations. The reader who is interested in more information on this topic is referred to
de Boer [19] or Ehlers [48]. 2

2.1.3 Deformation and strain measures

After introducing the material deformation gradient, the deformation and strain measures
can be defined in a next step. Within a continuum mechanical framework, a deformation
measure defines how a body is deformed locally during the motion, whereas a strain
measure compares the deformed state with the undeformed state of a body. Following
this, starting from the reference configuration (undeformed state), a deformation measure
is initially the identity tensor I and a strain measure is the zero tensor 0 at the beginning.

For the derivation of the deformation measures, it is helpful to apply the polar decompo-
sition theorem to the material deformation gradient:

Fα = Rα Uα = Vα Rα . (2.26)

In this way, one obtains a unique decomposition of Fα into a proper orthogonal rotation
tensor Rα and either a symmetric and positive definite right or left stretch tensor Uα

and Vα. Thus, a line element dx of the actual configuration can be represented by a
stretch of the referential line element dXα with Uα followed by a rotation through Rα or,
alternatively, by a rotation with Rα followed by a stretch through Vα:

dx = Rα (Uα dXα) = Vα (Rα dXα) . (2.27)

Looking at the length variation of the line elements during the motion, either with respect
to the reference configuration,

||dx||2 = dx · dx
= (Fα dXα) · (Fα dXα)

= dXα · (FT
α Fα) dXα ,

(2.28)
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or with respect to the actual configuration,

||dXα||2 = dXα · dXα

= (F−1
α dx) · (F−1

α dx)

= dx · (FT−1
α F−1

α )
︸ ︷︷ ︸

(Fα FT
α)−1

dx ,
(2.29)

one directly obtains the following definitions of the deformation tensors:

Cα = FT
α Fα = Uα Uα , Bα = Fα FT

α = Vα Vα . (2.30)

Therein, Cα is the right Cauchy-Green deformation tensor and Bα the left Cauchy-Green
deformation tensor (or Finger tensor). The two deformation tensors are related to each
other by the push-forward rotation:

Bα = Rα Cα RT
α . (2.31)

For the derivation of two well-established strain measures, one proceeds from the differ-
ences of the squares of the current and referential line elements,

||dx||2 − ||dXα||2 = dXα ·Cα dXα − dXα · dXα = dXα · (Cα − I) dXα ,

||dx||2 − ||dXα||2 = dx · dx − dx · B−1
α dx = dx · (I − B−1

α ) dx ,
(2.32)

so that the definition of the Green-Lagrangean and the Almansian strain tensors Eα and
Aα is straightforward:

Eα = 1
2
(Cα − I) , Aα = 1

2
(I − B−1

α ) . (2.33)

Remark: The introduction of the factor 1/2 is due to historical reasons, as the lineariza-
tion of E or A (single-phase representation) for the one-dimensional case should result
in the well-known Hookean law σ = E ε, with the stress σ, Young ’s modulus E and the
(linearized) strain ε. 2

A relation between the Almansian tensor Aα and the Green-Lagrangean tensor Eα can
be established via a contravariant push-forward transport mechanism:

Aα = FT−1
α Eα F−1

α . (2.34)

Other strain tensors like the Karni-Reiner tensors will not be used within this thesis and
can be taken from the literature, e. g., Ehlers [48].

2.1.4 Stress measures

In general, stress is defined as “force per unit area”, i. e., stress is a physical quantity,
which relates forces to area elements. This connection directly leads to the introduction



2.2 Balance relations 15

of various stress measures, since, obviously, several area elements can be defined, e. g., da
and dAα as the area elements of the current and reference configuration.

Stress tensors can be introduced with the application of Cauchy ’s theorem:

tα(x, t, n) = Tα(x, t)n . (2.35)

Therein, tα is the surface traction vector including all effects, which result from contact
forces acting on material points Xα on the surface ∂B, and n is the outward oriented unit
surface normal of the current configuration. With (2.35), the partial Cauchy stress tensor
Tα is defined, which is very often also named true stress tensor as it relates forces dkα

acting on the constituent ϕα to the actual area element da. With this connection,

dkα = Tα da (= tα da) , (2.36)

further stress tensors for a constituent ϕα can be defined. By relating the surface area
force dkα to a weighted surface area element dāα = (detFα)−1 da, the Kirchhoff stress
(or weighted Cauchy stress) τ α can be introduced:

dkα = Tα (detFα) dāα = τα dāα . (2.37)

Relating the true stress Tα to a surface area element dAα of the reference configuration
and using the transport theorem (2.25)2, the first Piola-Kirchhoff stress tensor Pα is
obtained:

dkα = Tα (detFα)FT−1
α dAα = Pα dAα . (2.38)

This stress tensor is, like the material deformation gradient, a two-field tensor, in which
the first basis system is located in the actual configuration and the second one in the
reference configuration. This fact is due to the incomplete covariant pull-back operation
of the Kirchhoff stress:

Pα = τα FT−1
α . (2.39)

By an additional transport of the first basis system of Pα to the reference configuration,
the second Piola-Kirchhoff stress tensor Sα can be introduced:

Sα = F−1
α Pα = F−1

α τα FT−1
α . (2.40)

2.2 Balance relations

Within a continuum mechanical framework, the balance relations are introduced based on
axiomatic statements coming from physical observations. They combine the information
given for a body B via, e. g., the motion or deformation with influences, which originate
from outside the body like, e. g., contact or gravitational forces. In detail, the balance
relations of the mechanical quantities mass, momentum and moment of momentum as
well as the balance relations of the thermodynamical quantities energy and entropy are
discussed in the following section. In this discussion, obviously, the multiphasic character
of the regarded porous materials has to be considered particularly.
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The structure of the balance relations for multiphasic materials is based on the so-called
“metaphysical principles” by Truesdell [142]:

1. All properties of the mixture must be mathematical consequences of properties of
the constituents.

2. So as to describe the motion of a constituent, we may in imagination isolate it from
the rest of the mixture, provided we allow properly for the actions of the other
constituents upon it.

3. The motion of the mixture is governed by the same equations as is a single body.

Following this, a balance relation of the mixture can be found via summation of the
respective balance relations of the constituents ϕα. Furthermore, for the proper definition
of the balance relations of the single phases, one has to introduce production terms, which
allow for the consideration of the interaction between the single constituents, and, finally,
the balance relations of the mixture must have the same structure as the balance relations
known from the classical continuum mechanics.

2.2.1 General structure of the balance relations

For a compact formulation of the balance equations, it is useful in a first step to intro-
duce the general structure of a balance equation at the example of an arbitrary physical
quantity. In a second step, the generally introduced terms can be specified and discussed
with respect to the individual mechanical and thermodynamical quantities. Essentially,
this procedure follows the approach given by Ehlers [48, 53].

Following the above mentioned principles of Truesdell, the structure of the balance rela-
tions of the mixture has to be taken from the classical continuum mechanical description
of single phase materials. Suppose that Ψ or Ψ are volume-specific scalar- or vector-valued
mechanical quantities in B. Thus, for the general structure of the balance relations of the
mixture, it follows that

d

dt

∫

B

Ψ dv =

∫

∂B

φ · n da +

∫

B

σ dv +

∫

B

Ψ̂ dv ,

d

dt

∫

B

Ψ dv =

∫

∂B

Φn da +

∫

B

σ dv +

∫

B

Ψ̂ dv .

(2.41)

Therein, the temporal change of Ψ (or Ψ) is balanced with the efflux φ (or Φ) of the
mechanical quantity through the surface ∂B resulting from the external vicinity, with the
supply σ (or σ) of the mechanical quantity into the body B resulting from the external
distance and with the production terms Ψ̂ (or Ψ̂) of the mechanical quantity resulting
from possible couplings of B with its surrounding.

By differentiation of the left side of (2.41) and application of the Gaussian divergence
theorem, in order to transform the surface integrals of (2.41) into volume integrals, one
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finds with the usual assumptions of continuous and continuously differentiable integrands
the local forms of the balance relations:

Ψ̇ + Ψ div ẋ = div φ + σ + Ψ̂ ,

Ψ̇ + Ψ div ẋ = div Φ + σ + Ψ̂ .

(2.42)

Corresponding to Truesdell’s principles, the structure of the balance equations for the
individual constituents ϕα is formulated in analogy to (2.41). All quantities are indicated
as affiliated to ϕα by the superscripted index ( · )α. As a main difference to the balance
relations of the mixture, the production terms Ψ̂α (or Ψ̂α) now additionally describe
the coupling between the single constituents such that interchange processes between the
single phases can be modeled. The global balance relations of a constituent ϕα yield

dα

dt

∫

B

Ψα dv =

∫

∂B

φα · n da +

∫

B

σα dv +

∫

B

Ψ̂α dv ,

dα

dt

∫

B

Ψα dv =

∫

∂B

Φα n da +

∫

B

σα dv +

∫

B

Ψ̂α dv .

(2.43)

In analogy to (2.42), the local forms of the balance relations of the constituent ϕα are
obtained:

(Ψα)′α + Ψα div
′
xα = div φα + σα + Ψ̂α ,

(Ψα)′α + Ψα div
′
xα = div Φα + σα + Ψ̂α .

(2.44)

As already mentioned above in the discussion of Truesdell’s principles, the balance rela-
tions (2.42) of the overall medium ϕ have to be found via summation over the balance
relations (2.44) of the single constituents ϕα. Therefore, the quantities occurring in (2.44)
are not arbitrary but have to fulfill certain restrictions, e. g., for scalar-valued mechanical
quantities, it follows that

mechanical quantity : Ψ =
k∑

α=1

Ψα ,

efflux : φ · n =
k∑

α=1

(φα − Ψα dα) · n ,

supply : σ =

k∑

α=1

σα ,

production : Ψ̂ =
k∑

α=1

Ψ̂α .

(2.45)



18 Chapter 2: Porous media models in soil mechanics

Analogously, one finds for vector-valued mechanical quantities the following restrictions:

mechanical quantity : Ψ =

k∑

α=1

Ψα ,

efflux : Φ n =
k∑

α=1

(Φα − Ψα ⊗ dα)n ,

supply : σ =

k∑

α=1

σα ,

production : Ψ̂ =

k∑

α=1

Ψ̂α .

(2.46)

Therein, dα = (
′
xα − ẋ) is the diffusion velocity introduced in (2.20).

2.2.2 Mass balances

Proceeding from the overall mixture, one axiomatically introduces that the mass of the
body is conserved, i. e.,

∫

B

ρ dv = const. ;
d

dt

∫

B

ρ dv = 0 . (2.47)

Comparing (2.47) with the general structure of a balance relation (2.41)1, the density ρ is
identified as the mechanical quantity whereas the efflux, the supply and the production
terms are zero:

Ψ = ρ , φ = 0 , σ = 0 , Ψ̂ = 0 . (2.48)

With the above relation and (2.42)1, one directly concludes to the local form of the mass
balance of the mixture:

ρ̇+ ρ div ẋ = 0 . (2.49)

For the mass balances of the constituents ϕα, one has to regard production terms ρ̂α,
which make it possible to model mass exchanges between the constituents, like, e. g., the
transition of water (liquid phase) into steam (gaseous phase):

dα

dt

∫

B

ρα dv =

∫

B

ρ̂α dv . (2.50)

Referring to (2.43)1, the following values for the mechanical quantity, the efflux, the supply
and the production can be identified:

Ψα = ρα , φα = 0 , σα = 0 , Ψ̂α = ρ̂α . (2.51)
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According to (2.44)1, the local form of the mass balance for a constituent ϕα results in

(ρα)′α + ρα div
′
xα= ρ̂α . (2.52)

Remark: In case of material incompressibility of a constituent (ραR = const.) and a
simultaneous neglect of mass productions (ρ̂α = 0), the mass balance (2.52) can be reduced

to a volume balance by using relation (2.9): (nα)′α + nα div
′
xα= 0 . 2

The evaluation of the restrictions (2.45) gives the relation for the partial densities (2.10)
as already introduced, and evokes the disappearance of both the mass flow due to diffusion
and the mass production:

ρ =

k∑

α=1

ρα , 0 =

k∑

α=1

ρα dα , 0 =

k∑

α=1

ρ̂α . (2.53)

Note that (2.53)2 can also be derived via a combination of the Equations (2.10), (2.19)
and (2.20).

2.2.3 Momentum balances

The physical quantity momentum p is a central quantity for the description of the kine-
matical state of a body B and is defined by

p =

∫

B

ρ ẋ dv. (2.54)

For the formulation of the momentum balance, one axiomatically introduces that the
temporal change of p corresponds to the sum of all surface and body forces acting on the
body B during a deformation process:

d

dt

∫

B

ρ ẋdv =

∫

∂B

Tn da+

∫

B

ρb dv . (2.55)

Therein, T is the Cauchy stress tensor containing the overall stress state of the mixture
and ρb is the supply term, which is usually interpreted in the sense of an a priori constitu-
tive assumption as the overall gravitation. After a comparison with (2.41)2, one finds the
following relations for the mechanical quantity (momentum density), the efflux (Cauchy
stress tensor) and the supply term (body force density):

Ψ = ρ ẋ , Φ = T , σ = ρb , Ψ̂ = 0 . (2.56)

When using the local mass balance (2.49), one directly concludes to the local form of the
momentum balance for the mixture:

ρ ẍ = div T + ρb . (2.57)
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Looking at the momentum balances of the constituents ϕα, again, one has to introduce
a production term ŝα, which is interpreted as an interaction force between the single
constituents:

dα

dt

∫

B

ρα ′
xα dv =

∫

∂B

Tα n da+

∫

B

ρα bα dv +

∫

B

ŝα dv . (2.58)

With the straightforward identification of the quantities from the general balance rela-
tions,

Ψα = ρα ′
xα , Φα = Tα , σα = ρα bα , Ψ̂

α
= ŝα , (2.59)

and the consideration of the local form of the mass balance (2.52), the momentum balance
for a constituent ϕα gives:

ρα ′′
xα= div Tα + ρα bα + p̂α . (2.60)

Therein, the overall momentum production ŝα = p̂α + ρ̂α ′
xα is split into a direct term p̂α

and a term ρ̂α ′
xα resulting from the mass balance (density production). By insertion of

the relations (2.56) and (2.59) into (2.46), the following vector-valued constraints can be
found:

ρ ẋ =
k∑

α=1

ρα ′
xα , T =

k∑

α=1

Tα − ρα dα ⊗ dα , ρb =
k∑

α=1

ρα bα , 0 =
k∑

α=1

ŝα . (2.61)

2.2.4 Moment of momentum balances

Within the balance of moment of momentum (or angular momentum), it is axiomati-
cally claimed that the temporal change of the moment of momentum corresponds to the
moments, which are caused by all surface and body forces acting on the body B:

d

dt

∫

B

(x × ρ ẋ) dv =

∫

∂B

(x × T)n da+

∫

B

(x × ρb) dv . (2.62)

Therein, the outer tensor product of a first order tensor (vector) and a second order tensor
x × T is introduced, cf. Appendix A.1.6.

With the identification of the quantities from the general balance relation (2.41)2,

Ψ = x × ρ ẋ , Φ = x × T , σ = x × ρb , Ψ̂ = 0 , (2.63)

and the use of the local mass and momentum balances (2.49) and (2.57), one finds the
well-known result of the angular momentum balance of single phase materials:

0 = I × T ; TT = T. (2.64)

For the definition of the moment of momentum balance of the constituents ϕα, one has
to introduce a term ĥα, which represents the production of angular momentum:

dα

dt

∫

B

(x × ρα ′
xα) dv =

∫

∂B

(x × Tα)n da+

∫

B

(x × ρα bα) dv +

∫

B

ĥα dv . (2.65)
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Referring to (2.43)2, the following relations for the quantities of the general balance equa-
tion can be found:

Ψα = x × ρα ′
xα , Φα = x × Tα , σα = x × ρα bα , Ψ̂

α
= ĥα . (2.66)

Considering the local mass and momentum balances (2.52) and (2.60), the local form of
the angular momentum for a constituent ϕα gives

0 = I × Tα + m̂α
; (Tα)T = Tα + M̂α. (2.67)

Therein, the overall production term of the angular momentum ĥα is split into a direct
term m̂α and a term resulting from the mass and momentum balances:

ĥα = x × (ρ̂α ′
xα + p̂α) + m̂α . (2.68)

Furthermore, the relation (2.67)2 can be found via the definition of a skew symmetric
tensor M̂α, which represents the coupling of angular momentum between the single con-
stituents ϕα:

m̂α = 1
2
( I× M̂α) . (2.69)

Note that this coupling tensor M̂α vanishes for non-polar materials, since the symmetry
of the partial stress tensors Tα for such materials can be motivated via an analysis of the
homogenization procedure, cf. Hassanizadeh & Gray [85]:

Tα =
1

VREV

∫

BREV

Tα
micro dv with VREV =

∫

BREV

dv and Tα
micro = (Tα

micro)
T . (2.70)

From the above equation, it follows that if the stress tensor Tα
micro from the micro scale

is symmetric, the homogenization procedure gives a symmetric macroscopic partial stress
tensor:

(Tα)T = Tα
; M̂α = 0 . (2.71)

Remark: Within the context of standard (non-polar) materials, the balance of angular
momentum simply gives the symmetry of the stress tensors T and Tα and is, therefore,
usually not further investigated. In the case of micropolar materials, the balance of an-
gular momentum is an equation for the determination of the total average grain rotation,
cf. Section 4.4. 2

2.2.5 Energy balances

The energy conservation equation balances the temporal change of the internal and kinetic
energy with the power of all surface and body forces as well as with the heat influx and
the heat supply:

d

dt

∫

B

ρ (ε+ 1
2
ẋ · ẋ) dv =

∫

∂B

(TT ẋ − q) · n da+

∫

B

ρ (b · ẋ + r) dv . (2.72)
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Therein, ε is the specific internal energy, q the heat influx vector (heat influx via the
surface) and r is the heat supply resulting from the external distance (e. g., heat supply
in a microwave).

After comparison with (2.41)1,

Ψ = ρ (ε+ 1
2
ẋ · ẋ) , φ = TT ẋ − q , σ = ρ (b · ẋ + r) , Ψ̂ = 0 , (2.73)

and consideration of the “lower” balance relations, i. e., the mass, momentum and angular
momentum balances, the local form of the energy balance for the mixture reads

ρ ε̇ = T · L − div q + ρ r . (2.74)

Therein, L = grad ẋ is the spatial velocity gradient of the mixture.

When introducing a term êα describing the energy exchange between the single con-
stituents ϕα, the global form of the energy balance for each ϕα yields

dα

dt

∫

B

ρα (εα + 1
2

′
xα · ′

xα) dv =

=

∫

∂B

[(Tα)T ′
xα −qα] · n da +

∫

B

ρα (bα· ′
xα + rα) dv +

∫

B

êα dv .

(2.75)

An analogous procedure as above leads to the following relations for the quantities of the
global balance equation:

Ψα = ρα(εα + 1
2

′
xα · ′

xα) , φα = (Tα)T ′
xα −qα ,

σα = ρα (bα· ′
xα + rα) , Ψ̂α = êα .

(2.76)

The total energy production êα = p̂α· ′
xα +ρ̂α(εα + 1

2

′
xα · ′

xα) + ε̂α is again split into a
term coming from the “lower” balance relations and a direct term ε̂α. After a comparison
of the relations (2.76) and (2.44)1, the local form for the energy balance of the constituents
ϕα gives

ρα (εα)′α = Tα · Lα − div qα + ρα rα + ε̂α . (2.77)

Therein, Lα = grad
′
xα is the spatial velocity gradient of a constituent ϕα.

Remark: Within the framework of this thesis, isothermal conditions are assumed and,
therefore, the energy balances are only used for the proper formulation of the entropy
inequality, cf. next section. If a change of the temperature of the whole mixture or of
one constituent has to be regarded for a correct modeling, the energy balances serve as
equations for the determination of the mixture or constituent temperatures, cf. Ghadiani
[78]. 2



2.2 Balance relations 23

2.2.6 Entropy balances

In the sixties of the last century, there was an intensive discussion among researchers
about the correct formulation of the entropy balance for multiphasic materials, cf., e. g.,
for a historical overview Ehlers [48] or Truesdell [141]. The requirement that the entropy
production for each constituent has to be positive was found to be too restrictive for the
evaluation process of the entropy inequality. Consequently, the second law of thermody-
namics, i. e., positive entropy production (η̂ ≥ 0), is only postulated for the mixture.

For a constituent ϕα, one axiomatically introduces that the temporal change of the en-
tropy ηα equals the entropy efflux −qα/Θα, the entropy supply ρα rα/Θα and the entropy
production η̂α:

d

dt

∫

B

ρα ηα dv = −
∫

∂B

1

Θα
qα da +

∫

B

1

Θα
ρα rα dv +

∫

B

η̂α dv . (2.78)

Therein, Θα is Kelvin’s temperature of ϕα. Note that the formulations for the entropy
efflux and the entropy supply come from a priori constitutive assumptions. As usual,
the following identifications of the mechanical quantity, the efflux, the supply and the
production terms can be carried out:

Ψα = ρα ηα , φα = − 1

Θα
qα , σα =

1

Θα
ρα rα , Ψ̂α = η̂α . (2.79)

The entropy production term η̂α of the constituent ϕα can be split into a direct and an
indirect term: η̂α = ζ̂α + ρ̂α ηα. Taking into account the mass balances (2.52), the local
form of the entropy balances for the constituents ϕα yields

ρα (ηα)′α = div (− 1

Θα
qα) +

1

Θα
ρα rα + ζ̂α . (2.80)

Using the constraint η̂ =
∑k

α=1 η̂
α [48, 53], the entropy inequality for the mixture can be

written as follows

η̂ =

k∑

α=1

η̂α =

k∑

α=1

[ ρα (ηα)′α + ρ̂α ηα + div (
1

Θα
qα) − 1

Θα
ρα rα ] ≥ 0 . (2.81)

By introduction of mass specific constituent free energy functions ψα (Helmholtz free
energy functions) via

ψα = εα − Θα ηα , (2.82)

and the use of (2.77), one obtains the following formulation for the entropy inequality:

k∑

α=1

1

Θα
{Tα · Lα − ρα [ (ψα)′α + (Θα)′α η

α ] − p̂α· ′
xα −

− ρ̂α [ψα + 1
2

′
xα · ′

xα ] − 1

Θα
qα · gradΘα + êα } ≥ 0 .

(2.83)
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The above equation is the starting point for the evaluation of the entropy inequality, which
results in restrictions for the constitutive assumptions. The description of this procedure
will not be shown in this thesis, only the final results for the constitutive settings are
discussed in the next section. The reader who is interested in more information on this
topic is referred to the work by Ehlers [48, 53].

2.3 Constitutive settings

In order to determine all unknown quantities of a continuum mechanical model, the kine-
matic and the balance relations do not provide enough equations. Consequently, further
equations, namely, the constitutive equations, have to be developed in order to close the
particular model under consideration. Within these constitutive settings, the character-
istics of the respective mechanical model and of the viewed material can be taken into
account, e. g., the neglect of acceleration terms or the assumption of a specific material
behavior. However, the decisions for the respective constitutive assumptions are not arbi-
trary, one has to meet the restrictions coming from the evaluation of the entropy inequality
(2.83) for a thermodynamically consistent model. As already mentioned in the previous
section, the development of the constitutive assumptions, including the explanation of the
thermodynamically correct approach, is not discussed in this thesis. Here, only the final
equations are presented based on their physical motivation.

Within this section, the constitutive settings for a triphasic model consisting of a materi-
ally incompressible solid skeleton, a materially incompressible viscous liquid phase and a
materially compressible viscous gaseous phase are pointed out, cf. Ehlers [53], Blome [18],
Ehlers et al. [62]. Furthermore, a biphasic model is presented, which can be found easily
by leaving out the gaseous phase from the triphasic formulation, cf. Diebels et al. [44],
Ehlers & Ellsiepen [59].

2.3.1 Adaption of the balance equations

The model under consideration is developed to describe typical geotechnical problems
like consolidation processes or slope failure problems. For a proper description of such
problems, the balance relations presented in the previous section can be simplified by the
following assumptions:

∗ no mass exchange between the constituents ; ρ̂α = 0.

∗ constant and identical body force for all constituents (gravitation g) ; bα = g.

∗ constant and identical temperature for all constituents (isothermal conditions)
; Θα = Θ = const.

∗ quasi-static conditions ;
′′
xα= 0.

Furthermore, by assuming that the occurring deformations of the problems under study
are small, the kinematical relations presented in Section 2.1 can also be simplified, i. e.,
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the finite deformation theory can be reduced to a geometrically linear approach. Thus,
one has to distinguish no longer between the reference and the current configuration,
which leads to the following approximations for the gradient and divergence operators:

Gradα ( · ) ≈ grad ( · ) , Divα ( · ) ≈ div ( · ) . (2.84)

In the remainder of this thesis, therefore, spatial gradient and divergence operators are
used. The reader who is interested in the discussion of multiphasic models in the context
of large deformations for elastic, viscoelastic or elasto-plastic material behavior is referred
to the work by Eipper [65], Mahnkopf [103] and Markert [104].

Using the solid displacement vector uS and the seepage velocities wβ from Equation (2.23),
the above simplifications lead to the following resulting balance relations for the solid, the
liquid and the gaseous phases:

∗ volume (mass) balances:

(nS)′S + nS div (uS)′S = 0 ,

(nL)′S + nL div (uS)′S + div (nL wL) = 0 ,

nG(ρGR)′S + (nG)′S ρ
GR + nGρGR div (uS)′S + div (nGρGR wG) = 0 .

(2.85)

∗ momentum balances:

0 = div TS + nS ρSR g + p̂S ,

0 = div TL + nL ρLR g + p̂L ,

0 = div TG + nG ρGR g + p̂G .

(2.86)

Note again that the mass balances can be reduced to volume balances in the case of ma-
terially incompressible constituents, cf. remark on Page 19. The volume (mass) balances
(2.85)2, 3 are written by use of (2.9) with respect to the skeleton motion, i. e., the material
time derivative ( · )′β of the fluid motion is formulated in relation to the skeleton time
derivative ( · )′S by a modification of the convective part:

(Γ)′β = (Γ)′S + grad Γ · wβ . (2.87)

By a time integration of the volume balance of the solid skeleton (2.85)1, the following
relation can be found:

nS = nS
0S (detFS)−1 . (2.88)

Therein, nS
0S is the initial volume fraction of ϕS. In the framework of a geometrically

linear theory, the above relation can be formally linearized around the natural state of
ϕS:

nS ≈ nS
0S (1 − div uS) . (2.89)

The isothermal triphasic model under consideration is governed by five primary variables
given by the solid displacement uS, the seepage velocities wL and wG and the effective
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pore-fluid pressures pLR and pGR. Taking into account the assumption of a quasi-static
approach, a coupling of the seepage velocities and the effective fluid pressures via the
individual fluid momentum balances (2.86)2, 3 in the shape of linear Darcy-like relations
can be obtained, cf. Section 2.3.4. Thus, the number of primary variables is reduced
from five to three: the solid displacement uS and the fluid pressures pLR and pGR. The
corresponding set of governing equations is given by the following relations:

0 = div T + ρ g ,

(nL)′S + nL div (uS)′S + div (nL wL) = 0 ,

nG(ρGR)′S + (nG)′S ρ
GR + nGρGR div (uS)′S + div (nGρGR wG) = 0 .

(2.90)

Therein, (2.90)1 represents the momentum balance of the mixture given by the summation
of the partial momentum balances (2.86) over all constituents ϕS, ϕL and ϕG. Addition-
ally, the Equations (2.9), (2.53)1, 3 and (2.61)2, 4 have been taken into account to get the
final form of (2.90)1:

p̂S + p̂L + p̂G = 0 , T := TS + TL + TG , ρ = nS ρSR + nL ρLR + nG ρGR . (2.91)

Note that in the case of quasi-static conditions, the dyadic product of the diffusion veloc-
ities dα from (2.61)2 does not occur.

Remark: The governing equations of the triphasic model (2.90) are directly connected
with the set of primary variables: the overall momentum balance (2.90)1 corresponds to
the displacement vector uS, the liquid volume balance (2.90)2 corresponds to the pore-
liquid pressure pLR and the gas mass balance (2.90)3 is connected to the pore-gas pressure
pGR. Consequently, for the biphasic model, where the fluid phase is represented by only
one materially incompressible constituent, the set of governing equations can be reduced
to the overall momentum balance (2.90)1 and the liquid volume balance (2.90)2. 2

To finally close the triphasic model, constitutive equations are required for the partial
Cauchy stress tensors Tα, the linear momentum productions p̂β of the pore-fluids, the
liquid saturation sL and the effective gas pressure pGR. However, since pGR is chosen as
a primary variable, the constitutive equation for pGR will be given in an inverse form as
an equation for the effective density ρGR.

2.3.2 Effective stress concept

The evaluation of the entropy inequality (2.83) shows that the solid and fluid stresses TS

and Tβ as well as the momentum production terms p̂α consist of two terms, cf. Bowen [32],
Ehlers [49, 53]:

TS = −nS pFR I + TS
E ,

Tβ = −nβ pβR I + Tβ
E ,

p̂β = pβR gradnβ + p̂β
E .

(2.92)
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Therein, the first terms are governed by the pore pressure variables, where the effective
pore pressure p = pFR is obtained by the well-known Dalton’s law,

p = sL pLR + sG pGR , (2.93)

whereas the second terms, the so-called extra terms, result from the solid deformation
(effective stress) or the pore-fluid flow (frictional stress), respectively.

As usual for geotechnical applications, the frictional fluid forces f β
E = div Tβ

E can be
neglected in comparison with the viscous interaction terms p̂β

E, cf. Ehlers et al. [56]. As-
suming therefore for the extra terms of the fluid Tβ

E ≈ 0, the overall Cauchy stress tensor
can be found via a summation of (2.92)1, 2 with β = L, G and by using the Equations (2.5),
(2.11) and (2.93):

T = −p I + TS
E . (2.94)

The above equation represents the well-known concept of effective stress [17, 130], which
was already formulated by Terzaghi [139] in 1925 .

2.3.3 Solid skeleton

Within a geometrically linear approach, one starts from a linearized strain tensor εS for
the description of the deformation of the solid skeleton. This strain tensor εS can be
found by a linearization of the Green-Lagrangean strain tensor ES around the natural
state of ϕS:

lin (ES) = εS = 1
2

[
graduS + (graduS)T

]
. (2.95)

Decomposing the overall strain εS into a purely elastic and a purely plastic part,

εS = εSe + εSp , (2.96)

the solid extra stresses TS
E can be described by the generalized Hookean law:

TS
E ≈ σS

E = 2µS εSe + λS ( εSe · I ) I . (2.97)

Therein, the Cauchy stress tensor TS
E is approximately equal to σS

E, which is the solid
stress tensor under small strain conditions, and µS and λS are the Lamé constants of the
solid skeleton. Note again that, within the geometrically linear approach, no difference
between the stress tensors presented in Section 2.1.4 must be made, which leads to TS

E ≈
τ S

E ≈ PS
E ≈ SS

E ≈ σS
E.

Considering plastic deformations, the solid materials under study, as, e. g., sand or clayey
silt, have to be modeled as so-called frictional materials. In contrast to metallic, non-
porous materials, a major characteristic of such materials is that the concept of plastic
incompressibility is not valid, i. e., frictional materials can undergo plastic deformations
under purely hydrostatic load conditions. Furthermore, Lade & Duncan [99] found dila-
tant or contractant plastic material behavior in their triaxial tests on cohesionless soil.
Consequently, an adequate yield criterion, which allows for the representation of all these
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Figure 2.3: Single-surface yield criterion for cohesive-frictional materials in the principal stress
space (tension positive).

effects, has to be used for a proper description. Following this, the single-surface yield
criterion F by Ehlers [49, 50] is applied, cf. Figure 2.3:

F = Φ1/2 + β I + ε I2 − κ = 0 ,

Φ = IID(1 + γ ϑ)m + 1
2
α I2 + δ2 I4 ,

ϑ = IIID/(IID)3/2.

(2.98)

Therein, I , IID and IIID correspond to the first principal invariant of σS
E and the (negative)

second and third principal invariants of the effective stress deviator (σS
E)D, cf. Appendix

A.2.2. Altogether seven material parameters,

Sh = {α, β, δ, ε , κ} , Sd = {γ, m} , (2.99)

govern the shape of the yield surface in the hydrostatic (Sh) and in the deviatoric plane
(Sd), respectively. Within this thesis, the perfect plasticity concept is assumed for using
(2.98) and, therefore, the parameters included in Sh and in Sd are kept constant during the
deformation process. The reader who is interested in parameter identification of Sh and
Sd and in an approach to an isotropic hardening concept for the single-surface criterion
(2.98) is referred to Müllerschön [112].

For frictional materials, the associated plasticity concept cannot be applied, for details
cf., e. g., Lade & Duncan [99] or Davis & Selvadurai [40]. Thus, an additional plastic
potential G has to be defined [103]:

G = Γ1/2 + ψ2 I + ε I2 ,

Γ = ψ1 IID + 1
2
α I2 + δ2 I4 .

(2.100)

Therein, ψ1 and ψ2 serve to relate the dilatation angle to experimental data. Within the
non-associated plasticity concept, the flow rule reads

(εSp)
′
S = Λ

∂ G

∂ σS
E

, (2.101)
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where Λ is the so-called plastic multiplier, which has to be determined in an elasto-
plasticity concept via the Kuhn-Tucker conditions:

F ≤ 0 , Λ ≥ 0 , ΛF = 0 . (2.102)

Remark: Dilatant or contractant plastic material behavior can be described by the
above presented approach for the description of solid plasticity due to two reasons. First
of all, the non-associated plasticity concept allows for a free choice of the plastic potential,
and, therefore, a flow direction (εSp)

′
S, which is directed towards the negative direction of

the hydrostatic axis I, can be modeled. The second aspect is due to the closed shape of
the yield criterion. Changes of the hydrostatic pressure lead to yield points either in the
brittle or in the ductile regime, thus, leading to dilatant or contractant plastic material
behavior, cf. Figure 2.4. The latter effect was shown by the numerical simulation of biaxial
tests by Ehlers et al. [60].
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Figure 2.4: Yield criterion [49, 50] plotted in the hydrostatic plane.

2

2.3.4 Fluid constituents

The triphasic model under study contains two fluid components, a liquid and a gaseous
phase, whereas in the biphasic model, the fluid phase is represented only by a liquid phase.
Thus, the complexity within the field of constitutive relations for the triphasic model is
much higher than for the biphasic case. On the other hand, the triphasic model is a
much more powerful tool to describe geotechnical problems realistically, since partially
saturated conditions in soils can be described with that model. In the following section,
therefore, the constitutive relations for the triphasic model [62] are first presented, and,



30 Chapter 2: Porous media models in soil mechanicsPSfrag replacements

trapped liquid, free gas

free liquid, trapped gas

free liquid, free gas

ground-water table

0

0

p
C

1

1

sG

sL

sL
res sG

ressL
eff

Figure 2.5: Zones of a partially saturated soil.

after that, these relations are simplified with respect to the necessary constitutive settings
for the fluid phase ϕF of the biphasic model.

Triphasic model

The extra momentum production terms p̂β
E are related to the seepage velocities wβ via

p̂β
E = − (nβ)2 γβR (Kβ

r )−1 wβ , (2.103)

where γβR is the specific weight and Kβ
r the relative permeability tensor of the constituent

ϕβ. Note that the tensor Kβ
r includes both the relative permeabilities depending on the

saturation of ϕβ and the Darcy permeabilities, which are specified under fully saturated
conditions, i. e., sβ = 1. The relative permeability tensor Kβ

r is defined via the product
between the so-called relative permeability factor κβ

r and the Darcy permeability tensor
Kβ:

Kβ
r = κβ

r Kβ . (2.104)

For a proper determination of the relative permeability factor κβ
r , one usually defines

three different zones within a partially saturated soil, cf. Figure 2.5 (left). In the zone
beneath the ground-water table, most of the pore-space is filled with the pore-liquid. In
this so-called saturated domain, the mobility of the pore-liquid is governed by the Darcy
permeability and only a residual saturation of trapped pore-gas sG

res is present. In a
certain height above the ground-water table, in the so-called empty domain, the situation
is the other way round, which means that the pore-gas is mobile and a small amount
of pore-liquid is trapped with the residual saturation sL

res . In the partially saturated or
unsaturated domain, which is located in between these two zones, both the pore-liquid
and the pore-gas are mobile. This domain is defined by a lower bound and an upper
bound for the effective saturation of the liquid: 0 < sL

eff < 1, cf. Figure 2.5 (right). A
relation between the saturation sL and the effective saturation sL

eff can be found easily by
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the following two constraints, cf. Finsterle [73]:

sL(sL
eff = 0) = sL

res and sL(sL
eff = 1) = 1 − sG

res

; sL = sL
eff (1 − sL

res − sG
res) + sL

res .
(2.105)

In order to include the above mentioned different fluid mobilities through a relation be-
tween the pore pressures and the effective liquid saturation, the capillary pressure pC is
introduced via

pC = pGR − pLR . (2.106)

Following this procedure, relations between the effective liquid saturation sL
eff and the

capillary pressure pC were set up by Brooks & Corey [37] or van Genuchten [77]. In the
framework of this thesis, the ansatz by van Genuchten is used, cf. Figure 2.6:

sL
eff = [ 1 + (αgen p

C)jgen ]−hgen . (2.107)

Therein, αgen , jgen and hgen are material parameters. Finally, the relative permeability
factors κL

r and κG
r are defined within the van Genuchten model by

κL
r = (sL

eff )εgen { 1 − [ 1 − (sL
eff )1/hgen ]hgen }2 ,

κG
r = (1 − sL

eff )γgen [1 − (sL
eff )1/hgen ]2 hgen

(2.108)

with the additional material parameters εgen and γgen . Following this, a trapped pore-
liquid (κL

r = 0) is obtained for a vanishing effective saturation, whereas a fully mobile
pore-liquid (κL

r = 1) is obtained in the saturated domain, viz sL
eff = 1. Looking at the

pore-gas, equivalent statements hold, cf. Figure 2.7. For a more detailed description on
the interaction of different pore-fluids, the interested reader is referred to the work by
Helmig [89].
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Looking at the Darcy permeabilities, a relation between Kβ and the intrinsic permeability
tensor KS is given by

Kβ =
γβR

µβR
KS , (2.109)

where µβR is the effective shear viscosity of the fluid β. For the description of the defor-
mation dependence of KS, the ansatz of Eipper [65] is chosen:

KS =

(
1 − nS

1 − nS
0S

)π

KS
0S . (2.110)

Therein, the actual volume fraction nS of the solid is determined by (2.88). In the above
equation, π is a material parameter and KS

0S represents the intrinsic permeability tensor
of the undeformed skeleton. In case of an isotropic solid material, this tensorial quantity
is reduced to a scalar coefficient KS

0S,

KS
0S = KS

0S I , (2.111)

which, in analogy to (2.109), again can be related to an initial Darcy permeability coef-
ficient kβ

0S:

kβ
0S =

γβR

µβR
KS

0S . (2.112)

Insertion of (2.103) into the quasi-static fluid momentum balances (2.86)2, 3 gives the
already mentioned Darcy-like equations:

nβ wβ = −Kβ
r

γβR
(grad pβR − ρβR g) . (2.113)

Note again that with the above equations (β = L, G), the seepage velocities wβ can be
dropped as primary variables.

Finally, the constitutive setting for the effective gas density ρGR is chosen by means of
the ideal gas law by Boyle:

ρGR =
pGR + p0

R̄G θ
. (2.114)
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Therein, p0 denotes the ambient pressure, R̄G the specific gas constant of the pore-gas and
θ the absolute Kelvin’s temperature, which, within this thesis, is constant (θ = const.)
due to the assumption of an overall isothermal problem.

Biphasic model

In the biphasic model, the pore-liquid is the only fluid component (ϕL = ϕF ), thus, the
above derived equations for the triphasic model have to be modified accordingly. By
leaving the pore-gas from the equations for the triphasic model, the following relations
can be concluded straightforwardly:

sL = 1 ; sL
eff = 1 ; κL

r = 1 . (2.115)

Due to these relations, the tensor Kβ
r , which includes both the relative and the Darcy

permeabilities, can be simplified resulting in the Darcy permeability tensor KF from
(2.109). According to (2.103), this leads to the following relation for the extra momentum
production term,

p̂F
E = − (nF )2 γFR (KF )−1 wF , (2.116)

and, finally, to the well-known Darcy equation for the description of the fluid flow in a
fully saturated porous medium, cf. (2.113):

nF wF = − KF

γFR
(grad p− ρFR g) . (2.117)





Chapter 3:
Spatial and temporal discretization

For the numerical realization of the porous media models, which were presented in the
last chapter, all the describing quantities, like, e. g., displacement or pore-liquid pressure,
have to be discretized in both the spatial and the temporal domain. Thereby, it is a
common procedure to carry out the spatial and the temporal discretization sequentially
by two different methods, i. e., first the discretization in space by use of the finite element
method (FEM) and, second, the discretization in time by use of a finite difference scheme.
After that, the resulting nonlinear system of equations has to be solved accordingly for a
reliable numerical solution of the prescribed governing equations.

Within this chapter, the above mentioned discretization methods are introduced very
briefly, with special emphasis of the numerical difficulties coming from the multiphasic
character of the considered models. Subsequently, the solution of the resulting system
of nonlinear equations is discussed. The reader who is interested in a more fundamental
introduction of the FEM is referred to the works by Strang & Fix [134], Oden & Reddy
[116], Hughes [92], Bathe [7], Schwarz [127], Eriksson et al. [68], Braess [34], Ellsiepen
[66] and Zienkiewicz & Taylor [156, 157]. Detailed information on the numerical time
integration of ordinary differential equations and differential-algebraic equations can be
found in the works by Hairer et al. [82, 83], Wood [154], Törnig & Spellucci [140] and
Strehmel & Weiner [135].

Besides the above mentioned sequential combination of the two different discretization
methods, other strategies exist, which try to deal with the numerical realization of the
resulting system of differential equations in a more uniform way. In these strategies, the
finite element method is chosen for both the spatial and the temporal domain. The first
papers on this topic were published in 1969 by Argyris & Scharpf [2], Fried [75] and Oden
[115]. Further developments in this field with different emphasis can be found, e. g., in the
works by Hughes & Hulbert [93], Hulbert & Hughes [94], Borri & Bottasso [23], Betsch
& Steinmann [14, 15] and Ehlers & Ammann [54]. Thereby, as far as the author is aware,
the only paper which applies the FEM in time and space to multiphasic problems was
published by Steeb et al. [131] in 2003. In the framework of this thesis, these discretization
methods are only mentioned here and should not be further investigated.

3.1 Finite element method

3.1.1 Strong and weak formulation

For the spatial discretization, in a first step, the governing equations of the bi- and
triphasic models have to be transformed from the strong into a weak formulation. In
the following, this procedure is going to be presented using the example of the governing

35



36 Chapter 3: Spatial and temporal discretization

equations of the triphasic model, cf. (2.90):

div (σS
E − p I) + ρ g = 0 ,

(nL)′S + nL div (uS)′S + div (nL wL) = 0 ,

nG(ρGR)′S + (nG)′S ρ
GR + nGρGR div (uS)′S + div (nGρGR wG) = 0 .

(3.1)

Equations (3.1) together with the corresponding initial and boundary conditions represent
the so-called strong formulation of the initial boundary-value problem. This is due to the
fact that in the above relations, equilibrium is fulfilled at each point x of the underlying
domain Ω of the body B. Obviously, this requirement is too strict for the numerical inves-
tigation of arbitrary problems, and, therefore, the weak formulation has to be introduced
at this point. In order to obtain such a weak formulation, the single Equations (3.1) have
to be (scalarly) multiplied with a corresponding test function and integrated over the
domain Ω. After the application of the chain rule and of the Gaussian integral theorem,
the so-called Neumann (or natural) boundary terms can be identified. In this final form of
the weak formulation, equilibrium is no longer fulfilled point-wise but only in an integral
manner, i. e., in a weak sense.

As already stated in the remark on Page 26, the governing equations of the triphasic model
(3.1) are directly connected with the respective primary variables. In this connection, the
choice of the corresponding test functions is straightforward. Consequently, the trial and
test spaces for the resulting displacement-pressure-pressure formulation are defined as
follows:

Su(t) = { uS ∈ H1(Ω)D : uS(x) = ūS(x, t) on Γu } ,

Spl(t) = { pLR ∈ H1(Ω) : pLR(x) = p̄LR(x, t) on Γpl } ,

Spg(t) = { pGR ∈ H1(Ω) : pGR(x) = p̄GR(x, t) on Γpg } ,

Tu = { δuS ∈ H1(Ω)D : δuS(x) = 0 on Γu } ,

Tpl = { δpLR ∈ H1(Ω) : δpLR(x) = 0 on Γpl } ,

Tpg = { δpGR ∈ H1(Ω) : δpGR(x) = 0 on Γpg } .

(3.2)

Therein, D ∈ {1, 2, 3} represents the spatial dimension of the problem and H1(Ω) is the
standard Sobolev space. Furthermore, ūS, p̄LR and p̄GR are the Dirichlet (or essential)
boundary conditions of the problem under consideration. As usual, Dirichlet boundary
conditions are exactly fulfilled by the proper choice of the trial (or ansatz) functions uS,
pLR and pGR. Additionally, the corresponding test functions δuS, δpLR and δpGR vanish
at Dirichlet boundaries.

For each governing equation from (3.1), Neumann and Dirichlet boundary conditions have
to be defined. By doing this, the boundary Γ = ∂Ω of the domain Ω is split up for each
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of the three governing equations in the following way:

Γ = Γu ∪ Γt , ∅ = Γu ∩ Γt ,

Γ = Γpl ∪ Γv , ∅ = Γpl ∩ Γv ,

Γ = Γpg ∪ Γq , ∅ = Γpg ∩ Γq .

(3.3)

The above equations state that for each unknown quantity uS, pLR or pGR the boundary
Γ is divided into a Dirichlet boundary Γu, Γpl and Γpg and a Neumann boundary Γt, Γv

and Γq. Furthermore, boundary parts are not permitted, on which both Dirichlet and
Neumann boundary conditions for one unknown quantity are defined.

For the derivation of the weak formulation of the overall momentum balance (3.1)1, in a
first step, this equation is scalarly multiplied with the test function for the solid displace-
ment δuS and integrated over the domain Ω:

∫

Ω

[
div (σS

E − p I) + ρ g
]
· δuS dv = 0 ∀ δuS ∈ Tu . (3.4)

Additional application of the chain rule

div (σS
E − p I) · δuS = div

[
(σS

E − p I)T δuS

]
− (σS

E − p I) · grad δuS (3.5)

and of the Gaussian integral theorem
∫

Ω

div
[
(σS

E − p I)T δuS

]
dv =

∫

Γt

[
(σS

E − p I)T δuS

]
· n da

=

∫

Γt

δuS · [(σS
E − p I)n

︸ ︷︷ ︸

t̄

] da

(3.6)

finally yields the weak formulation of (3.1)1:
∫

Ω

(σS
E − p I) · grad δuS dv −

∫

Ω

ρ g · δuS dv =

∫

Γt

t̄ · δuS da ∀ δuS ∈ Tu . (3.7)

As the above equation is the weak formulation of the momentum balance of the mixture,
the surface traction t̄ acts on all constituents, i. e., the solid, the liquid and the gaseous
phase. Note that this property is important for the modeling of a boundary-value problem,
as no separation of the boundary conditions into actions on the different phases is needed
and, thus, physically reasonable boundary conditions can be defined.

After multiplication of Equation (3.1)2 with the corresponding test function δpLR and
application of the above mentioned steps in an analogous way, the weak formulation of
the pore-liquid volume balance reads:

∫

Ω

[ (nL)′S + nL div (uS)′S ] δpLR dv−

−
∫

Ω

nL wL · grad δpLR dv =

∫

Γv

v̄L δpLR da ∀ δpLR ∈ Tpl .

(3.8)
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Therein, v̄L = nL wL · n represents the efflux of liquid.

Multiplying the pore-gas mass balance (3.1)3 with the test function δpGR and, again,
applying the chain rule and the Gaussian integral theorem, the weak formulation for the
determination of the pore-gas pressure pGR is found as

∫

Ω

[ (nG ρGR)′S + nG ρGR div (uS)′S ] δpGR dv−

−
∫

Ω

nG ρGR wG · grad δpGR dv =

∫

Γq

q̄G δpGR da ∀ δpGR ∈ Tpg ,

(3.9)

where q̄G = nG ρGR wG · n is interpreted as the efflux of gaseous mass through the Neu-
mann boundary Γq.

3.1.2 Finite element mesh and Bubnov-Galerkin method

The spatial discretization of the domain Ω, which contains the body B under study,
requires the partition into non-overlapping subdomains, the so-called finite elements (or
cells) C:

Ω ≈ Ωh =
⋃

C∈C

C . (3.10)

The spatially discretized domain Ωh is also called the finite element mesh. In the three-
dimensional (3-d) case, each cell C ∈ C, with C representing the set of all cells in the
mesh, consists of faces F (C), edges E(C) and nodes (or points) P (C), cf. Figure 3.1.
Reducing the dimension of the problem under study towards the 2-d case, no faces are
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Figure 3.1: Space discretization with finite elements (hexahedra).
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available and, consequently, in the 1-d case, no faces and edges are defined. Furthermore,
the set of all faces F , all edges E and all nodes N of the FE mesh are given by

F =
⋃

F∈F

F (C) , E =
⋃

E∈E

E(C) , N =
⋃

P∈N

P (C) . (3.11)

In the next step, the weak formulations (3.7) – (3.9), which are up to now defined continu-
ously in the infinite-dimensional spaces of the ansatz and test functions (3.2), are approx-
imated by finite-dimensional (N -dimensional) subspaces. For an abstract setting of this
procedure, the interested reader is referred to Ellsiepen [66] and Ehlers & Ellsiepen [59].
Here, this procedure is discussed using the example of the displacement-pressure-pressure
formulation (3.1). Following this, on a mesh with N nodal points, the following space
discrete ansatz and test functions are introduced:

uS(x, t) ≈ uh
S(x, t) = ūh

S(x, t) +

N∑

j=1

φj
u(x) uj

S(t) ∈ Sh
u (t) ,

pLR(x, t) ≈ pLR h(x, t) = p̄LR h(x, t) +

N∑

j=1

φj
pl(x) pLR j(t) ∈ Sh

pl(t) ,

pGR(x, t) ≈ pGR h(x, t) = p̄GR h(x, t) +
N∑

j=1

φj
pg(x) pGR j(t) ∈ Sh

pg(t) ,

δuS(x) ≈ δuh
S(x) =

N∑

j=1

φj
u(x) δuj

S ∈ T h
u ,

δpLR(x) ≈ δpLR h(x) =

N∑

j=1

φj
pl(x) δpLR j ∈ T h

pl ,

δpGR(x) ≈ δpGR h(x) =

N∑

j=1

φj
pg(x) δpGR j ∈ T h

pg .

(3.12)

Therein, {ūh
S, p̄

LR h, p̄GR h} define the Dirichlet boundary conditions and {φj
u, φ

j
pl, φ

j
pg}

represent the global basis functions of the trial or test functions, respectively. For the
global basis functions of the displacement, the following relation holds: φj

u = [φj
u1

, . . .,
φj

uD
]. The basis functions introduced above are in each case linearly independent and

fulfill the homogeneous Dirichlet boundary conditions

φj
ud

= 0 on Γh
ud
, j = 1 , . . . , N , d = 1 , . . . , D ,

φj
pl = 0 on Γh

pl , j = 1 , . . . , N ,

φj
pg = 0 on Γh

pg , j = 1 , . . . , N ,

(3.13)

where D ∈ {1, 2, 3} represents the spatial dimension of the problem under study. Note
that the global basis functions of the trial functions {φj

u, φ
j
pl, φ

j
pg} depend only on the
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spatial position x and the unknown nodal quantities {uj
S, p

LR j, pGR j}, which are also
called degrees of freedom, are only time-dependent.

When regarding the definitions for the approximated trial and test functions (3.12), one
recognizes that the same basis functions {φj

u, φ
j
pl, φ

j
pg} are used for the respective approx-

imations. Such an approach is known as Bubnov-Galerkin method (or simply Galerkin
method). Obviously, it is alternatively possible to choose different basis functions for the
trial and test spaces. This more general case is known as Petrov-Galerkin method. Ap-
plications of this approach can be found, e. g., in the framework of numerical stabilization
techniques [61] and of time integration methods [54].

For an efficient implementation of the trial and test functions, each nodal point P̄ ∈ N
is assigned to a basis function φj

dof with supports only in the finite elements C ∈ CP̄ , i. e.,

elements C, which are attached to the respective node P̄ :

φj
dof (x) = 0 , if x /∈

⋃

C∈CP̄

C , dof ∈ {ud, pl, pg} . (3.14)

This choice for the basis functions leads to simple structures of the resulting linear system
of equations, i. e., to sparse matrices. Furthermore, the chosen basis functions φj

dof are
normalized, viz:

φj
dof (xi) = δj

i , i, j = 1 , . . . , N . (3.15)

Therein, δj
i is the Kronecker symbol, which gives for i = j the value 1 and otherwise

the value 0. By choosing this property for the basis functions, it is assured that the
nodal quantities {ui

S, p
LR i, pGR i} at the node i exactly correspond to the value of the

approximated solution, such that, for example, the following relation holds for the pore-
liquid pressure pLR h:

pLR h(xi) =
N∑

j=1

φj
pl(xi) p

LR j = pLR i . (3.16)

The properties (3.14) and (3.15) are illustrated in Figure 3.2 at a simple one-dimensional
example for the linear basis function φ3(x) at the node P3 in a FE mesh with 4 elements.

PSfrag replacements

x

P1 P2 P3 P4 P5

C1 C2 C3 C4

φ3(x) φ3(x3) = 1

φ3(xi) = 0 for i = 1, 2, 4, 5

Figure 3.2: Illustration of the properties (3.14) and (3.15) for the basis functions.

In order to obtain the required number of equations for the determination of all degrees
of freedom, the test functions are interpreted in a certain way, cf. Ellsiepen [66]. This
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strategy is now shown exemplarily at the example of the weak formulation of the overall
momentum balance. Equation (3.7) states that the weak formulation has to be fulfilled
for all test functions δuS ∈ Tu. Consequently, after the space discretization, this must
hold for all δuh

S ∈ T h
u . For a spatial discretization by a FE mesh with N nodal points, the

weak formulation (3.7) results for a general D-dimensional case in a system with D · N
degrees of freedom uj

S =
[
uj

S 1 , . . . , u
j
S D

]T
with j = 1 , . . . , N . Choosing for the test

functions

δu1
S 1 = 1 , δuj

S 1 = 0 for j = 2 , . . . , N and

δuj
S d = 0 for j = 1 , . . . , N , d = 2 , . . . , D ,

(3.17)

the equation for the determination of the “first degree of freedom of the horizontal solid
displacement” is obtained. Proceeding analogously for the other degrees of freedom leads
to a system of D ·N linearly independent equations.

3.1.3 Mixed finite elements

The spatial discretization of the underlying biphasic or triphasic models within the FEM
results in so-called mixed finite element formulations. This is due to the fact that, in
addition to the primary variable (solid) displacement uS, other primary variables, e. g.,
in case of the triphasic model the pore-liquid pressure pLR and the pore-gas pressure pGR,
have to be considered.
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Figure 3.3: Taylor-Hood elements in all spatial dimensions.
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The main difficulty within such a mixed finite element formulation consists of the correct
choice of the proper ansatz functions, e. g., in case of the triphasic model, the ansatz
functions included in (3.12)1−3. There, the chosen ansatz functions are not arbitrary but
have to fulfill the so-called inf-sup condition (Babuška-Brezzi condition) for a stable finite
element formulation. The reader who is interested in more information on this topic,
e. g., the mathematical background of the inf-sup condition or a survey of possible mixed
finite element formulations, is referred to the works by Brezzi & Fortin [35], Braess [34],
Langtangen & Tveito [100] and Wieners [149].

Within the framework of this thesis, quadratic ansatz functions for the solid displacement
uh

S and linear ansatz functions for the pressure terms pLR h and pGR h are chosen. This
combination fulfills the above mentioned inf-sup condition [35] and, therefore, provides a
stable finite element formulation. Mixed finite elements of this type are well-known under
the name of Taylor-Hood elements and are very often introduced in the literature in the
context of the Stokes problem [34, 100], which is a model coming from fluid mechanics
with the primary variables velocity and pressure. Examples for Taylor-Hood elements
are given in Figure 3.3, where in the 1-d case a line, in the 2-d case a triangle and a
quadrilateral and in the 3-d case a tetrahedron and a hexahedron are exemplarily shown.

3.1.4 Element-wise evaluation of the weak formulations

Within a finite element program, all essential quantities for the solution of the problem,
like, e. g., the residual or the tangent coming from the consistent linearization (cf. Sec-
tion 3.3.2), are evaluated locally on the element level and, thereafter, these quantities are
assembled to the global system. Furthermore, within this element-wise evaluation, the
necessary trial and test functions are always expressed with respect to a so-called reference
element, which leads directly to the introduction of the geometry transformation and of
the local coordinates ξ.

Starting from a reference element Cr described within local coordinates ξ, a relation to
the physical coordinate system x can be established by the following equation:

x(ξ) =

Ng∑

j=1

φj
geo(ξ)xj . (3.18)

Therein, x(ξ) describes an arbitrary position within a finite element depending on the
local coordinates ξ, Ng is the number of nodes in the element and xj are the global
(physical) coordinates of the nodal points in this element. Furthermore, φj

geo(ξ) are the
basis functions of the geometry transformation fulfilling the properties (3.14) and (3.15).
Note that in contrast to the basis functions φj

dof discussed up to now, the basis functions
in (3.18) are formulated with respect to a local coordinate system.

Looking at the geometry transformation, different basis functions φj
geo can be chosen. If

the basis function for the approximation of the primary variables φj
dof is equal to the one for

the geometry transformation φj
geo, it is called an isoparametric mapping. Otherwise, the

terms subparametric (ansatz for geometry transformation lower than for approximation
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Figure 3.4: Geometry transformation for hexahedra with linear ansatz functions.

of primary variables) and superparametric (ansatz for geometry transformation higher
than for approximation of primary variables) mapping are used. Obviously, in a mixed
finite element formulation, where the single primary variables have to be approximated
with different ansatz functions due to stability reasons, these classifications can be used
no longer for the description of the entire ansatz. Therein, it is only possible to classify
the ansatz functions with regard to the respective primary variables. Choosing quadratic
ansatz functions for the geometry transformation together with the Taylor-Hood elements
introduced in the last section, one can call this an isoparametric mapping for the solid
displacement and superparametric mappings for the pressure terms.

Figure 3.4 shows an example of a geometry transformation for hexahedra with linear
ansatz functions. Looking at the reference element on the left part of Figure 3.4, the fixed
local coordinates of the 8 nodal points representing the (tri-)linear ansatz are shown.

The weak formulations, which are the basis for the finite element calculation, are expressed
in an integral form, cf. the weak formulations (3.7), (3.8) and (3.9) of the triphasic model
under study. For the element-wise evaluation of these formulations within a reference ele-
ment Cr, the single integrals have to be reformulated with respect to the local coordinates
ξ using the substitution rule of the integral calculus

∫

C

f(x) dv =

∫

Cr

f (x(ξ)) JC(ξ) dvr , (3.19)

where dvr is the incremental volume element of Cr and JC is the Jacobian determinant,
which is defined by

JC(ξ) = det

(
dx(ξ)

dξ

)

. (3.20)

Note that for quantities, which are containing derivatives with respect to the global coor-
dinates like, e. g., the gradient or divergence operators, the above mentioned reformulation
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gives the following relation:
df(x)

dx
= J−1

C

df (x(ξ))

dξ
. (3.21)

Within a FE code, the actual integration of the weak formulations is realized by a nu-
merical integration, e. g., by the so-called Gauss quadrature. Therein, depending on the
underlying reference element, an integral is evaluated using the K̃ integration points ξk

and weight factors wk:

∫

C

f(x) dv ≈
K̃∑

k=1

f (x(ξk)) JC(ξk)wk . (3.22)

Note that due to the geometry transformation to reference elements, the numerical evalu-
ation of each integral within a FE computation is carried out with fixed integration points
and weight factors for each type of reference element, which allows for a straightforward
implementation of this procedure.

A crucial point within the numerical integration is the choice of the proper integration
order, i. e., the necessary number of integration points for a sufficiently accurate result.
Using the Gauss quadrature, a numerical integration with K̃ integration points exactly
evaluates an integral containing polynomials of order (2 K̃ − 1). Consequently, the use of
less integration points results in an approximation error, which can lead to unphysical re-
sults in a FE calculation, e. g., when using a tri-quadratic ansatz for the solid displacement
in a FE mesh with hexahedra (isoparametric approach), an 8-point Gauss quadrature was
found to result in an insufficiently accurate integration [151]. As this problem leads to
polynomials of sixth order, even an integration with 27 integration points (3 · 3 · 3 points)
does not give exact results, but leads to results, where the integration error does not
produce remarkable disadvantages concerning the accuracy of the whole computation.

Specifications of integration points and weight factors for different reference elements and
integration orders can be taken from the literature, cf., e. g., Stroud [137] or Zienkiewicz
& Taylor [156].

3.1.5 Semi-discrete initial-value problem

After the spatial discretization, a so-called semi-discrete initial-value problem can be for-
mulated, in which the time dependence is still described continuously. For the description
of this problem, the abstract setting of Ellsiepen [66] will be used in this thesis. Therein,
for a FE mesh with N nodal points and K integration points, the space-discrete variables
of the triphasic model under study (3.1) are combined by the following vectors:

u = [(u1
S, p

LR 1, pGR 1) , . . . , (uN
S , p

LR N , pGR N)]T ,

q = [(ε1
Sp, Λ1) , . . . , (εK

Sp, ΛK)]T ,






y = (uT , qT )T , (3.23)

where u represents the vector containing all the degrees of freedom (nodal quantities) of
the FE mesh and q is the vector, in which all the internal variables are collected. Note that
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for the sake of clarity, the different ansatz functions for the solid displacement (quadratic
ansatz) and the pressure terms (linear ansatz) are not regarded within this formulation.
For an efficient implementation of a finite element code, the pressure terms are of course
only defined at the corner nodes of the finite elements, and, therefore, less than N nodal
points have to be considered for them.

The internal variables (or history variables) q result from the (elasto-)plastic material be-
havior of the solid skeleton, which is described by the flow rule (2.101) and the restrictions
resulting from the Kuhn-Tucker conditions (2.102). In contrast to the nodal quantities,
these internal variables are evaluated in the sense of the collocation method element-wise
at the integration points of the numerical quadrature. Finally, u and q are combined to
one vector y representing all the unknown quantities of the problem.

Combining both the system of equations coming from the discretization of the governing
equations (F 1 = 0) and the plastic evolution equations (F 2 = 0), the entire semi-discrete
initial-value problem of first order in the variable time t can be described by:

F (t, y, y′) =

[
F 1(t, u, u′, q)
F 2(t, q, q′, u)

]

=

[
Mu′ + k(u, q) − f

Aq′ − g(q, u)

]

!
= 0 . (3.24)

Therein, for convenience, the abbreviation ( · )′ = ( · )′S is used. In (3.24), M is the gener-
alized mass matrix, k is the generalized stiffness vector containing nonlinear dependencies
on (u, q), and f is the vector of the external forces. The initial conditions of (3.24) are
given by y(t0) = y0 with the initial time t0 ≤ t. Furthermore, the plastic evolution
equations yield:

A q′ − g(q, u) =





(εSp)
′

0



 −




Λ
∂ G

∂ σS
E

F (σS
E)



 = 0 . (3.25)

From the above equation, it is evident that A = blockdiag(I, 0). The missing Kuhn-
Tucker conditions in (3.25) are fulfilled both in an elastic and a plastic step via an ap-
propriate algorithm on the element level [66].

Remark: Within this thesis, the abstract description of the underlying problem illus-
trated above is only mentioned here, since with this representation, the type of differential
equations can be specified in a clear way. Looking at (3.24)1, the generalized mass matrix
M results in a non-regular matrix for both the bi- and triphasic model, as no temporal
derivative of a primary variable is present in the overall momentum balance (3.1)1. With
this property, (3.24)1 turns out to be a system of differential-algebraic equations (DAE)
of index one in the time variable. Furthermore, (3.24)2 results in the same way in a sys-
tem of DAE, because A is also a singular matrix. If the matrices M or A were regular,
the resulting system would be called a system of ordinary differential equations (ODE).
Details on the solution of DAE systems in combination with the development of efficient
time adaptive strategies can be found, e. g., in Ellsiepen [66] and Diebels et al. [45]. 2
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3.2 Time integration

Finally, as already mentioned in the previous section, the formulation (3.24) has to be
discretized in the temporal domain for a numerical calculation of the problem under
study. In the triphasic model (3.1), several time dependent quantities ( · )′S (or with the
abbreviation ( · )′ = ( · )′S) are present, especially in the pore-liquid volume balance (3.8),
the pore-gas mass balance (3.9) and the flow rule (3.25)1. Within this thesis, the well-
known Euler difference schemes will be used for the discretization of these quantities.
Therein, two totally different approaches, namely the forward and the backward Euler
difference schemes, have to be distinguished.

For the illustration of the forward Euler difference scheme, a simple nonlinear problem
can be established in the following form

u′(tn−1) = h(un−1, tn−1) , (3.26)

where the arbitrary function h contains a nonlinear dependence on a vector u repre-
senting the unknown quantities to determine. Furthermore, the temporal derivative is
represented with the symbol u′ = du/dt, and this time derivative of first order should
now be discretized as follows:

u′(tn−1) =
un − un−1

∆tn
; un = un−1 + u′(tn−1) ∆tn . (3.27)

Therein, the time increment ∆tn is defined via ∆tn = tn − tn−1. Insertion of (3.26) into
(3.27) yields the forward Euler method

un = un−1 + h(un−1, tn−1) ∆tn , (3.28)

in which the unknown quantity un is calculated on the basis of quantities from the last
time step tn−1. In contrast to this, the backward Euler method can be derived via a
nonlinear problem formulated at the time tn,

u′(tn) = h(un, tn) , (3.29)

where the quantity u′(tn) is discretized by

u′(tn) =
un − un−1

∆tn
; un = un−1 + u′(tn) ∆tn , (3.30)

describing a discretization of the time derivative u′(tn) with respect to the actual and
the last time step (backward in time). Insertion of (3.29) into (3.30) leads to the final
formulation of the backward Euler method:

un − un−1 − h(un, tn) ∆tn = 0 . (3.31)

Comparing (3.28) and (3.31), the difference between these two methods is evident. Within
the forward Euler method, a new solution at the time tn is obtained by the straightforward
evaluation of the governing equations with respect to the last time step tn−1, whereas in
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the backward Euler method, the actual solution un cannot be obtained explicitly but has
to be evaluated during an iterative procedure like, e. g., the Newton-Raphson method, cf.
Section 3.3.2. This characteristics motivates the specification “explicit time integration”
for (3.28) and “implicit time integration” for the formula (3.31).

Consequently, the question, which of the two approaches, the explicit or the implicit time
integration method, is the more suitable one for the numerical solution of the problem
under study, has to be discussed in a next step. Obviously, at first sight, the explicit
time integration scheme seems to be the more efficient method, since the determination
of a new quantity un is much easier than in case of the implicit Euler method. But the
special type of differential equations resulting from (3.24) has also to be considered for
the proper decision about that question.

The presented discretization strategy, i. e., using the finite element method for the spatial
and a finite difference scheme like the Euler method for the temporal discretization, leads
to a stepwise time integration of a fixed spatial discretization. By doing this, the fully
discretized problem becomes a system of stiff differential equations [66]. Having such stiff
differential equations, it is well-known that the application of explicit time integration
schemes leads to unstable solutions for too large time steps [83]. On the other hand,
implicit schemes do not show such an unstable behavior and, therefore, such schemes, like,
e. g., the backward Euler method, have to be used for an unconditionally stable solution
of the discretized problem. Further discussions on the stability conditions necessary for
stable time integration methods can be found, e. g., in Ellsiepen [66].

Nevertheless, the application of explicit time integration methods on coupled multiphasic
problems cannot be totally excluded. In case of dynamical problems, the use of implicit
methods can lead to unstable numerical solutions and, thus, explicit methods, after the
identification of a critical time step size, are an alternative in such cases, cf. Danilov [39].

Proceeding from quasi-static conditions for the numerical simulations, the backward Euler
method is used for the temporal discretization within this thesis. Therein, an a priori fixed
time series t0 < t1 < t2 < . . . < tNt

is processed until the end of the simulation is reached
after Nt time steps.

3.3 Solution of the resulting nonlinear system

After the spatial and temporal discretization of the bi- or triphasic problem, the resulting
nonlinear system has finally to be solved in order to obtain a result from the numerical
simulation. This procedure will be discussed within this section. Therein, one main focus
is put on a detailed description of the fully discretized weak formulations and evolution
equations. In contrast to the abstract setting in Section 3.1.5, this description will be car-
ried out explicitly at the example of the triphasic model (3.1), whereby the dependencies
of all secondary variables, like, e. g., the extra stress σS

E of the solid skeleton or the liquid
saturation function sL, on the primary variables are discussed for a better understand-
ing of the structure of the discretized model. After this, the Newton-Raphson method
together with the consistent linearization of the governing equations are discussed, and,
finally, a local assembling interface describing the single steps within the nonlinear so-
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lution procedure on the element level is introduced. This interface provides a coupling
of two different FE codes, whereas, e. g., one FE code contains the implementation of
a specific material behavior and the other program exhibits a nonlinear solver together
with parallel data structures, cf. Section 5.2.

The strategy for the solution of the resulting nonlinear system denoted above is chosen
in accordance to Wieners et al. [151], where a similar illustration of such a solution
procedure was presented using the example of the biphasic problem. Starting from the
abstract setting presented in Section 3.1.5, an analogous approach is shown in the works
by Ellsiepen [66] and Ehlers & Ellsiepen [59].

3.3.1 Description of the fully discretized triphasic model

For convenience, the following definitions are introduced for the discretized primary and
history variables at time tn:

solid displacement: uh,n
S , effective pore-liquid pressure: ph,n

L := pLR h,n ,

effective pore-gas pressure: ph,n
G := pGR h,n ,

plastic multiplier: Λh,n , solid plastic strain: εh,n
p := ε

h,n
Sp .

(3.32)

In order to represent the discretized weak formulations (3.7) – (3.9) and the plastic evo-
lution equations (3.25) in a compact way, secondary variables are going to be defined
together with their dependencies on the primary or history variables, respectively, cf.
Wieners et al. [153]:

ε (uh,n
S ) := εS : total solid strain from (2.95) ,

σS (uh,n
S , εh,n

p ) = CCC [ ε(uh,n
S ) − εh,n

p ] := σS
E : solid stress from (2.97) ,

sL (ph,n
L , ph,n

G ) := sL : liquid saturation from (2.105) – (2.107) ,

sG (ph,n
L , ph,n

G ) := sG : gaseous saturation from (2.12) ,

nS (uh,n
S ) := nS : solid volume fraction from (2.89) ,

nL (uh,n
S , ph,n

L , ph,n
G ) := nL : liquid volume fraction from (2.11)1 and

nF = 1 − nS ,

nG (uh,n
S , ph,n

L , ph,n
G ) := nG : gaseous volume fraction from (2.11)1 ,

ρGR (ph,n
G ) := ρGR : gaseous density from (2.114) ,

w̃L (uh,n
S , ph,n

L , ph,n
G ) := nL wL : liquid filter velocity from (2.104) – (2.113) ,

w̃G (uh,n
S , ph,n

L , ph,n
G ) := nG wG : gaseous filter velocity from (2.104) – (2.113) .

(3.33)

Therein, CCC :=
4

C = 2µS ( I ⊗ I )
23

T +λS ( I ⊗ I ) denotes the fourth order elasticity tensor,
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where the transposition ( · )
ik

T indicates an exchange of the i-th and k-th basis systems
included into the tensor basis of higher order tensors, cf. Appendix A.1.3.

Using the above definitions, the weak formulation of the overall momentum balance reads
∫

Ωh

{σS(uh,n
S , εh,n

p ) − [sL(ph,n
L , ph,n

G ) ph,n
L + sG(ph,n

L , ph,n
G ) ph,n

G ] I} · grad δuh
S dv−

−
∫

Ωh

[nS(uh,n
S ) ρSR + nL(uh,n

S , ph,n
L , ph,n

G ) ρLR+

+ nG(uh,n
S , ph,n

L , ph,n
G ) ρGR (ph,n

G )] g · δuh
S dv =

∫

Γh
t

t̄h · δuh
S da ,

(3.34)

where the constant densities ρSR and ρLR (incompressible constituents) and the gravi-
tation g are interpreted as material parameters. Furthermore, the Neumann boundary
condition t̄h (surface traction) is also a given quantity depending on the respective initial
boundary-value problem.

Looking at the plastic evolution equations (3.25), the discretized formulation results in

εh,n
p = εh,n−1

p + ∆tn Λh,n
∂G(σS(uh,n

S , εh,n
p ))

∂σS
,

F (σS(uh,n
S , εh,n

p )) = 0 .

(3.35)

Note that this local system is solved on the element level, i. e., for each finite element, a
so-called trial stress σS n

trial = CCC [ ε(uh,n
S )−εh,n−1

p ] is determined on the basis of the current

value uh,n
S of the solid displacement and the old value εh,n−1

p (value from the last time step
tn−1) of the plastic strains. If this trial stress violates the yield criterion (3.25)2, the local
system (3.35) is entered and a compatible plastic strain increment ∆εh,n

p = εh,n
p − εh,n−1

p

is determined by solving (3.35). Thus, Equations (3.35) can be reformulated with respect
to these considerations in the following way: Find the plastic strain increment ∆εh,n

p and
the incremental plastic multiplier Λh,n such that

∆εh,n
p = ∆tn Λh,n

∂G(σS n
trial −CCC ∆εh,n

p )

∂σS
,

F (σS n
trial −CCC ∆εh,n

p ) = 0 .

(3.36)

Inserting the new stress state σS n = σS n
trial − CCC ∆εh,n

p , the following equivalent form of
(3.36) can be obtained [151]: For a given trial stress σS n

trial , find the stress response σS n

and the plastic multiplier Λh,n such that

σS n = σS n
trial − ∆tn Λh,n CCC

∂G(σS n)

∂σS
,

F (σS n) = 0 .

(3.37)

The solution of the nonlinear problem (3.37) defines the stress response by

σS n = P̄n(σS n
trial) = P̄n(uh,n

S , εh,n−1
p ) , (3.38)
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where the stress response function P̄n includes all the incremental plastic evolution re-
lations from (3.35). Furthermore, this formulation also incorporates the correct repre-
sentation of the Kuhn-Tucker conditions in the elastic regime, as for F (σS n

trial) < 0 the
value Λh,n = 0 for the plastic multiplier is obtained and P̄n(σS n

trial) = σS n
trial yields a linear

(elastic) stress response.

Insertion of the stress response P̄n into (3.34) leads to the final formulation of the fully
discretized triphasic formulation: For given values {uh,n−1

S , ph,n−1
L , ph,n−1

G , εh,n−1
p } of the

primary and history variables (last time step), find the solid displacement uh,n
S and the

pressure variables ph,n
L and ph,n

G such that the following weak formulations are fulfilled:

Overall momentum balance:

∫

Ωh

{P̄n(uh,n
S , εh,n−1

p ) − [sL(ph,n
L , ph,n

G ) ph,n
L + sG(ph,n

L , ph,n
G ) ph,n

G ] I} · grad δuh
S dv−

−
∫

Ωh

[nS(uh,n
S ) ρSR + nL(uh,n

S , ph,n
L , ph,n

G ) ρLR+

+ nG(uh,n
S , ph,n

L , ph,n
G ) ρGR(ph,n

G )] g · δuh
S dv =

∫

Γh
t

t̄h · δuh
S da ,

Pore-liquid volume balance:

∫

Ωh

[nL (uh,n
S , ph,n

L , ph,n
G ) + nL (uh,n

S , ph,n
L , ph,n

G ) div (uh,n
S − uh,n−1

S ) ] δph
L dv−

−∆tn

∫

Ωh

w̃L (uh,n
S , ph,n

L , ph,n
G ) · grad δph

L dv =

=

∫

Ωh

nL (uh,n−1
S , ph,n−1

L , ph,n−1
G ) δph

L dv + ∆tn

∫

Γh
v

v̄Lh δph
L da ,

Pore-gas mass balance:

∫

Ωh

{ [nG(uh,n
S , ph,n

L , ph,n
G ) − nG(uh,n−1

S , ph,n−1
L , ph,n−1

G )] ρGR(ph,n
G ) +

+ nG(uh,n
S , ph,n

L , ph,n
G ) [ρGR(ph,n

G ) − ρGR(ph,n−1
G )] +

+ nG(uh,n
S , ph,n

L , ph,n
G ) ρGR(ph,n

G ) div (uh,n
S − uh,n−1

S ) } δph
G dv−

−∆tn

∫

Ωh

ρGR(ph,n
G ) w̃G (uh,n

S , ph,n
L , ph,n

G ) · grad δph
G dv = ∆tn

∫

Γh
q

q̄G h δph
G da .

(3.39)
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Therein, δph
L := δpLR h and δph

G := δpGR h are the abbreviated notations of the test
functions introduced in (3.12). Furthermore, the Neumann boundary conditions v̄L h

(efflux of liquid) and q̄G h (efflux of gaseous mass) are user-defined quantities.

The solution of (3.39) finally gives the new plastic strain via

εh,n
p = ε (uh,n

S ) −CCC
−1 P̄n(CCC [ ε(uh,n

S ) − εh,n−1
p ]) . (3.40)

Remark: According to Equations (3.12) and (3.13), the Dirichlet boundary conditions
are always fulfilled by the solutions {uh,n

S , ph,n
L , ph,n

G } of the system (3.39), i. e.,

uh,n
S = ūh

S(x, tn) on Γh
u ,

ph,n
L = p̄LR h(x, tn) on Γh

pl ,

ph,n
G = p̄GR h(x, tn) on Γh

pg .

(3.41)

2

3.3.2 Newton-Raphson method and consistent linearization

By a reformulation of (3.39), the following residual terms can be identified (dependencies
on the primary and history variables are omitted for convenience):

Rh,n
MM =

∫

Ωh

{P̄n − (sLn ph,n
L + sG n ph,n

G ) I} · grad δuh
S dv−

−
∫

Ωh

(nS n ρSR + nLn ρLR + nG n ρGR n) g · δuh
S dv −

∫

Γh
t

t̄h · δuh
S da ,

Rh,n
V L =

∫

Ωh

[nL n − nL n−1 + nL n div (uh,n
S − uh,n−1

S )] δph
L dv−

−∆tn

∫

Ωh

w̃n
L · grad δph

L dv − ∆tn

∫

Γh
v

v̄L h δph
L da ,

Rh,n
MG =

∫

Ωh

[ (nG n − nG n−1) ρGR n + nG n (ρGR n − ρGR n−1) +

+ nG n ρGR n div (uh,n
S − uh,n−1

S ) ] δph
G dv−

−∆tn

∫

Ωh

ρGR n w̃n
G · grad δph

G dv − ∆tn

∫

Γh
q

q̄G h δph
G da .

(3.42)
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Therein, Rh,n
MM , Rh,n

V L and Rh,n
MG denote the residual terms resulting from the momentum

balance of the mixture, the pore-liquid volume balance and the pore-gas mass balance,
respectively. With these definitions, the global problem is obtained by the evaluation
of the single test functions as described in Equation (3.17). For N nodal points and a
general D-dimensional case, the following global problem is defined: For given values of
the vectors un−1 and qn−1 (last time step), determine the new quantities un and qn such
that

RRRh,n(tn,un, qn) =








RRRh,n
MM(tn,un, qn)

RRRh,n
V L(tn,un)

RRRh,n
MG(tn,un)








!
= 0 , (3.43)

where, according to (3.23), the temporally discretized unknown quantities are collected
in the vectors un and qn. Furthermore, RRRh,n

MM , RRRh,n
V L and RRRh,n

MG are defined as follows:

RRRh,n
MM(tn,un, qn) =

[

Rh,n
MM(tn,un, qn; φ1

u1
) , . . . , Rh,n

MM(tn,un, qn; φN
uD

)
]T

,

RRRh,n
V L(tn,un) =

[

Rh,n
V L(tn,un; φ1

pl) , . . . , Rh,n
V L(tn,un; φN

pl)
]T

,

RRRh,n
MG(tn,un) =

[

Rh,n
MG(tn,un; φ1

pg) , . . . , Rh,n
MG(tn,un; φN

pg)
]T

.

(3.44)

Therein, {φi
u, φ

i
pl, φ

i
pg} with i = 1, . . . , N represent the global basis functions defined in

(3.12).

As already denoted in the previous section, a combination of several substeps is used for
the solution of the problem (3.43), cf. Wieners [148], Ehlers & Ellsiepen [59] and Wieners
et al. [151]:

∗ compute the residual RRRh,n,j on the basis of the current vector uj
n. Note that within

this substep the stress response is determined at every integration point from the
numerical quadrature by a Newton-Raphson method for (3.37). This evaluation at
the integration points leads to the determination of the current vector of the internal
variables: qj

n = qj
n(uj

n).

∗ compute the consistent tangent DRRRh,n,j = dRRRh,n,j / duj
n of the global system (3.43).

∗ solve the sparse global linear system (3.49) for ∆uj
n.

∗ update the global variables uj+1
n = uj

n − ∆uj
n.

Therein, the index j denotes the current Newton iteration step.

As the solution of the local system (3.37) is carried out for fixed values of the primary
variables uj

n, the new vector qj
n of the internal variables is a function of uj

n. Taking this
fact into account within the computation of the tangent for the Newton-Raphson method
leads directly to the term “algorithmically consistent linearization”, which was established
in the framework of nonlinear finite element calculations of elasto-plastic materials by
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Simo & Taylor [129]. Further information about this topic can be found, e. g., in the
work by Wriggers [155] or Eipper [65].

According to this, the algorithmically consistent tangent DRRRh,n,j reads

DRRRh,n,j =
dRRRh,n,j

du
j
n

=
∂RRRh,n,j

∂uj
n

+
∂RRRh,n,j

∂qj
n

dqj
n

du
j
n

, (3.45)

where the dependence of qj
n on the primary variables uj

n can be determined by the deriva-
tion of the local system (3.37) with respect to uj

n:

RRRh,n,j
local

!
= 0 ,

dRRRh,n,j
local

du
j
n

=
∂RRRh,n,j

local

∂uj
n

+
∂RRRh,n,j

local

∂qj
n

dqj
n

du
j
n

= 0

;
dqj

n

du
j
n

= −
[

∂RRRh,n,j
local

∂qj
n

]−1
∂RRRh,n,j

local

∂uj
n

.

(3.46)

Therein, RRRh,n,j
local is the residual formulation of the local system (3.35) (index j of the current

Newton iteration is omitted for convenience)

RRRh,n
local (tn,un, qn) =









RRRh,n
local 1 (tn,un, qn)

·
·
·

RRRh,n
local K (tn,un, qn)









!
= 0 with

RRRh,n
local k(tn,un, qn) =






εh,n
p − εh,n−1

p − ∆tn Λh,n
∂G(σS(uh,n

S , εh,n
p ))

∂σS

F (σS(uh,n
S , εh,n

p ))






x=xk

,

(3.47)

where RRRh,n
local k is obtained at each integration point k (k = 1, . . . , K) of the underlying FE

mesh with the global position xk. Note that the matrix ∂RRRh,n,j
local / ∂q

j
n is block-diagonal,

i. e., the linear system (3.46)2 can be solved in a decoupled way by solving a small linear
system for the internal variables at each integration point.

Insertion of the above result in (3.45) gives the final form of the algorithmically consistent
tangent:

DRRRh,n,j =
∂RRRh,n,j

∂uj
n

− ∂RRRh,n,j

∂qj
n

[

∂RRRh,n,j
local

∂qj
n

]−1
∂RRRh,n,j

local

∂uj
n

. (3.48)

With this tangent, the global linear system

DRRRh,n,j ∆uj
n = RRRh,n,j (3.49)

is solved for the global Newton increment ∆uj
n. After that, the global solution vector is

updated,
uj+1

n = uj
n − λ∆uj

n , (3.50)



54 Chapter 3: Spatial and temporal discretization

and, based on this new solution vector, the new residual RRRh,n,j+1 is evaluated again. In
(3.50), λ is a damping parameter, which is determined by minimizing the new Euclidian
defect ||RRRh,n,j+1 ||. The above mentioned procedure is repeated until the norm of the
residual fulfills a user-defined tolerance:

||RRRh,n,j+1 || < tol . (3.51)

3.3.3 Local assembling interface

Within a FE program, the evaluation of many substeps for the solution of the nonlinear
system is carried out on the element level. This fact leads directly to the following scheme
of a local assembling interface defined for each cell C, which contains all the main steps
of the nonlinear solution procedure: evaluation of the Dirichlet and Neumann boundary
conditions, calculation of the residual (3.43), determination of the algorithmically consis-
tent tangent (3.48) and, finally, the update of the internal variables at the end of a time
step:

∗ DC(tn, (un)C): mark all components corresponding to Dirichlet boundary points
on Γu, Γpl and Γpg and assign the corresponding Dirichlet boundary values at time
tn in the element solution vector (un)C .

∗ RC(tn, ∆tn, (un)C , (un−1)C , (qn−1)C): for a given Newton iterate (un)C = (uj
n)C ,

the old element solution vector (un−1)C and the old element vector of the internal
variables (qn−1)C , compute the element-wise residual (RRRh,n,j)C of the global problem
(3.43). If the cell C contains an edge (or surface) at the boundary of the domain,
additionally, the Neumann boundary conditions are evaluated and added to the
residual (RRRh,n,j)C within this function.

∗ TC(tn, ∆tn, (un)C , (un−1)C , (qn−1)C): for a given Newton iterate (un)C = (uj
n)C ,

the old element solution vector (un−1)C and the old element vector of the internal
variables (qn−1)C , compute the element-wise consistent tangent (DRRRh,n,j)C .

∗ UC(tn, (un)C , (qn)C): for a given Newton solution (un)C , update the vector of the
internal variables (qn−1)C = (qn)C (old vector for the next time step) by an element-
wise evaluation of (3.40).

With the definition of this local assembling interface, the strategy of solving one time step
for the nonlinear system (3.43) reads as follows:

∗ call DC for all elements and assemble the element-wise information (un)C of the
Dirichlet data into the global solution vector un. This procedure is carried out once
at the beginning of a time step.

∗ start the Newton-Raphson method:

. call RC for all elements and assemble the element-wise information (RRRh,n,j)C

(including the Neumann data) to the global residual RRRh,n,j and check for con-
vergence, i. e., ||RRRh,n,j || < tol.
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. if the residual norm does not meet the stopping criterion, call TC for all elements
and assemble the global consistent tangent DRRRh,n,j.

. solve the global system DRRRh,n,j ∆uj
n = RRRh,n,j and determine an appropriate

damping factor λ for the update of the global solution vector uj+1
n = uj

n +
λ∆uj

n.

∗ if the stopping criterion of the Newton-Raphson method is reached, call the update
function UC for all elements. If the maximum number of Newton iterations is
reached, i. e., no convergence within the Newton-Raphson method is obtained, bisect
the time step size and start the Newton iteration with the smaller time increment
once again (until a minimum time step size is reached, which leads to a termination
of the whole program).

Note that the presented local assembling interface allows for a coupling of two different
FE codes, whereas, e. g., one finite element code contains the implementation of a specific
material behavior and the other program exhibits efficient linear solvers. In Section 5.2.2,
the idea of this interface will be picked up again, when a sequentially implemented finite
element code is parallelized by coupling it with a program, which already contains parallel
data structures.





Chapter 4: Regularization techniques

With the theoretical and numerical information given in the last two chapters, one now
is in principle provided with all the necessary information for the numerical simulations
of strongly coupled solid-fluid problems based on the finite element method. However, a
major problem occurs within finite element calculations, when the elastic range of the solid
skeleton is exceeded and the plastic deformations result in a softening material behavior
of the solid skeleton. In soil mechanics, such material behavior can be observed in the
numerical investigations of localization phenomena, as, for example, in the well-known
base failure and slope failure problems. Carrying out FE calculations of these problems,
the development of shear bands can be found, which result from local concentrations of
plastic strains and which lead to the failure of the investigated geometries.

In such cases, the results of FE simulations based on the presented plasticity model from
Section 2.3.3 show a strong dependence on the chosen spatial discretization with finite
elements, which is of course spurious and unphysical. This so-called mesh-dependent
behavior can be avoided by the application of regularization techniques.

After some remarks on mesh-dependent behavior and an overview of existing regulariza-
tion techniques, within this chapter, three different regularization techniques are discussed
in detail, namely a viscoplastic ansatz, a micropolar continuum theory and a non-local
model. After the presentation of the theoretical aspects and the numerical realization of
the single regularization techniques, numerical simulations are shown, which clarify the
properties of the single approaches.

4.1 Mesh-dependent behavior

The above mentioned problem in the numerical simulation of localization phenomena re-
sulting from softening material behavior can be recognized, for example, in the width of
the localization zone. It can be observed that the width of the shearing domain strongly
depends on the chosen spatial discretization through the mesh size and the mesh orien-
tation. For example, each mesh refinement leads to a decrease of the shear band width
until, in theory, one obtains a singular surface for an infinitely fine FE mesh.

Obviously, such a mesh-dependent behavior leads to unphysical results, as from experi-
mental investigations, it can be seen that the width of the shear band is directly connected
with a micro-structural length scale, like, e. g., the average size of the grains in a sandy
soil. However, the presented plasticity model from Section 2.3.3, suffers from the draw-
back that no material parameter is involved in the model, which is capable of defining the
width of the shear band independently of the spatial discretization, and, as a consequence,
the element size serves as an internal length scale. Therefore, this plasticity model is not
applicable for the numerical simulation of localization problems.

From the mathematical point of view, the reason of this pathological mesh sensitivity is

57
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due to the fact that the type of the partial differential equations changes from elliptic to
hyperbolic right at the moment, when the material behavior switches from non-softening
to softening or, in other words, the well-posed problem becomes an ill-posed problem.
The terms “well-posed problem” and “ill-posed problem” were originally introduced by
Hadamard [81] based on the following definition: a problem is well-posed when a solution
exists, is unique and depends continuously on the initial data. It is ill-posed when it fails
to satisfy at least one of these three criteria.

Within the framework of this thesis, the question, which of the three criteria is not fulfilled
at the onset of softening material behavior, is not going to be discussed. Here, a problem
will be classified as ill-posed or not regularized, when the numerical calculations with
several, uniformly refined FE meshes lead to different results concerning the shear band
width, the absolute value of the plastic strains and the stress-displacement development
at a specific point or area. For a more detailed information on the classification and the
regularization of ill-posed problems with emphasis on the mathematical viewpoint, the
interested reader is referred to, e. g., Morozov [108] or Louis [102].

Note that mesh-dependent behavior is a phenomenon, which is associated with elasto-
plastic and softening material behavior of a solid constituent. The simultaneous consider-
ation of pore-fluids in a porous material does not deteriorate but can weaken the ill-posed
behavior, cf. Ehlers & Volk [64]. This effect is due to a more or less pronounced viscosity
of the respective pore-fluids. Within the framework of this thesis, such effects are not
going to be discussed and, therefore, single-phasic (solid) materials are viewed for further
discussions within this chapter.

For the sake of simplicity, mesh-dependent behavior is going to be illustrated at the
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example of a simple one-dimensional problem, which is also going to be used for the
discussion of the single regularization techniques in Section 4.6.1. This example concerns
a bar, which is supported at x = 0 and which is pulled at the right end (x = L) by
an increasing displacement ū (t), cf. Figure 4.1 (top). The following set of equations
describes the kinematics, the equilibrium condition and the constitutive relations for this
model problem:

ε = du/dx (kinematic compatibility) ,

dσ/dx = 0 (momentum balance) ,

σ = E εe (Hookean elasticity law) ,

ε = εe + εp (strain decomposition) ,

F = σ − ?
κ (yield criterion) ,

?
κ = κ0 − h εp (hardening/softening law) ,

dεp/dt = Λ dF/dσ (plastic flow rule) ,

ΛF = 0 , Λ ≥ 0 , F ≤ 0 (Kuhn-Tucker conditions) .

(4.1)

Therein, the following values for the material parameters are chosen: Young ’s modulus
E = 210 · 103 kN/m2 and initial equivalent stress κ0 = 240 kN/m2. For the parameter h,
three different values are chosen in order to illustrate linear softening (h = 1 000 kN/m2)
and linear hardening (h = −1 000 kN/m2) material behavior as well as the limiting case
of ideal or Prandtl-Reuss plasticity (h = 0 kN/m2). The length L of the bar is 0.2 m and
the Dirichlet boundary condition ū (t) at x = L results due to a linear increase of ū in the
final displacement of 0.9 mm at t = 6 s. In order to initiate a “shear band” (shear zone)
in a predefined area of the bar, the initial equivalent stress κ0 is weakened as shown in
Figure 4.1 (bottom).
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Figure 4.2: Distribution of the plastic strains εp [-] in the bar (left) and development of the
stress σ [kN/m2] at x = L (right) for h = 1000 kN/m2.

For an evaluation of the posedness of the respective problem, FE calculations were carried
out with different meshes. Starting from a spatial discretization with 4 elements, 5 regular
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Figure 4.3: Distribution of the plastic strains εp [-] in the bar (left) and development of the
stress σ [kN/m2] at x = L (right) for h = 0kN/m2.

refinement steps result in a rather fine mesh with 128 elements. Therein, one regular
refinement step divides each element into 2 elements of identical size, and, therefore,
doubles the number of elements. Within each element, a quadratic ansatz is chosen for
the displacement u and the numerical quadrature is carried out as shown in Section 3.1.4
with an integration order 5, which results in 3 integration points per element.

Concerning the results of the computations carried out with h = 1 000 kN/m2, the mesh-
dependent behavior is quite obvious. The stress-displacement relationship (Figure 4.2,
right) shows a softening material behavior, which strongly depends on the spatial dis-
cretization, i. e., each refinement of the mesh leads to a huge decrease in the stress
response such that already the mesh with 64 elements would give negative stresses at the
final displacement of ū = 0.9 mm. As the simple model problem from (4.1) contains no
saturation constraint, which would prevent a softening towards the negative range of the
stresses, the simulations were terminated whenever the resulting stress of any integration
point in the mesh was negative.

In order to compare the shear zones in this example, the plastic strains at ū = 0.3 mm
are plotted over the length of the bar for three different FE meshes, cf. Figure 4.2 (left).
Therein, the ill-posedness of this problem is also well reflected. The width of the shear zone
as well as the absolute values of the plastic strains are totally different in the calculations
with the varying meshes. Furthermore, the location of the maximum value of the plastic
strain changes and is never exactly at x = L/2 = 0.1 m, where the weakening of κ0 is
maximum.

In Figure 4.3, the results for h = 0 kN/m2 are shown. Therein, the stress remains con-
stant after the yield stress is reached, which in this example corresponds to 216 kN/m2

in the weakened area of the bar at x = L/2. Due to the fact that for h = 0 kN/m2, the
stress response is specified a priori in the plastic regime, the resulting stress-displacement
relationship shows a well-posed behavior, where the numerical results converge to a ref-
erence solution for the refined meshes, cf. Figure 4.3 (right). Nevertheless, the problem
is still ill-posed, as the distribution of the plastic strains at ū = 0.9 mm shows again a
mesh-dependent behavior, cf. Figure 4.3 (left), like in the previous example.

Finally, in Figure 4.4, the parameter h is set to a negative value such that a hardening
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Figure 4.4: Distribution of the plastic strains εp [-] in the bar (left) and development of the
stress σ [kN/m2] at x = L (right) for h = −1 000 kN/m2.

material behavior is obtained. This example results in a well-posed problem, as both
the stress-displacement relationship and the distribution of the plastic strains show a
mesh-independent behavior. Note that in this case, the whole bar undergoes plastic
deformations, whereas in the middle area of the bar, the given weakening of κ0 is reflected.

4.2 Overview of regularization techniques

In order to overcome the pathological mesh sensitivity illustrated in the last section, the
ill-posed problem has to be regularized and, therewith, to be transferred into a well-posed
problem. For this procedure, many different strategies can be found in the literature,
cf. for an excellent survey on some methods, e. g., Brinkgreve [36]. Within this section,
three main branches of regularization methods are discussed shortly concerning their
advantages and disadvantages on the basis of important publications dealing with the
respective methods.

Before this discussion, it is very important to be aware of the fact that, within most
regularization methods, the actual mathematical formulation, which, from a theoretical
point of view, describes the physical problem under study correctly, is changed such that
the numerical realization of this formulation yields a well-posed problem. This is usually
achieved by the introduction of an internal length scale, by which the influence of the
regularization method on the physical model can be controlled. Applying a regularization
technique, it is therefore always a crucial point to what extent the physical problem has
to be changed in order to obtain a regularizing effect, i. e., an objective result.

The first branch of the regularization techniques to be discussed here are methods, which
take advantage of a possible rate-dependent behavior of the material under study. Such a
material behavior allows for the introduction of viscosity in the model, which prevents the
pathological mesh dependence a priori. This is due to the fact that the numerical solu-
tions for rate-dependent materials always remain well-posed even in the case of softening
material behavior, cf. Needleman [113]. A common approach, which can be found in the
literature, cf. [44, 121, 146] (among others), is to regard the rate-dependent behavior only
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for its regularizing effect in the plastic regime, which leads to the term “viscoplasticity”.

The actual realization of such rate-dependent regularization techniques are carried out
within the constitutive theory, where, e. g., in case of the common Perzyna viscoplasticity
[118], the viscosity is added within the formula for the plastic flow rule. In connection
with this, it is remarkable that, although there are no parameters in such regularization
methods with the dimensions of length involved, material rate dependence implicitly
introduces an internal length scale in the governing equations, which affects the width of
the shear band [113]. Furthermore, it was pointed out by Belytschko et al. [11] and Wang
et al. [146] that, in case of viscoplasticity, the size of the imperfection can significantly
influence the initial width of the shear band. Note that in the computational analysis of
failure, imperfections in the geometry or the material parameters are very often used to
initialize the localization zone, cf. the 1-d example from the last section.

Concerning the advantages and disadvantages of viscoplastic models, the most obvious
drawback of this model is due to the rate dependence. Viscoplastic models do not work at
all for purely static simulations. Adequate applications for this regularization technique
are dynamic or, at least, quasi-static problems. Furthermore, for relatively slow processes,
the amount of viscosity to retain well-posedness can become unrealistically high such that
so-called artificial viscosities are incorporated in the respective boundary-value problem
[36].
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Figure 4.5: Rheological models for rate-dependent material behavior following Perzyna [118]
(top) and Dias da Silva [41] (bottom).

Nevertheless, for dynamic or quasi-static problems, the viscoplastic model is a powerful
tool for the regularization procedure. Moreover, following Perzyna [118], each material
has a more or less pronounced time-dependent behavior, which furthermore motivates the
application of viscoplasticity on a physical basis. di Prisco & Imposimato [120] prove even
time-dependent material behavior for loose sand within experimental investigations (load
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controlled triaxial tests). To be more precise, in a continuative publication, where the
numerical simulation of this sand is discussed in detail, di Prisco et al. [121] admit that the
identified viscosity is too low to reliably regularize their strain-softening problems such
that they would have to choose artificial viscosities to obtain objective results, which is
not surprising for this kind of material. To overcome this problem, di Prisco et al. expand
their viscoplastic model with respect to a further regularization technique, namely a non-
local model (see below). By this combination, they obtain objective results from their
numerical simulations.

In a recent work by Dias da Silva [41], the difficulty of ill-posedness within low viscous
or even inviscid circumstances is solved by a modification of the underlying rheological
model. Therein, instead of the classical viscoplastic rheological model following Perzyna
(Figure 4.5, top), a parallel assembly of a viscoelastic Maxwell model (E, η) and an elasto-
plastic element (E0, σY ) is used (Figure 4.5, bottom). Obviously, by this modification,
viscosity is regarded in both the elastic and the plastic regime.

Finally, from a numerical point of view, viscoplastic models are very convenient, since
they do not need any additional discretization on the global level, which makes the im-
plementation of such a model within an existing FE program quite easy.

Another possibility of a regularization method is based on the application of the so-called
micropolar theory, which dates back to the work by Cosserat & Cosserat [38] and which
is, therefore, also called the Cosserat (continuum) theory. The micropolar theory is a
physically motivated extension of the standard Boltzmann continuum. The basic idea
of this extended continuum theory is to assign each material point in addition to the
standard translational degrees of freedom also independent rotational degrees of freedom.
By doing this, the distortion of the material points against each other has an influence on
the macroscopic behavior.
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Figure 4.6: Physical motivation of the Cosserat theory [144].

Typical representatives of this micropolar class are granular materials, whose material
points must have a spatial expanse in the order of magnitude of the single grains. Thus,
the smallest possible unit of the micropolar material is a so-called micro rigid body, which
consists of the three translational and the three rotational degrees of freedom of a rigid
body. These rotational degrees of freedom may not be identified by the rotations of
the single grains, as the virtual averaging process, cf. Section 2.1.1, has to be carried
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out also in this case. Due to this reason, the additional rotational degrees of freedom
correspond, from a physical point of view, to the averaged rotations of the single grains
over a Representative Elementary Volume (REV), cf. Figure 4.6.

Interestingly enough, the micropolar theory by the Cosserat brothers received only little
attention in the first half of the last century, which was probably caused by its relative
complexity [26]. Nevertheless, after a dormant period of some 50 years, renewed interest
arose by the work by, e. g., Günther [80], Schaefer [122], Besdo [13], Eringen & Kafadar
[71] or Steinmann [132] (among others), in which the original formulation by the Cosserat
brothers was extended and improved towards a generalized continuum mechanical theory.
Publications with a focus on micropolar porous media on the basis of the Theory of Porous
Media can be found in the group of Ehlers, cf., e. g., the work by Diebels & Ehlers [43],
Ehlers & Volk [64], Volk [144], Diebels [42] or Ehlers [53].

The regularizing effect of the Cosserat theory within the numerical simulation of strain-
softening problems was discovered almost 20 years ago, thus leading to many publications
with emphasis on this topic, cf., e. g., Mühlhaus & Vardoulakis [111], de Borst [24, 25,
26], Steinmann & Willam [133], Dietsche et al. [47], Tejchman & Wu [138], Ehlers &
Volk [64] or Ehlers et al. [60]. This regularizing effect is due to the introduction of the
additional quantities couple stress and curvature [29], which are related to each other by a
constitutive relation containing usually an internal length scale [24]. By this approach, the
internal length scale, by which the width of the shear band can be controlled in the case
of the numerical investigations of localization phenomena, is already introduced within
the elastic regime.

Discussing the characteristics of the micropolar theory as a regularization method, de Borst
& Mühlhaus [27] and Brinkgreve [36] claim that the Cosserat theory is only efficient as a
regularization tool, if shear deformations play a dominant role in the respective boundary-
value problem under study. This fact can lead to unrealistic results in the numerical
simulation of fracture problems, like, e. g., of a mode-I fracture [26]. However, for the
numerical investigations of shear bands, the Cosserat theory works well as a regularization
technique. Therein, it can be observed that the rotational degrees of freedom and, as a
consequence, the quantities couple stress and curvature are only active, i. e., non-zero,
within the shearing domain.

Furthermore, due to the physical motivation of the Cosserat continuum, the micropo-
lar theory can only be applied to certain classes of materials. Typical materials are in
this context, e. g., materials with a granular or a beam-like microstructure. However,
Diepolder [46] applied the micropolar theory even for the numerical simulation of torsion
experiments of metal bars. He motivates this approach by experimental investigations of
torsion bars, which show a modified surface structure after a torsional load. Following
Diepolder, this change in composition of the surface is due to a change of the orientation
of the single polycrystals in the metal bar.

From a numerical point of view, the application of the Cosserat theory significantly
increases the numerical effort of solving a boundary-value problem, because of the in-
troduction of the rotations as additional degrees of freedom. Nevertheless, de Borst &
Mühlhaus [27] suggest an approach such that the classical format of computational plas-
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ticity can be recovered and, thus, minimize the programming effort for the realization of
the Cosserat theory in existing finite element programs.

Finally, the third main branch of regularization methods is discussed, the so-called non-
local models. Except of the other two already discussed branches, the application of the
non-local models is, as far as the author is aware, not restricted with respect to certain
types of boundary-value problems or specific materials. For a clear classification of these
models, the different approaches can be grouped into integral- and gradient-type models.
In Jirásek [95], an excellent overview of both the integral- and gradient-type non-local
methods is given.

Starting with the integral-type models, the first publications on this topic date back
to the late sixties of the last century and focus on non-local formulations for elasticity,
cf. Kröner [97] and Eringen & Edelen [70]. Later, this was extended by Eringen [69]
towards plasticity. These ideas were first applied to regularization methods by Pijaudier-
Cabot & Bažant [119] in the context of damage models and by Bažant et al. [8] or
Belytschko et al. [10] for strain-softening problems. In Strömberg & Ristinmaa [136], a
detailed description of a possible numerical solution procedure for an integral-type non-
local plasticity model within the FE method is presented. A comprehensive publication
on integral-type methods with an emphasis on damage models is given by Bažant &
Jirásek [9].

Generally speaking, the idea of a non-local approach consists of replacing a certain “local”
field function f(x) by its non-local counterpart ¯̄f(x) obtained by a weighted averaging
over a spatial neighborhood of each point under consideration [95]. This leads directly to
the definition of an integral-type non-local (averaged) quantity

¯̄f(x) =
1

Vr(x)

∫

Ω

w(x − y) f(y) dv , (4.2)

where w is an averaging function and Vr(x) is the so-called representative volume defined
by

Vr(x) =

∫

Ω

w(x − y) dv . (4.3)

Note that the volume integrals in (4.2) and (4.3) are carried out over the whole domain
Ω for fixed position vectors x and variable position vectors y. The influence of the
surrounding area of x on the averaged function ¯̄f(x) is given by the distance vector
(x − y) included in the function w. Thus, the above definition yields for constant field

functions, f(x) = const., the identity ¯̄f(x) ≡ f(x). In this approach, the averaging
function w contains the internal length scale, by which the influence of the regularization
method on the numerical solution can be controlled, cf. [95, 136, 36] or Section 4.5.1.

In a fully integral-type non-local method, a relation is established between average stresses
and average strains. Using a non-local approach as a regularization technique, usually
only one variable is evaluated in an averaged sense. Following Jirásek [95], the choice of
the variable to be averaged remains to some extent arbitrary, whereby at least one basic
requirement has to be satisfied. The extended model should coincide with the standard
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“local” continuum as long as the material behavior remains in the elastic range. Except for
a homogeneous strain state, averaged strains always differ from local strains, thus leading
to a different model behavior already for purely elastic deformations. For this reason, it
is not possible to simply use averaged strains instead of the local ones and apply them
to the standard constitutive relations. A possible choice, which fulfills this requirement,
is to average the variable, which controls the softening behavior of the material under
study [95, 136, 36]. According to the 1-d formulation (4.1) of the last section and (4.2),
the plastic strain incorporated in the softening law can be averaged, which leads to the

following modified non-local formulation of (4.1)6:
?
κ = κ0 − h ¯̄εp.

From the integral formulation (4.2) for the averaged quantity ¯̄f(x), a relation in terms
of gradients of the quantity f can be derived making use of the following Taylor series
expansion [110, 67]:

f(y) = f(x) + ∇f(y)|
y=x

· (y − x) + 1
2!

∇∇f(y)|
y=x

· [ (y − x) ⊗ (y − x) ] +

+ 1
3!

∇∇∇f(y)|
y=x

· [ (y − x) ⊗ (y − x) ⊗ (y − x) ] +

+ 1
4!

∇∇∇∇f(y)|
y=x

· [ (y − x) ⊗ (y − x) ⊗ (y − x) ⊗ (y − x) ] + . . .

(4.4)

Therein, the notation ∇(·) = grad (·) has been used. Insertion of this expression in
(4.2) and evaluation of the integral on R3 gives the following gradient-type non-local
representation of f , cf. Appendix B:

¯̄f(x) = f(x) + C1 ∆f(x) + C2 ∆∆f(x) + . . . , (4.5)

where the abbreviations ∆(·) = div[∇(·)] and ∆∆(·) = ∆2(·) have been used for con-
venience. Note that the odd derivatives from (4.4) vanish due to isotropy properties of
the averaging function w, cf. Section 4.5.1. Furthermore, note that for the gradient-type
models, the internal length scale is included in the constants Ci (i = 1, 2, . . .).

Many different gradient-type models can be found in the literature, where most of these
models contain second-order gradients, i. e., the fourth- and higher-order gradients from
(4.5) are neglected there. Initially, the idea to add gradients to the constitutive relations
dates back to the work by Mindlin [106] from 1965. In the context of regularization
methods, this idea was first picked up by Aifantis [1], who added a second-order gradient
of the hardening/softening variable in the constitutive relation for the yield stress. First
remarks on the numerical realization of the gradient-type models can be found in Lasry
& Belytschko [101]. The connection between the integral- and gradient-type models,
cf. (4.4) and (4.5), was discovered by Mühlhaus & Aifantis [110]. They furthermore
established a variational formulation for the gradient-type models, where de Borst &
Mühlhaus [27, 28] intensively investigated the numerical realization of this variational
formulation by introducing the plastic multiplier as an additional degree of freedom.
de Borst & Pamin [30] discuss the problems coming along with the numerical realization
of these models, e. g., the proper consideration of the additional boundary terms from the
variational formulation or the choice of C0- or C1-continuous finite elements for a correct
approximation of the higher-order gradient terms. Even in the last few years, the work
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on this topic is still up to date, e. g., Askes et al. [3] analytically examined second-order
gradient models and created a new strain-gradient model including fourth-order gradients.

In accordance with the 1-d formulation (4.1) of the last section, a gradient-type non-local
formulation of (4.1)6 could be formulated as

?
κ = κ0 − h (εp + l2 ∆εp) = κ0 − h

(

εp + l2
∂2εp

∂x2

)

, (4.6)

where l is the internal length scale. The effect of this relation is obvious: as long as the
solution remains uniform, the plastic strain is constant in space, its second derivative van-
ishes identically, and (4.6) is reduced to the standard formulation (4.1)6. After the onset
of localization, the higher-order term is activated and, thus, the formulation preserves its
well-posedness [95].

Due to the above mentioned problems in the numerical realization of the gradient-type
models, the development and the application of so-called implicit gradient-type methods
receive more and more attention, cf., e. g., Engelen et al. [67] or Zimmermann [158]
(among others). In this context, models of the type (4.6) are called “explicit”, as the
corresponding non-local quantity, εp + l2 ∆εp, can be directly calculated from the local
field εp. In contrast to this, implicit models can be derived by taking the second-order
derivative ∆ of (4.5), thus, after some reformulation, ending up with the following partial
differential equation of Helmholtz type [67]:

¯̄f(x) − C1 ∆ ¯̄f(x) = f(x) . (4.7)

By adding the above relation to the set of governing equations and by solving it on the
global level, a C0-continuous interpolation is sufficient for the weak formulation of (4.7).
Furthermore, the problems coming along with the boundary terms are no longer present,
as the boundary terms of the implicit formulation are defined on the external boundary
and not on the moving boundary of the plastic domain, as it is the case for the explicit
gradient-type models [67, 30].

Finally, it should be mentioned at the end of this section that physically meaningful
combinations between different regularization methods can lead to improved results con-
cerning the well-posedness or the numerical behavior, cf., e. g., di Prisco et al. [121] or
Volk [144].

4.3 Viscoplasticity

4.3.1 Theoretical aspects

A widespread strategy to include rate-dependent plastic material behavior in a continuum
mechanical model is the approach suggested by Perzyna [118] in the middle of the sixties
of the last century. Therein, the plastic multiplier Λ included in the flow rule (2.101) is
given by

Λ =
1

η

〈
F (σ)

σ0

〉r

, (4.8)
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where η is the relaxation time (viscosity), σ0 is the reference stress for which the relation
σ0 ≡ κ0 is usually used, r is the viscoplastic exponent and 〈·〉 are the Macauley brackets
defined by 〈x〉 = max{0, x}.
Remark: Note that the quantities introduced in Chapter 2 are used here without the
usual indices marking the different constituents of a porous material. As was already
mentioned in Section 4.1, plastic material behavior is restricted to the solid phase (α = S)
and, therefore, all indices regarding this are omitted for convenience in this chapter.
Following this, e. g., the linearized stress tensor (of the solid constituent) is given by σ

instead of σS
E. 2

In the viscoplastic approach, the relation (4.8) is used for the determination of Λ instead
of the Kuhn-Tucker conditions (2.102), thus allowing for overstresses, i. e., F (σ) > 0,
whose amounts depend on the values chosen for the viscoplastic material parameters η
and r. This overstress character is getting more clear by a reformulation of (4.8):

Λ η 〈σ0〉r = 〈F (σ)〉r . (4.9)

From the above relation, both the rate-independent as well as the rate-dependent case
can be deduced, cf. Hartmann et al. [84], where the limiting case (η = 0) represents
elasto-plasticity and η > 0 leads to viscoplastic material behavior.

Note that due to the use of the Macauley brackets in (4.8), the restriction for the plastic
multiplier defined in (2.102)2, i. e., Λ ≥ 0, is still valid for the viscoplastic case. Conse-
quently, this leads to Λ = 0 for the elastic regime and to some Λ > 0 resulting from the
evaluation of (4.8) in the plastic regime. Following this, the evaluation of (2.101) yields
ε′

p = 0 for Λ = 0 and some non-zero value for the plastic strain tensor εp for Λ > 0.

4.3.2 Numerical realization

Starting from an existing implementation of the elasto-plasticity model as described in
Section 3, the numerical realization of the rate-dependent concept is straightforward, cf.
Ellsiepen [66], Ehlers & Ellsiepen [59] or Wieners et al. [151]. The spatial and temporal
discretized formulation of the plastic evolution equations introduced in (3.35) have to be
changed with respect to the viscoplastic approach:

εh,n
p = εh,n−1

p + ∆tn Λh,n
∂G(σ(uh,n, εh,n

p ))

∂σ
,

Λh,n =
1

η

〈

F (σ(uh,n, εh,n
p ))

σ0

〉r

.

(4.10)

Note that with the explicit equation (4.10)2 for the plastic multiplier Λh,n, the local system
(4.10) could be reduced to one vector-valued relation by inserting (4.10)2 into (4.10)1. This
simplification is not going to be carried out in order to keep the possibility to easily switch
from the rate-dependent to the rate-independent case, in which (4.10)2 is replaced again
by (3.35)2.
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The actual evaluation of (4.10) is carried out in an analogous way as described in Section 3
for the rate-independent model. Thus, from a numerical point of view, the use of the
viscoplastic approach as a regularization technique does not increase the computational
effort at all, as one scalar relation (3.35)2 is replaced by another one (4.10)2 and, even
more important, the evaluation of the plastic evolution equations can still be carried out
element-wise on a local level.

4.4 Micropolar theory

4.4.1 Theoretical aspects

Within this section, a very brief summary of the micropolar theory is given. Therein, the
changes due to this theory within the governing equations, i. e., the geometrically linear
kinematics, the moment of momentum balance relation and the constitutive relations, are
going to be presented. The reader who is interested in a more detailed description of the
Cosserat theory is referred to the citations on this topic already given in Section 4.2.

Considering besides translational also rotational degrees of freedom for each material
point, consequently, an additional primary kinematic variable besides the displacement
vector u has to be taken into account for a proper formulation of the kinematic relations,

namely the independent micropolar rotation
∗
ϕ. Together with the continuum rotation

ϕ, which is directly connected with the skew-symmetric part Hskw of the displacement
gradient H,

H = gradu , Hskw = 1
2
(H − HT ) , (4.11)

this defines the total average grain rotation ϕ̄ by

ϕ̄ = ϕ +
∗
ϕ , ϕ = −1

2

3

EHskw . (4.12)

Therein,
3

E denotes the Ricci permutation tensor, cf. Appendix A.1.3. As a consequence
of the introduction of ϕ̄, one is able to define the linear Cosserat strain tensor ε̄ and the
linear curvature tensor κ̄:

ε̄ = H +
3

E ϕ̄ , κ̄ = grad ϕ̄ . (4.13)

From the above definition, it is obvious that the Cosserat strain tensor ε̄ does not nec-
essarily have to be a symmetric tensor, as it is the case for the strain tensor ε from the
non-polar continuum theory, cf. Equation (2.95). Thus, the symmetric and the skew-
symmetric parts of the Cosserat strain are described by

ε̄sym = 1
2
(H + HT ) = ε ,

ε̄skw = 1
2
(H − HT ) +

3

E ϕ̄ =
3

E
∗
ϕ .

(4.14)

Furthermore, Ehlers & Volk [64] derived a relation between the Cosserat strain and the
linear curvature tensor. This so-called micropolar compatibility condition can be obtained
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by use of the Equations (4.11)1 and (4.13) and the Schwarzian exchangeability rule of
partial derivatives, cf. Volk [144] for a detailed derivation:

κ̄ = 1
2
{

3

E [ grad ε̄ + (grad ε̄)
13

T − (grad ε̄)
23

T ] }2. (4.15)

As already mentioned, the transpositions ( · )
ik

T indicate an exchange of the i-th and k-
th basis systems included into the tensor basis of higher order tensors. The additional
superscript { · }n defines the included contraction { · } to yield a tensor of n-th order, cf.
Appendix A.1.5.

In a next step, the micropolar moment of momentum balance relation is going to be
discussed, in which additional quantities compared to the standard moment of momentum
balance, cf. Section 2.2.4, have to be regarded. Referring to the general balance relation
(2.41)2, the following values for the efflux Φ, the supply σ and the production term Ψ̂
have to be considered for a proper determination of the temporal change of the micropolar
angular momentum, which is the mechanical quantity Ψ in this case:

Ψ = x × ρ ẋ + ρ Θ̄ ω̄ , Φ = x × T + M , σ = x × ρb + ρ c , Ψ̂ = 0 . (4.16)

Therein, Θ̄ is the tensor of microinertia, ω̄ = ˙̄ϕ is the rotational velocity, M denotes the
couple stress tensor and c is the volume-specific body couple stress vector.

With the above relation and (2.42)2 together with the consideration of the “lower” balance
relations, i. e., the mass and the momentum balances, the following local moment of
momentum balance relation is obtained:

ρ (Θ̄ ω̄). = I × T + div M + ρ c . (4.17)

Restricting the considerations to the case of quasi-static processes ( ˙̄ω = 0) and, further-

more, applying the simplifying assumption ˙̄Θ = 0 [64], the balance equation of angular
momentum finally reads

0 = I × T + div M + ρ c . (4.18)

The above relation serves as an equation for the determination of the total rotation ϕ̄.
Furthermore, as a direct consequence of Equation (4.18), the micropolar stress tensor T
(or σ, cf. (4.19)1) usually is non-symmetric.

Remark: As was already mentioned in the remark on Page 68, the character σ will be
used as a symbol for the stress tensor under small strain conditions. The supply term
from (4.16), which unfortunately has the same symbol, is not going to be used in the
further discussions in this thesis. 2

Following Ehlers & Volk [64], the constitutive expressions for the stress σ and the couple
stress M are given by

σ = 2µ ε̄e sym + 2µc ε̄e skw + λ ( ε̄e sym · I ) I ,

M = 2µc l
2
c κ̄e ,

(4.19)
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whereby, in analogy to the non-polar theory, cf. (2.96), the Cosserat strain ε̄ and the
curvature tensor κ̄ are additively decomposed into elastic and plastic parts:

ε̄ = ε̄e + ε̄p , κ̄ = κ̄e + κ̄p . (4.20)

In (4.19), µ and λ are the standard Lamé constants, whereas µc is an additional parameter
governing the influence of the skew-symmetric part of the elastic Cosserat strain on the
stress tensor σ. Note that the symmetric part of σ is equivalent to the stress tensor (2.97)
of the non-polar formulation, whereas the skew-symmetric part is directly related to the

independent micropolar rotation
∗
ϕ through (4.14)2. Finally, as was pointed out, e. g., by

de Borst [24], lc represents an intrinsic length scale parameter relating the couple stress
to the elastic curvature. Using this parameter, the regularizing effect of the micropolar
theory can be controlled.

In order to expand the micropolar theory to plastic material behavior, all the stress
quantities introduced in (4.19) have to be considered for a consistent formulation of the
yield criterion. Starting from the extension of the single-surface yield criterion (2.98)
towards micropolar cohesive-frictional materials given in [64], a simple micropolar yield
criterion could be formulated via

F̄ =
√

IIDsym + kσ IIskw + 1
2
kM

√

IIM − ?
κ , (4.21)

whereby, for simplicity, the parameters {α, β, δ, ε , γ ,m} from (2.98) are all set to zero

and the constant parameter κ is replaced by a proper softening law
?
κ to be discussed

in Section 4.6.2. In the yield criterion introduced above, IID
sym is the second principal

invariant of symmetric part of the stress deviator σD, IIskw defines the second principal
invariant of the skew-symmetric part of σ, and IIM is the second principal invariant of
the couple stress M, cf. Appendix A.2.2. Furthermore, kσ and kM are additional material
parameters.

As was pointed out by Ehlers & Volk [64], there exists no evolution equation for the
plastic rate of the curvature tensor independent of both the evolution equation for the
plastic strains, cf. (2.101),

ε̄′
p = Λ

∂ Ḡ

∂ σ
, (4.22)

and the micropolar compatibility condition (4.15). Thus, once the plastic strain rate is
given via Equation (4.22), the most convenient possibility to obtain an evolution equation
for κ̄p directly results from (4.15), leading to the following expression:

κ̄′
p = 1

2
{

3

E [ grad ε̄′
p + (grad ε̄′

p)
13

T − (grad ε̄′
p)

23

T ] }2. (4.23)

Note that within the further discussions in this chapter, the concept of associated plasticity
is applied for simplicity. Therefore, the micropolar plastic potential Ḡ from (4.22) is equal
to the yield criterion (4.21), thus leading to Ḡ = F̄ .
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4.4.2 Numerical realization

As was shown in Section 3.1.1, the strong formulation (4.18) of the moment of momentum
balance has to be transferred into a weak formulation. Therefore, the necessary trial and
test spaces are defined in a way analogous to (3.2):

Sϕ(t) = { ϕ̄ ∈ H1(Ω)r : ϕ̄(x) = ¯̄ϕ(x, t) on Γϕ } ,

Tϕ = { δϕ̄ ∈ H1(Ω)r : δϕ̄(x) = 0 on Γϕ } .
(4.24)

Therein, the index r is related to the spatial domain, i. e., it holds r = 1 for a 2-d problem
and r = 3 for a 3-d problem. Note that the only rotational degree of freedom in two-
dimensional problems is defined by a possible “in-plane” rotation of a grain around the
axis perpendicular to the defined plane. Following this, it is not possible to formulate a
Cosserat theory within a purely one-dimensional model, as no rotational degree of freedom
can be identified therein. Note that in “hybrid” models like the Timoshenko beam such
independent rotations can be identified again, cf. Günther [80]. In the framework of this
thesis, such models, which exhibit expanded 1-d formulations but which are not globally
valid 2-d models, are not going to be discussed.

By a scalar multiplication of (4.18) with the test function δϕ̄, integration over the domain
Ω and application of the usual reformulations shown in Section 3.1.1, the weak formulation
of the moment of momentum balance relation is obtained:

∫

Ω

M · grad δϕ̄ dv −
∫

Ω

(I × σ) · δϕ̄ dv = 0 ∀ δϕ̄ ∈ Tϕ . (4.25)

Therein, it has been assumed that there is no external loading by couple vectors c and
surface couples m = Mn.

The above relation and the weak formulation of the momentum balance (3.7), in which
the pore pressure p has to be set to zero for a single phase material, build the set of
governing equations for the (single phase) micropolar formulation to be discussed in this
chapter. According to Volk [144], the convergence behavior of this model can be signifi-
cantly improved by applying the viscoplastic ansatz shown in Section 4.3 instead of the
elasto-plastic approach. Therefore, this combination is going to be used in the numerical
simulations shown in Section 4.6.2.

Remark: Combining the two regularization methods, it is, at first sight, not clear,
which approach is regularizing the numerical simulation of a strain-softening problem. To
demonstrate the regularizing effect of the Cosserat theory, an adequately small value for
the viscosity η will be chosen in the numerical example in Section 4.6.2. Before this, it
will be shown that this value for the viscosity leads to an ill-posed behavior, if numeri-
cal simulations are carried out with the viscoplastic approach as the only regularization
technique. 2

Another point to be discussed in this section is the numerical evaluation of the gradient
terms included in the compatibility condition (4.15) or (4.23). The difficulty involved
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there is that the (plastic) strains are variables, whose values are only calculated at the in-
tegration points of the numerical integration, cf. Section 3.1. Therefore, the determination
of the gradient of these only point-wise defined quantities is not straightforward. A simple
solution to overcome this problem is suggested by Volk [144]. Therein, without changing
the point-wise representation of the strains, an approximation method to determine the
gradient of ε̄ is presented based on ansatz functions of the FEM. The basic idea of this
approach is to use the ansatz functions within each finite element to determine the exact
nodal values of the strains, i. e., from the viewpoint of the usual evaluation procedure of
the ansatz functions, an inverse problem is solved. The task of this inverse problem is to
find the nodal values of the strains such that the evaluation of the ansatz functions at
the integration points exactly yields the respective values of ε̄. In two dimensions, this
strategy can be realized with only little numerical effort. Using three integration points
in a triangle and four integration points in a quadrilateral, the linear ansatz functions,
which are defined by three or four nodal points in a triangle or quadrilateral, lead to small
systems of linear equations, which can be solved without high numerical effort. In three
dimensions, very often a higher integration order has to be chosen for a stable numerical
quadrature, thus leading to a number of integration points, which is not equal to the
number of nodes necessary for an arbitrary order of an ansatz function. For example,
in a hexahedron, an integration of fifth order defines altogether 27 integration points,
whereas a linear or a quadratic ansatz is defined by 8 or 20 nodal points, respectively. In
such a case, the approach suggested by Volk would have the consequence of an enormous
numerical overhead, as this over-determined system has to be solved by a time consuming
procedure as, e. g., the least-squares method [140].

A direct consequence of the approach described above for the evaluation of the gradient of
the (plastic) strains is that the local systems for the determination of the current plastic
strain increment and the plastic multiplier cannot be evaluated any longer in a point-wise
manner. Due to the additional consideration of the couple stress in the yield criterion
and the use of the compatibility condition for the determination of the plastic curvatures
κ̄p, the values for the plastic strains ε̄p at each integration point depend on the respective
values at the other integration points. Consequently, all integration points of a finite
element have to be included in the solution of the local system. However, this results in
only a small increase of the numerical effort of the local solution procedure, as, e. g., in a
quadrilateral instead of four nonlinear equations with six unknowns, namely the entries
of the non-symmetric plastic strain tensor and the plastic multiplier, now one nonlinear
system with altogether 24 unknowns has to be solved.

4.5 Non-local model

4.5.1 Theoretical aspects

In the framework of this section, an integral-type non-local model is discussed in detail,
which is based on the definitions for the determination of an averaged quantity ¯̄f given
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Figure 4.7: Weighting function w (left) and representative volume Vr (right) evaluated for dif-
ferent values of the internal length scale l.

by Equations (4.2) and (4.3):

¯̄f(x) =
1

Vr(x)

∫

Ω

w(x − y) f(y) dv , Vr(x) =

∫

Ω

w(x − y) dv , (4.26)

In order to complete these definitions, the weighting function w has to be specified.
Following Brinkgreve [36], a possible choice for this weighting function is given by

w(x − y) =
1

l
√
π

exp

[

−(x − y) · (x − y)

l2

]

. (4.27)

Other choices can be found in the literature on non-local theories, cf. Strömberg & Ristin-
maa [136] or Jirásek [95] and the citations therein. The important properties of the above
introduced exponential, Gaussian bell-shaped function are that it has a maximum at
y = x, it is symmetric about that point and, finally, it depends on an internal length
scale l. These properties can be recognized in Figure 4.7 (left), where the function (4.27)
is plotted within a 1-d example for different values of l at the position x = 0.1 m. Ob-
viously, the sphere of influence of the weighting function increases with increasing values
of the internal length scale. Looking at the representative volume (Figure 4.7, right), the
influence of l as well as of the boundary of the domain on the result of the averaging
procedure can be deduced. If l is relatively small compared with the dimensions of the
domain Ω, the representative volume results in the constant value 1.0, except close to the
boundaries of the domain, where the value for Vr decreases to the minimum value 0.5.
This behavior of Vr has the consequence that values of functions that are to be averaged
at points close to boundaries are more weighted, since they do not get “contributions”
from points outside the boundaries [136]. This is illustrated in Figure 4.8 (left), where
the function w(x− y)/Vr(x) is plotted as a function of x for l = 0.04 m and for various
constant values of y, viz y = 0 m, 0.05 m, 0.1 m, 0.15 m, 0.2 m.

Using the proposed averaging procedure, it can be observed that for small enough values
of l, the non-local function is equal to the local one. This effect is shown in Figure 4.8
(right), where the local function f(x) = 20−94 x2 +106 x5 is transferred for three different

internal length scales into its non-local representation ¯̄f(x). Starting from a rather big
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value for l, where the similarity with the local function is almost vanished, the differences
between the local and the non-local functions are getting smaller for smaller values of l.

As already depicted in Section 4.2, a possible choice for the variable to be averaged
within a non-local theory is a scalar reference value of the plastic strain tensor εp, which

is incorporated in the softening law
?
κ. Very often, the so-called accumulated plastic strain

εpv := ||εp|| =
√

εp · εp (4.28)

is used for this purpose, thus leading to
?
κ(¯̄εpv). This choice is interesting from a numerical

point of view, as it can cause major changes in the numerical procedure, cf. the next
section.

Based on the work by Brinkgreve [36], an additional parameter α is introduced, by which
the influence of both the local and the non-local parts of the plastic strain on the averaged
plastic strain can be weighted:

¯̄εpv(x) = 〈1 − α〉 εpv(x) +
α

Vr(x)

∫

Ω

w(x − y) εpv(y) dv . (4.29)

Therein, 〈·〉 are the Macauley brackets already introduced in Equation (4.8). Note that for
α = 1, the formulation (4.26)1 is obtained. Brinkgreve motivates the introduction of the
additional parameter α by a better convergence behavior within his 1-dimensional numer-
ical studies of the non-local method. In Section 4.6.2, the importance of this parameter
in order to obtain mesh-independent results will be emphasized.

4.5.2 Numerical realization

Upon a closer look at (4.29), it is apparent that the usual local, element-wise evaluation
of the yield criterion as described in Section 3.3 can no longer be carried out. Obviously,
the calculation of ¯̄εpv depends not only on the local quantities of the plastic strain tensor
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εp but also on the plastic strains of the surrounding integration points. For a consistent
evaluation of Equation (4.29), the non-local character of this formulation has to be con-
sidered. Therefore, two different approaches for the numerical realization are going to be
discussed within this section, whereby the first approach leads to an exact but very inef-
ficient evaluation of (4.29), and the second approach is based on a simplification, which
makes the evaluation procedure more efficient.

In order to realize the formulation (4.29) exactly, a straightforward approach is to de-
termine the plastic strains for a given Newton iterate uj

n globally before the standard
element-wise evaluation procedure is carried out. By doing this, it is ensured that each
element contains the up to date plastic strains corresponding to the current Newton iter-
ate. However, a global system containing all plastic strains and plastic multipliers at each
integration point has to be solved in this approach for each Newton iterate, cf. Equation
(3.47). Note that in contrast to the usual local formulation, this procedure now leads to

a coupled system, in which, due to the non-local formulation of the softening law
?
κ(¯̄εpv),

the single plastic strains depend on each other. Obviously, this additional solution of such
a coupled, global system implies a very inefficient strategy, which is therefore only applied
for the calculation of the 1-dimensional numerical example in Section 4.6.1.

For the realization of the 2-dimensional example, a different procedure is chosen based
on the work by Brinkgreve [36] and Schanz [123]. In this approach, it is assumed that
the change of the elastic strain εe from one time step to the other one is negligible within
the plastic deformation process, thus leading to the assumption εh,n,j

e ≈ εh,n−1
e . Applying

this simplification to the evaluation of (4.29), a fundamental difference for the numerical
realization is achieved:

¯̄εh,n,j
pv (x) = 〈1 − α〉 εh,n,j

pv (x) +
α

Vr(x)

∫

Ω

w(x− y) εh,n,j
pv (y) dv ,

≈ 〈1 − α〉 εh,n,j
pv (x) +

α

Vr(x)

∫

Ω

w(x− y) ε̃h,n,j
pv (y) dv ,

ε̃h,n,j
pv =

√
(
εh,n,j − εh,n−1

e

)

︸ ︷︷ ︸

≈εh,n,j
p

·
(
εh,n,j − εh,n−1

e

)

︸ ︷︷ ︸

≈εh,n,j
p

.

(4.30)

Using the above relation, the standard element-wise (or, more exactly, integration-point-
wise) evaluation procedure for the flow rule and the yield criterion can be maintained.
The current total strain εh,n,j depends only on the current solution vector uj

n and the
elastic strain εh,n−1

e from the last time step tn−1 is even constant within each Newton
iterate j.

For an efficient evaluation of (4.29) or (4.30), it is also very important that the effort for
the calculation of the integral term is adapted depending on the internal length scale.
Carrying out an integration over the whole domain Ω, i. e., executing a loop over all
finite elements, with a relatively small value for l mostly leads to the summation of “zero
values”, as the sphere of influence of the weighting function in such a case is only in
the closest neighborhood of the regarded integration point. In order to prevent such an
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inefficient strategy, at the beginning of the calculation, the set of elements, which have
an influence on the non-local quantity, can be determined by calculating the distance
between the respective points and comparing this distance with some reference value,
which depends on the internal length scale.

In accordance to the remark on Page 72, it finally has to be mentioned that the numerical
calculations with the non-local regularization approach as well as the simulations with
the micropolar strategy show a significantly better convergence behavior, when the vis-
coplastic approach is additionally applied. Therefore, these combinations are going to be
used for the 2-dimensional simulations in Section 4.6.2.

4.6 Numerical examples and discussion

In this section, the regularization methods presented above are going to be applied to
a tensile bar, and their effect on the respective numerical solutions will be discussed.
Starting with a purely 1-dimensional formulation, in which, as already mentioned, the
Cosserat theory cannot be applied, a discussion of a 2-dimensional tensile bar follows,
wherein all the three regularization methods are used.

Note that within this section, no effort was made to describe the softening behavior of
a realistic material. Here, the main focus is put on the discussion, to which extent the
single regularization techniques are suitable to obtain a well-posed behavior.

4.6.1 1-d tensile bar

For the 1-dimensional simulation, the example from Section 4.1 is picked up again and
the set of governing equations (4.1) is changed with respect to the viscoplastic or the
non-local regularization method, respectively. Following the viscoplastic approach, the
Kuhn-Tucker conditions (4.1)8 are replaced by

Λ =
1

η

〈
F (σ)

κ0

〉r

, (4.31)

and for the non-local method, the softening law (4.1)6 containing the local value for the
plastic strains is replaced by its non-local representation:

?
κ(x) = κ0 − h ¯̄εp(x) , ¯̄εp(x) = 〈1 − α〉 εp(x) +

α

Vr(x)

∫

Ω

w(x− y) εp(y) dv . (4.32)

Note that, within this 1-d example, the representative volume Vr(x) denotes a represen-
tative length and the volume integral

∫

Ω
(·) dv reduces to a line integral. Furthermore,

the same material parameters as already used in Section 4.1 are applied here for the
simulations with the two regularization methods. In order to obtain a softening mate-
rial behavior, the parameter of the linear softening law is set to h = 1 000 kN/m2. The
Dirichlet boundary condition ū (t) at the right end of the bar is linearly increased with
the displacement velocity 0.15 mm/s up to the final displacement of 0.9 mm at t = 6 s.
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Figure 4.9: Viscoplastic approach: distribution of the plastic strains εp [-] in the bar (left) and
development of the stress σ [kN/m2] at x = L (right) for η = 5 s.

Applying the viscoplastic approach, the viscosity η is set to 5 s (unless other values are
explicitly specified) and the viscoplastic exponent r is set to 1. Looking at the results
illustrated in Figure 4.9, an obvious mesh-independent behavior can be recognized. The
width of the shear zone and the maximum plastic strain converge for discretizations
with increasing number of finite elements to fixed values (Figure 4.9, left). The well-
posed behavior can also be identified in the stress-displacement diagram, in which no
fundamental difference can be detected for results obtained by FE meshes with 64 or
more elements (Figure 4.9, right). Note that although a linear softening law is applied,
the stress-displacement development results due to the viscoplastic regularization in a
nonlinear behavior.

The influence of the viscosity η on the solution of the numerical simulation is illustrated in
Figure 4.10, where three different values of η are chosen for the calculations on a constant
FE mesh with 256 elements. Therein, due to the overstresses coming along with the
viscoplastic regularization, a dependence of the shear zone on the viscosity is obtained,
cf. Figure 4.10 (left). For increasing values of η, the width of the shear zone increases and,
simultaneously, the maximum value of the plastic strain decreases, until for a rather largePSfrag replacements
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Figure 4.10: Viscoplastic approach: influence of the viscosity η on the shear zone (left) and the
stress development (right).
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Figure 4.11: Viscoplastic approach: influence of the displacement velocity on the development
of the stress σ [kN/m2].

value of η = 50.0 s, the plastic strains are distributed over the whole length of the bar.
Looking at the stress-displacement progression in Figure 4.10 (right), the effect of η on
the solution becomes even more obvious, as the softening behavior is completely different
for the varying values of the viscosity. For η = 50.0 s, almost no decrease of stress with
respect to the displacement of the right boundary of the bar can be recognized.

Finally, the rate-dependent material behavior of the viscoplastic approach is illustrated
in Figure 4.11, where the stress-displacement development is shown for three different
displacement velocities specified within the boundary condition ū (t). Therein, a typical
behavior of a viscous material can be identified. The material shows a stiffer behavior
for increasing values of the displacement velocity, whereas for rather slow processes, the
viscous part of the model opposes only a small force against the specified displacement.

Discussing the regularizing effect of the non-local approach, the internal length scale l is
set to 0.2 mm and the additional parameter α is set to 2, which is a proper choice for α
referring to the numerical investigations on 1-d problems by Brinkgreve [36]. Analogously
to the simulations with the viscoplastic regularization method, calculations were carriedPSfrag replacements
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Figure 4.12: Non-local approach: distribution of the plastic strains εp [-] in the bar (left) and
development of the stress σ [kN/m2] at x = L (right) for l = 0.002m.
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out on different meshes consisting of 4 up to 256 finite elements. Again, a well-posed
behavior can be recognized in Figure 4.12, where in the left picture, the distribution
of the plastic strains over the length of the bar is shown and, in the right picture, the
stress-displacement development is illustrated. Starting the calculations with a spatial
resolution of 64 elements, each mesh refinement leads to almost equal results concerning
the width of the shear zone, the maximum value of the plastic strains and the progression
of the stress-displacement diagram.

Changing the values of the internal length scale, the influence of the non-local approach
on the solution can be recognized, cf. Figure 4.13. From a numerical point of view, the
simulations get less “critical”, if the internal length scale is increased. By doing this, an
increase of the shear zone width, a decrease of the maximum plastic strain and a lower
softening behavior are obtained.

Finally, it can be concluded that both the viscoplastic and the non-local approaches
show an excellent regularizing effect within this example. However, as already denoted
in Section 4.5.2, the simulations with the non-local approach are realized numerically
very inefficiently in this 1-d problem, which leads to enormous computing times for such
a simple example. Comparing the computing times of both regularization methods, the
calculations carried out on the finest FE mesh with 256 elements took around 1 minute for
the viscoplastic approach and around 1 week for the non-local approach. This fact clearly
motivates the more efficient realization of the non-local strategy for the simulations of 2-d
or even 3-d problems as shown in (4.30).

Furthermore, it can be seen from, e. g., Figures 4.10 (left) and 4.13 (left) that the appli-
cation of different regularization methods gives different results concerning the character-
istics of the solution. In the viscoplastic case, a smooth transition from the elastic to the
plastic zones can be detected, whereas by the non-local approach, an abrupt change from
elastic to plastic material behavior is obtained.
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Figure 4.13: Non-local approach: influence of the internal length scale l on the shear zone (left)
and the stress development (right).
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4.6.2 2-d tensile bar

Expanding the set of governing equations (4.1) from the one-dimensional case to two
dimensions, the following equations can be identified:

ε = 1
2

[
gradu + (gradu)T

]
(kinematic compatibility) ,

div σ = 0 (momentum balance) ,

σ = 2µ εe + λ ( εe · I ) I (Hookean elasticity law) ,

ε = εe + εp (strain decomposition) ,

F =
√

IID − ?
κ (von Mises-type yield criterion) ,

?
κ = κ0 {1 − hsat [1 − exp (−he εpv)]} (softening law) ,

(εp)
′ = Λ

∂ F

∂ σ
(plastic flow rule) ,

Λ =
1

η

〈
F (σ)

κ0

〉r

(viscoplasticity) .

(4.33)

Therein, the softening law
?
κ is assumed to be given by an exponential-type function,

which progression can be controlled by the two material parameters hsat and he. Note
again that the concept of associated plasticity is applied in this example, cf. (4.33)7.

As already mentioned in the remark on Page 72, the viscoplastic approach will be used
within all simulations of the 2-d tensile bar. This fact leads to combinations of the
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Figure 4.14: Two-dimensional boundary-value problem (top) and reduced system due to sym-
metry (bottom).
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Lamé constants µ = 81 000 kN/m2 , λ = 118 000 kN/m2

initial equivalent stress κ0 = 400 kN/m2

softening behavior hsat = 0.99 , he = 40

viscoplastic exponent r = 1

Table 4.1: 2-d tensile bar: material parameters.

viscoplastic approach with both the non-local as well as the micropolar regularization
techniques. Following this, the equations given in (4.33), which already contain the vis-
coplastic regularization, describe the basic equations for the simulations in this section.
Within the simulations, where the non-local approach is studied, the accumulated plastic
strain εpv in the softening law (4.33)6 is replaced by its non-local representation ¯̄εpv given
by Equation (4.30). Combining the viscoplastic and the micropolar approach, the strains
ε and the stresses σ have to be replaced with respect to their micropolar representations,
which are given in Equations (4.13)1 and (4.19)1. Furthermore, the additional moment
of momentum balance relation (4.18) together with the definition (4.19)2 of the couple
stresses M have to be considered within the Cosserat theory. In contrast to (4.19)2,
where a split of the curvature κ̄ into elastic and plastic parts is included, this split of κ̄

is, for the sake of simplicity, not assumed in the simulations within this section, i. e., the
curvature remains in the elastic range and can be directly computed from (4.13)2 or the
compatibility condition (4.15). Finally, the additional material parameters kσ and kM of
the micropolar yield criterion (4.21) are both set to zero in order to obtain comparable
results with respect to the other two regularization techniques.

The material parameters, which are included in the above mentioned set of equations and
which are constant for all the different simulations presented in this section, are given
in Table 4.1. The characterizing material parameters of the respective regularization

Figure 4.15: FE meshes: level 0 with 120 (top), level 1 with 480 (middle) and level 2 with 1 920
(bottom) elements.
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Figure 4.16: Viscoplastic approach: distribution of the accumulated plastic strains εpv [-] along
line 1, cf. Figure 4.14, (left) and development of the surface load [kN] at x1 = 0.1m
(right) for η = 0.0 005 s (upper series) and for η = 0.5 s (lower series).

techniques, namely the viscosity η, the internal length l and the scaling parameter α, as
well as the additional micropolar material parameters lc and µc, are specified for each
simulation.

The initial boundary-value problem, which is going to be discussed in this section, is
illustrated in Figure 4.14. In the upper part of this figure, the entire bar (length 0.2 m,
width 0.04 m) and the boundary conditions of the underlying problem are shown. At the
left and the right end of the bar, a linearly increasing Dirichlet boundary condition ū1 is
applied with ū′1 = 1 mm/s until the limit of the elastic regime is reached and the softening
material behavior can be observed. In order to initiate a shear band in this homogeneous
problem, the Lamé constants are weakened at the position x1 = 0 m, x2 = 0 m. Due to
symmetry reasons, only a quarter of the bar has to be discretized, cf. Figure 4.14 (bottom).
The respective symmetry boundary conditions are applied at the edges I and IV , where
the displacements in the x2- or the x1-directions are set to zero. In the simulations with
the micropolar approach, the rotations are also set to zero at these edges.

For a proper discussion of the regularizing properties of the single approaches, the de-
scribed boundary-value problem was calculated on three different FE meshes, where the
coarsest mesh, cf. Figure 4.15 (top), contains 120 quadrilateral elements. Starting from
this mesh (refinement level 0), two uniform refinements result into the finest spatial dis-
cretization (refinement level 2) with altogether 1 920 elements. On all three FE meshes,
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Figure 4.17: Viscoplastic approach: accumulated plastic strains εpv [-] for η = 0.0 005 s (upper
series) and η = 0.5 s (lower series). In each series: coarse mesh (top), medium mesh
(middle) and fine mesh (bottom), deformation scaled five times.
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Figure 4.18: Viscoplastic approach: influence of the viscosity η on the shear band width (left)
and on the surface load [kN] at x1 = 0.1m (right).

the displacement u is discretized by quadratic ansatz functions, whereas, in the case with
the micropolar approach, linear ansatz functions are chosen for the rotation ϕ̄. Further-
more, an integration order 3 is chosen for the numerical quadrature, which results in 4
integration points per element.

The first regularization technique to be discussed here, is the viscoplastic approach. In
Figure 4.16, the shear band widths (left) and the load-displacement curves (right) for the
three different meshes are shown. In the upper series, a rather small viscosity η = 0.0 005 s

0.00 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.10

Figure 4.19: Viscoplastic approach: influence of the viscosity η on the shear band width; η =
0.01 s (top), η = 0.1 s (middle) and η = 0.5 s (bottom), deformation scaled two
times.
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is chosen, whereas, in the lower series, the results coming from the simulations with a
viscosity η = 0.5 s are shown. In these results, an obvious difference with respect to mesh-
independent behavior can be observed. The calculations with the smaller value of η lead
to mesh-dependent results, as the shear band widths decrease and the maximum values
of the accumulated plastic strains increase for finer spatial discretizations. Furthermore,
the single load-displacement curves show also mesh-dependent results. Following this, an
ill-posed behavior is obtained and, therefore, this value of η will be taken for the combi-
nations of the viscoplastic approach with the non-local and the micropolar regularization
techniques in the further simulations in this section.

In contrast to this mesh-dependent behavior, the results coming from the simulations with
a viscosity, which is larger by the factor 1000, show a much better characteristics. Both
the shear band widths, the maximum values of the accumulated plastic strains and the
progressions of the load-displacement curves give comparable results independent of the
spatial discretization. The same characteristics can be observed in Figure 4.17, in which
the accumulated plastic strains are plotted for the different values of η and the different
spatial discretizations.

In order to obtain a mesh-independent behavior with the viscoplastic approach for the
three FE meshes shown in Figure 4.15, a rather large value for the viscosity has to be
chosen. Therefore, the viscoplastic regularization technique has a big influence on the
physical behavior of the modeled bar, cf., e. g., Figure 4.16 (lower series, right), where a
softening material behavior is obtained only for very large values of ū1. Furthermore, the
overstresses coming along with the viscoplastic approach can be observed in Figure 4.17.
Therein, the large value of η leads to plastic deformations in the whole bar (lower series),
whereas for the small value of η, plastic strains are only detected in shear bands (upper
series).

For a clarification of the influence of the viscosity on the shear band width, the maximum
value of the plastic strains and the characteristics of the load-displacement curve, three
further simulations were carried out on the fine FE mesh (1 920 elements) with different
values of the viscosity, namely η = 0.01 s, 0.1 s, 0.5 s. Figures 4.18 and 4.19 show the
results of these simulations and confirm this influence significantly.

In a next step, the properties of the micropolar approach as a regularization technique are

-0.03 -0.02 -0.02 -0.01 -0.01 -0.00 0.00 0.01 0.01 0.02 0.02 0.03

Figure 4.20: Micropolar approach: total rotations ϕ̄ for lc = 0.5mm and µc = 105 kN/m2,
deformation scaled five times.
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Figure 4.21: Micropolar approach: distribution of the accumulated plastic strains εpv [-] along
line 1, cf. Figure 4.14, (left) and development of the surface load [kN] at x1 = 0.1m
(right) for lc = 0.5mm and µc = 105 kN/m2.

going to be discussed. Due to the constitutive assumptions presented in Section 4.4, the
influence of the two additional material parameters lc and µc incorporated in this theory
have to be taken into account for this discussion. Carrying out a parameter study on the
influence of these two material parameters on the regularizing effect of the Cosserat theory,
it was observed that the order of magnitude of the value of µc must be large enough to
obtain such an effect. In the simulations of the tensile bar, mesh-dependent behavior was

0.00 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.10

Figure 4.22: Micropolar approach: accumulated plastic strains εpv [-] for lc = 0.5mm and µc =
105 kN/m2. Coarse mesh (top), medium mesh (middle) and fine mesh (bottom),
deformation scaled five times.



88 Chapter 4: Regularization techniques

PSfrag replacements

lc = 0.5 mm
lc = 0.7 mm
lc = 1.0 mm

0

0.05

0.15

0.25

0.35
0.45

0.2 0.4 0.6 0.8

a
cc

u
m

.
p
la

s.
st

ra
in

s
ε p

v
[-
]

line parameter [-]

PSfrag replacements

lc = 0.5 mm
lc = 0.7 mm
lc = 1.0 mm2

6

10

14

18

su
rf

a
ce

lo
a
d

[k
N

]

0.325 0.335 0.345 0.355
displacement ū1 [mm]

Figure 4.23: Micropolar approach: influence of the internal length lc on the shear band width
(left) and on the surface load [kN] at x1 = 0.1m (right).

found for values of µc smaller than the order of magnitude of approximately 104 kN/m2.
For such values, even significant modifications of lc do not lead to mesh-independent
results.

Assuming lc = 0.5 mm and µc = 105 kN/m2 for the simulation of the described boundary-
value problem, the results illustrated in Figures 4.21 and 4.22 were obtained. Therein, the
regularizing effect of the Cosserat theory is clearly demonstrated by the constant shear
band widths, the comparable maximum values for the plastic strains and the analogous

0.00 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.10

Figure 4.24: Micropolar approach: influence of the internal length lc on the shear band width;
lc = 0.5mm (top), lc = 0.7mm (middle) and lc = 1.0mm (bottom), deformation
scaled five times.
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Figure 4.25: Micropolar approach: influence of the parameter µc on the shear band width (left)
and on the surface load [kN] at x1 = 0.1m (right).

progressions of the load-displacement curves. Furthermore, the typical distribution of
the total rotation can be observed in Figure 4.20. Following this, the rotations are ap-
proximately zero outside the shear bands. Inside the shear bands, the rotation is either
positive or negative. As a result, the rotation is zero at the crossing point of positively
and negatively rotating shear bands. In the present example, such a point is given at the
imperfection, which causes the shear band initiation, cf. Figure 4.14.

Following these results, it can be deduced that the influence of the skew-symmetric part

0.00 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.10

Figure 4.26: Micropolar approach: influence of the parameter µc on the shear band width;
µc = 105 kN/m2 (top), µc = 2·105 kN/m2 (middle) and µc = 4·105 kN/m2 (bottom),
deformation scaled five times.
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Figure 4.27: Non-local approach: distribution of the accumulated plastic strains εpv [-] along
line 1, cf. Figure 4.14, (left) and development of the surface load [kN] at x1 = 0.1m
(right) for l = 2.0mm.

of the micropolar strain ε̄e skw on the calculation of the stress tensor by Equation (4.19)1

has to be large enough in order to obtain a substantial regularizing influence of the
micropolar theory in this example under study. Furthermore, it was recognized in the
numerical studies on the tensile bar that with both micropolar parameters lc and µc the
shear band width can be modified. In order to prove this statement, both parameters
were modified in FE calculations on the fine mesh with 1 920 elements. In Figures 4.23

0.00 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.10

Figure 4.28: Non-local approach: accumulated plastic strains εpv [-] for l = 2.0mm. Coarse
mesh (top), medium mesh (middle) and fine mesh (bottom), deformation scaled
five times.
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Figure 4.29: Non-local approach: influence of the internal length l on the shear band width (left)
and on the surface load [kN] at x1 = 0.1m (right).

and 4.24, the results for three different values for lc are shown, and in Figures 4.25 and
4.26, qualitatively similar results are obtained by modifications of the material parameter
µc.

Finally, the non-local regularization technique is going to be discussed. Like the previous
two methods, the non-local approach is also capable of realizing mesh-independent solu-
tions for the chosen tensile bar. In Figures 4.27 and 4.28, the results of the simulations
with an internal length of l = 2.0 mm on the three different FE meshes are shown. In con-
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Figure 4.30: Non-local approach: influence of the internal length l on the shear band width;
l = 2.0mm (top), l = 5.0mm (middle) and l = 8.0mm (bottom), deformation
scaled five times.
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trast to the 1-d example presented in the last section, these mesh-independent results can
only be realized by increasing the influence of the non-local part of (4.30), i. e., the value
of α, which rules this influence, was chosen to 4. For smaller values of α and independent
of the chosen values of the internal length l, mesh-dependent results were obtained in this
numerical example.

Furthermore, the non-local approach is the only regularization technique presented in this
section to give a well-posed behavior and to model the strong softening material behavior,
which is governed by the choice of the values for the material parameters hsat and he. By
setting hsat = 0.99, only 1% of the initial stiffness should be obtained at the end of the
softening process. Whereas the other two regularization methods can model well-posed
behavior only by a significant delay to obtain this final stiffness, cf. Figures 4.16 (bottom,
right) and 4.21 (right), the non-local approach can combine well-posedness and the rapid
decrease of stiffness, cf. Figure 4.27 (right).

By changing the values of the internal length l, an influence on the width of the shear
band, the maximum value of the plastic strains and the characteristics of the results can
be obtained, cf. Figures 4.29 and 4.30, in which the results for the simulations on the fine
FE mesh with different values of l are illustrated.



Chapter 5:
Parallelization of finite element simulations

Due to the enormous speed of development in computer technologies in the last decades,
the possibility to use parallel computers has improved strongly. Nowadays, it is affordable
for many companies or research institutes to buy and use parallel computers, because most
of these machines are based on hardware coming from standard personal computers (PCs).
The physical limitations of the problem size an engineer or scientist is able to compute
numerically are therefore no longer given by the system memory or processing speed of
a single computer, but by the amount of processors, which are available within a parallel
computer system. For example, a FE simulation of a frontal crash of a car against a
wall can be computed with such a realistic accuracy that the number of expensive crash
experiments was reduced dramatically in recent years by the automotive industry.

In order to be able to run parallel computations, obviously, not only the hardware but
also the software, the FE code, has to provide parallel structures. Therefore, in this
chapter, the parallelization of finite element simulations is discussed in detail. Starting
with general remarks on some aspects of parallel computing, in the second section of
this chapter, special emphasis is put on the parallel simulation of multiphasic problems.
Thereby, the interface of the sequentially implemented FE code PANDAS (Porous media
Adaptive Nonlinear finite element solver based on Differential Algebraic Systems) [58, 117]
and the parallel solver M++ (Meshes, Multigrid and more) [147] is presented, which is the
basis for the large scale FE simulations following in the Sections 6.2 and 6.3.

5.1 General remarks on parallel computing

In this section, a general basis on parallel computing is established, which is necessary
for a better understanding of the further discussions in this thesis. Very briefly, the
most important notions and concepts are introduced based upon the works by Bastian [6]
and Hinkelmann [90, 91]. The reader who is interested in a more detailed description of
the main concepts in this field is referred to the standard literature on this topic like,
e. g., Kumar et al. [98], van de Felde [72] or the above mentioned works by Bastian and
Hinkelmann.

5.1.1 Computer architectures

A common way to classify different computer architectures dates back to the work by
Flynn [74] in 1972. This classification is based on the notion of a stream of information.
Two different types of information flow into a processor: instructions and data. The
taxonomy of Flynn classifies machines according to whether they have one stream or
more than one stream of each type, which leads to altogether four classes of computer

93
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architectures (whereof one class is empty):

∗ SISD (single instruction stream, single data stream): this class is represented by the
well-known von Neumann computer [114, 79], where one processor is connected to
one memory, and the commands are carried out sequentially on one data stream.
This is the way, a classical PC or workstation operates.

∗ SIMD (single instruction stream, multiple data stream): in case of a SIMD archi-
tecture, there are more than one processor, which are controlled by one instruction
stream, i. e., every processor carries out the same command (at the same time) on
different data streams. An example of an application that can take advantage of
SIMD is one, where the same value is added to a large number of data points, which
is a common operation in many multimedia applications. One example would be
changing the brightness of an image. Each pixel of an image consists of three 8-bit
values for the brightness of the red, green and blue portions of the color. To change
the brightness, the R, G and B values are read from the memory, a value is added
(or subtracted) from it, and the resulting value is written back out to the memory.
A member of this class is the so-called array processor.

∗ MISD (multiple instruction stream, single data stream): this class is empty.

∗ MIMD (multiple instruction stream, multiple data stream): these types of parallel
machines consist of several von Neumann computers, which are connected with a
shared memory or which interact with each other via an interconnection network.
The obvious difference to the SIMD architecture is due to the fact that the MIMD
consists of several stand-alone processors, where each processor has its own instruc-
tion stream, i. e., the processors can operate fully independently of each other.

In the framework of this thesis, the parallel algorithms, which are going to be presented,
are designed for the class of the MIMD architectures. As already mentioned above, this
class can be divided into two main groups, which consider the different ways of data
interchange or memory distribution, respectively:

∗ shared memory systems: all processors access with equal rights a common mem-
ory (global address space), which not only acts as program memory but also as a
communication interface. Computers of this type are usually limited to only few
processors and require a special control of the management of the memory access.

∗ distributed memory systems, cf. Figure 5.1: this class is characterized by the fact
that each processor must use its locally attached memory (local address space).
The data interchange is carried out via an interconnection network, which is an
important part of the whole parallel computer, as the capacity and the latency of
the network interface cards, obviously, have a big influence on the capability of the
parallel system.

The main advantage of the distributed memory systems in comparison with the shared
memory systems is the expense for comparable parallel machines. The single von Neu-
mann computers within a distributed memory system, which are also called (compute)
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Figure 5.1: Distributed memory system.

nodes, consist of standard PC hardware mass products. Therefore, these computer archi-
tectures directly profit from the development of the semiconductor industry, which ap-
proximately results in a doubling of the complexity every 18 months, cf. Moore’s law [107].
Independently of this fast development of the compute nodes, the interconnection network
can be designed depending on the respective power demand of each research institute or
company, respectively.

5.1.2 Programming model

The algorithms within the parallel code M++ are designed for the above mentioned dis-
tributed memory systems. The necessary data transfer in such a computer architecture
can be realized essentially by a programming model, which is based on the so-called func-
tional parallelism. This programming model is characterized by splitting a sequential
algorithm in parallel executable segments. The communication between those segments
is realized via a message passing, which is implemented directly in the source code based
on a certain communication interface, like, e. g., the Message Passing Interface (MPI;
Walker & Dongarra [145]) or the Parallel Virtual Machine (PVM; Geist et al. [76]).

In the current version of M++, the MPI library is used as the communication interface.
Thereby, the following small subset of MPI functions is used, cf. Wieners et al. [152]:

∗ MPI Init: all MPI programs must contain a call to MPI Init. This routine initializes
the MPI environment and must be called before any other MPI routine.

∗ MPI Finalize: all processes must call this routine before exiting. The number of
running processes is undefined after this routine is called.

∗ MPI Comm size: determines the number of processors, which are involved in the
parallel run.

∗ MPI Comm rank: each processor in a parallel run is assigned a unique identifier (or
rank). MPI Comm rank determines the rank of the respective processor (or process).

∗ MPI Bcast: broadcasts a message from the process with the rank root (specified as
an input variable of this function) to all other processes of the parallel run.
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∗ MPI Allreduce: carries out a global operation and distributes the result back to all
processes.

∗ MPI Isend: begins a non-blocking send (see below).

∗ MPI Irecv: begins a non-blocking operation to receive data (see below):

∗ MPI Wait: waits for a non-blocking send or receive to complete (see below).

Both the sending and receiving processes in a communication interface can be carried
out via a blocking (synchronous) or a non-blocking (asynchronous) communication. In
case of a blocking communication, the sending and receiving processes are blocked until
the message is transferred or a receipt confirmation is given, respectively. In case of the
asynchronous communication, the execution of the program is directly continued such that
a temporal overlapping of communication and program execution occurs. A blocking can
be forced in this type of communication with the function MPI Wait, which forces a block
until the message passing is completed. Obviously, the asynchronous communication is
the faster alternative, whereas the synchronous communication is less fault-prone.

Some of the above comments and explanations on the MPI routines have been taken
from [109].

Within M++, a separate parallel processor interface is defined, where the above functions
are called internally. Thus, it is easy to replace the MPI library by any other message
passing protocol.

5.1.3 Load balancing

A crucial point of a parallel FE simulation is the distribution of the finite elements on
the single compute nodes. For an efficient distribution, mainly two aspects have to be
considered: equal load on each processor and minimal communication between the pro-
cessors. Obviously, an equally distributed load on each compute node is important to
prevent unbalanced processes, i. e., the waiting time of a processor for the others to finish
a calculation step should be minimized. At the same time, the communication should be
minimized by choosing contiguous and compact subdomains.

Applying parallel FE simulations to geotechnical questions, the geometrical complexity
of the problems under study is usually rather simple, cf., e. g., Figure 5.2, where a
slope is discretized with hexahedra. Following this, a standard geometrically oriented
method, e. g., the so-called Recursive Coordinate Bisection (RCB; Berger & Bokhari [12]),
can be chosen for the domain decomposition of such problems [151]. In the RCB, the
computational domain is first divided into two regions by a cutting plane orthogonal
to one of the coordinate axes so that half the work load is in each of the subdomains.
The splitting direction is determined by computing, in which coordinate direction the
set of objects is most elongated, based upon the geometrical locations of the objects.
The subdomains are then further divided by recursive application of the same splitting
algorithm until the number of subdomains equals the number of processors. Although
a strict application of this recursive algorithm would lead to 2k subdomains, where k is
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Figure 5.2: Load balancing on 16 processors by the RCB method.

the number of the divisions, any number of equally sized subdomains can be created by
a modification of the dividing planes.

Another rather simple load balancing strategy was applied in [153]. There, each FE
mesh was distributed onto the processors by a simple lexicographic ordering of the cell
midpoints XC . By application of the rule

XC1 < XC2 ⇐⇒ xC1

1 < xC2

1 or

xC1

1 = xC2

1 and xC1

2 < xC2

2 or

xC1

1 = xC2

1 and xC1

2 = xC2

2 and xC1

3 < xC2

3 ,

(5.1)

a unique ordering of the cells can be obtained. In the above equation, XC1 and XC2 denote
two cell midpoints, which are defined by their coordinates xCi

1 , x
Ci

2 and xCi

3 (i = 1, 2). Note
that this load balancing minimizes the number of neighboring processors, but for more
complex geometries, it is not optimal with respect to the size of the processor interfaces.
Thus, enhanced methods have to be used for general geometries. A discussion on other
load balancing methods can be found, e. g., in Hinkelmann [90].

Remark: If a constant spatial discretization is used, the domain decomposition is carried
out once at the beginning of each parallel computation, after the number of processors is
known and the FE mesh is read or generated. This static load balancing is no longer the
appropriate strategy, when space adaptive methods are applied. In such cases, dynamic
load balancing methods have to be used in order to guarantee a proper load balancing of
the adaptively refined mesh, cf. Bastian [5]. 2

Following Equation (3.10), the spatially discretized domain Ωh is represented by finite
elements C, which together build the FE mesh:

Ωh =
⋃

C∈C

C . (5.2)

Using a load balancing method, the FE mesh is distributed onto P processors,

C =
⋃

p∈P

Cp , Ωh = Ωh
1 ∪ . . . ∪ Ωh

P , Ωh
p =

⋃

C∈Cp

C , (5.3)
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where Cp denotes the set of all elements located on the processor p and P = {1, 2, ..., P}
represents the set of processors or, more precisely, the identification numbers of the parallel
processes. Note that for an admissible distribution of the mesh, each element C has to
be uniquely assigned to one processor p, whereas the other geometrical quantities, i. e.,
the faces F , edges E and nodes N , can be represented on more than one processor.

5.1.4 Representation of vectorial quantities

Within the FEM, vectorial quantities like the global solution vector un from (3.23) or the
consistent tangent DRRRh,n,j from (3.48) are tied to the nodes of the finite element mesh.
Therefore, it is a logical consequence of the above introduced domain decomposition that
according to the respective node, a component of a vector is possibly distributed on several
processors.

Following Bastian [5], two different algebraic representations are used for the vectorial
quantities:

∗ consistent representation: a global vector a is stored consistently, if for all compo-
nents ap on the processor p the following holds:

ap = (a)Ωh
p
. (5.4)

This means that in all copies of the entries, which are tied to a certain node, the
same values are stored.

∗ inconsistent or additive representation: a global vector a is stored inconsistently, if
the following relation holds:

a =
∑

p∈P

ap . (5.5)

This means that the global entries, which are tied to a certain node, are only ob-
tained by a summation over all processors p this node is represented on.

5.1.5 Capability of the parallel code

Each parallel implementation of a FE program can lead to different results concerning the
total computing time. Furthermore, the fact that a source code is executable in parallel
does not necessarily lead to a decrease of computing time of a numerical simulation.
Therefore, measures for the classification of the capability of a parallel code have to be
defined. Generally, three important measures are known: speed-up, efficiency and scale-
up [96].

The parallel speed-up SP is defined as the ratio of the computing time on one processor
to the computing time on P processors:

SP =
T1,K

TP,K
. (5.6)
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Therein, TP,K denotes the computing time on P processors of a problem with the com-
plexity K, and T1,K represents the sequential computing time of this problem. In the
framework of this thesis, the complexity of a problem is defined by the number of finite
elements, which are used for the spatial discretization of the computational domain.

In Figure 5.3 (left), a possible development of the speed-up SP is shown. Looking at
this figure, it is obvious that a close progression of the identified curve of SP to the
theoretically possible curve corresponds to a good speed-up of the parallel code. In the
practical applications, the speed-up SP is always smaller than P . This is due to the
so-called parallel overhead, which arises from, e. g., a lot of communication between the
compute nodes or a load imbalance.
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Figure 5.3: Speed-up SP and efficiency EP [90].

The parallel efficiency EP is defined as the ratio of the speed-up SP with respect to the
number of compute nodes P :

EP =
SP

P
=

T1,K

P TP,K
. (5.7)

EP can be understood as a scaling of the speed-up SP with respect to the processors P . In
general, this results in an efficiency EP < 1 (< 100%), which decreases for an increasing
number of compute nodes, cf. Figure 5.3 (right).

The parallel scale-up UP is defined via the relation

UP =
TP,(K∗P )

T1,K
. (5.8)

UP provides a statement about the question: how many compute nodes are necessary for
an increasing complexity of the problem in order to keep the computing time constant?
Coming along with this definition of UP is the term “scalable algorithm”. A scalable
algorithm is an algorithm, which results in a more or less constant scale-up UP , when the
complexity K ∗ P and the number of processors P are increased.

The above introduced measures, speed-up SP and efficiency EP , are defined with respect
to a constant complexity K of the problems and varying number of processors P . Based on
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a varying complexity and a constant number of compute nodes, the following definitions
for the “slow-down” SK and the efficiency EK can be introduced:

SK =
TP,(K∗m)

TP,K

, EK =

(
SK

m

)−1

=

(
TP,(K∗m)

m TP,K

)−1

. (5.9)

Therein, m is the factor, by which the complexity of the problem is increased, i. e., in
the framework of this thesis, the factor, by which the number of elements is multiplied.
Thinking about a regular refinement of the FE mesh in 2-d (or 3-d) in order to increase
the complexity, this factor results in 4 (or 8) for a single refinement step. Furthermore,
SK and EK are not only measures for the rating of the capability of the parallel code,
but also measures on how much an increase of the complexity at a constant number of
processors effects the total computing time.

5.2 Parallel simulations of multiphasic problems

Due to high numerical costs, finite element simulations of realistic porous media problems
in soil mechanics are a difficult task for the numerical realization. Adaptive strategies in
time and space proved to be very effective in the simulation of a variety of challenging 2-d
problems, cf. Ellsiepen [66] and Ehlers et al. [59, 60, 55, 62]. Nevertheless, new strategies
have to be considered for a numerical realization of porous media models in 3-d.

Therefore, in the framework of this thesis, the parallelization of the FE code is applied
as a new strategy. In this section, the interface of the sequentially implemented FE tool
PANDAS [58, 117] and the parallel solver M++ [147], together with the underlying parallel
data structure, the so-called Distributed Point Objects [150, 152], are presented.

5.2.1 Complexity of FE simulations of porous media models

The high numerical costs coming along with the simulation of realistic boundary-value
problems for porous media models are caused by mainly three reasons: complex mechan-
ical models, the choice of the finite element ansatz functions and the necessity of 3-d
computations.

From the mechanical point of view, the modeling of porous media results in systems with
more than one type of degree of freedom, i. e., for example, in the presented triphasic
model, the displacement uS of the solid skeleton, the pore-liquid pressure pLR and the
pore-gas pressure pGR, cf. Chapter 2. Furthermore, due to stability reasons of the resulting
system of equations, the order of the ansatz functions for the single degrees of freedom
cannot be chosen arbitrarily but have to fulfill certain conditions, cf. Section 3.1.3. This
fact leads to the application of the Taylor-Hood elements, which result in quadratic ansatz
functions for the solid displacement uS and linear ansatz functions for the pressure terms
pLR and pGR. Finally, for the calculation of practical applications, the geometry of a
problem has to be discretized very often in all three dimensions. A simplification towards
a 2-d problem is only possible, when plane strain or plain stress conditions can be assumed
for the solid deformation and plane flow conditions exist for the fluid flow.
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Figure 5.4: 2-d [128] and 3-d [124, 125] finite element meshes.

In Figure 5.4, two exemplary FE meshes are shown. The 2-d mesh, which consists of
triangular elements [128], results in 79 finite elements and 55 or 188 nodes for a linear
or quadratic ansatz, respectively. The 3-d mesh contains altogether 1 005 tetrahedra
[124, 125] and 240 or 1 598 nodes (again for linear or quadratic ansatz functions). From this
example, it becomes evident that there is an enormous difference in the numerical effort of
handling, one the one hand, systems with linear or with quadratic ansatz functions, and,
on the other hand, 2-d or 3-d calculations. In the presented example, the factor between
the linear and the quadratic ansatz functions is in the 2-d case approximately 3.4 and in
the 3-d case approximately 6.7.

5.2.2 Definition of the interface M++/PANDAS

In order to be able to run FE calculations in parallel, the sequentially implemented FE
code PANDAS has to be modified. Within this FE program, almost any imaginable me-
chanical model, like, e. g., the presented triphasic model, can be implemented straightfor-
ward, and problems based on this model can be solved with advanced adaptive techniques
and a variety of linear solvers, but the complexity of a problem is limited to only one pro-
cessor. At this point, there are mainly two possibilities to start the parallelization process:
rewrite the whole FE code based on a parallel data structure or define an interface between
the sequential program and a code, which already contains parallel data structures. As
the first alternative would take a lot of time, possibly many years, until the first problem
could be calculated in parallel, the second alternative turns out to be very efficient.

The program M++ is a tool, which is based on a parallel data structure and which contains
parallel linear solvers. It is furthermore implemented in such a universal manner that it
was possible to realize the above mentioned interface within that program. This interface
finally contains only a few callback functions for the necessary communication between
the two programs. Note that with this strategy, it was made possible to run parallel
computations with the material models from PANDAS without changing anything in the
source code of PANDAS. This strategy is of course not restricted to the parallelization of
PANDAS but is capable to be applied also to other sequential programs.

Based on the local assembling interface, which was presented in Section 3.3.3, the following
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callback routines define the interface between M++ and PANDAS:

∗ Pandas Init: initialization of PANDAS for the required types of finite elements and
the reading of the material parameters.

∗ Pandas Dirichlet: evaluation of the Dirichlet boundary conditions DC .

∗ Pandas Defect: evaluation of the Neumann boundary conditions and calculation of
the residual RC for every element.

∗ Pandas Tangent: computation of the algorithmically consistent tangent TC .

∗ Pandas Update: update UC of the internal variables in PANDAS.

The actual interaction between the two programs is controlled by M++, which initializes
PANDAS only in the background. Except for the two routines, which arrange the ini-
tialization of PANDAS at the beginning of each computation, and the update function
Pandas Update, which updates the internal variables at the end of each time step, the
above functions are called element-wise and fairly often within each Newton iteration
from M++ in order to build the necessary global quantities. Thereby, the only information
about the initial boundary-value problem explicitly known in M++ are the FE mesh and
the number of unknowns (degrees of freedom) at each node. All further information on
boundary conditions and material parameters are defined via the usual input files of and
in PANDAS.

5.2.3 Distributed Point Objects

The underlying parallel data structure of M++ are the Distributed Point Objects (DPO).
This structure was developed by Wieners [150] in order to establish a transparent basis
for modifications or extensions of the parallel code and its applications like, e. g., PANDAS

[152].

The DPO are a geometrical model, which is based on a finite set of points X ⊂ RD with
D ∈ {1, 2, 3} representing the spatial dimension of the problem. For the description of
different geometrical quantities, respective types of points are introduced: corner points
XV , edge midpoints XE, face midpoints XF , cell midpoints XC and an exception point
XEx = ∞, cf. Figure 5.5.

With these different types of points, a FE mesh M = (C̄, F̄ , Ē , V̄, B̄) is defined by the
following mappings:

∗ cell mapping C̄ : X −→ ⋃

NC

XNC , which assigns every cell midpoint XC the cell

represented by the vector of NC corner points, where, e. g., NC = 4 for tetrahedra
or NC = 8 for hexahedra:

C = C̄(XC) = (X1, . . . , XNC) ∈ XNC . (5.10)
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∗ face mapping F̄ : X −→ X 2, which assigns every face midpoint XF the two adjacent
elements represented by their midpoints XC left and XC right:

F = F̄(XF ) = (XC left, XC right) ∈ X 2 . (5.11)

∗ edge mapping Ē : X −→ X 2, which assigns every edge midpoint XE the two adjacent
vertices XV left and XV right and which counts for each edge midpoint XE the number
of cells with XE ∈ C:

E = Ē(XE) = (XV left, XV right) ∈ X 2 . (5.12)

∗ vertex mapping V̄, which represents a list of vertices XV and counts for each vertex
XV the number of cells with XV ∈ C.

∗ boundary mapping B̄, which represents a list of boundary faces identified by their
markers for the definition of boundary conditions. Boundary faces are a special type
of faces F characterized by XC right = XEx = ∞.

Note that all mappings return an empty object for point arguments of the wrong type.
For convenience, the abbreviations C ∈ C̄ (instead of C ∈ C̄(X )), F ∈ F̄ (instead of
F ∈ F̄(X )), etc. are used. Furthermore, the notation X ∈ XC̄ for the cell midpoints XC,
etc. is used.

Until now, point objects based on a finite set of points X have been described. For the
representation of the parallel distribution of X , a partition map π is introduced,

π : X −→ 2P , (5.13)

which is assigning to every point X ∈ X the subset π(X) ⊂ P of processors, where this
point is represented. Note that the notation in (5.13) defines π as the power set of P,
i. e., the set of all subsets of P. With the definition of the partition map π at hand, it is
straightforward to define a unique master processor for every point X,

µ(X) = min π(X) , (5.14)
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and an overlapping partition for the distributed point sets Xp:

X = X1 ∪ . . . ∪ XP , Xp = {X ∈ X : p ∈ π(X)}. (5.15)

From this, the local mesh Mp = (C̄p, F̄p, Ēp, V̄p, B̄p, πp) on processor p is obtained by
restricting all mappings to Xp.

In order to determine an admissible distribution of the mesh M onto P processors, every
cell C ∈ C̄ is assigned exactly one destination processor dest (C) ∈ P. This defines a
disjoint partition for the cells and overlapping partitions for the faces, edges and vertices:

π(XC) = {dest (C)}, C ∈ C̄,
π(XF ) = {dest (C) : XC ∈ F}, F ∈ F̄ ,
π(XE) = {dest (C) : E ⊂ C}, E ∈ Ē,
π(X) = {dest (C) : X ∈ C}, X ∈ V̄ .

(5.16)

Remark: Note that the Distributed Point Objects already provide a parallel uniform
refinement rule for a cell in the FE mesh, cf. Wieners [150]. With this additional feature,
the DPO are also qualified for the application of space adaptive strategies. 2

5.2.4 Parallel algorithm

Based on the DPO, the parallel algorithm can be defined, which manages the single
steps within the Newton-Raphson method as they were described in Section 3.3.2. For
convenience, the following abbreviations are introduced for the further discussions within
this section:

ū := uj
n : global solution vector,

∆ū := ∆uj
n : Newton correction vector for ū,

R̄RR := RRRh,n,j : residual vector of the nonlinear problem,

DR̄RR := DRRRh,n,j : algorithmically consistent tangent.

(5.17)

The single entries in the vectors ū, ∆ū, R̄RR and in the matrix DR̄RR correspond to the nodes
of the FE discretization, i. e., in the context of the DPO, to the corner points XV and to
the edge midpoints XE. By assigning the number of degrees of freedom NX ≥ 0 to every
point X ∈ X , the block vectors

ū[X] ∈ R
NX , ∆ū[X] ∈ R

NX and R̄RR[X] ∈ R
NX (5.18)

are defined. By a combination of all block vectors, the respective global vector is obtained,
e. g., the global solution vector yields

ū = (ū[X])X∈X ∈ R
NX , NX =

∑

X∈X

NX . (5.19)
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These global vectors are represented in parallel by local vectors, e. g., for the local solution
vector on the processor p holds

ūp : Xp −→
⋃

Np

R
Np , Np =

∑

X∈Xp

NX . (5.20)

Based on a 3-dimensional spatial discretization with Taylor-Hood elements for the tripha-
sic model, the following degrees of freedom are assigned to the different points:

NX = 5 for X ∈ XV̄ , NX = 3 for X ∈ XĒ , NX = 0 for X ∈ {XF̄ ∪ XC̄} . (5.21)

Following the introduction in Section 5.1.4, two representations of distributed vectorial
quantities are distinguished:

∗ a consistent representation is chosen for solution and correction vectors, where,
e. g., the unique block vector ū[X] is represented on all processors p ∈ π(X), viz
ūp[X] = ū[X].

∗ an additive representation is chosen for residual vectors and tangent matrices, where,
e. g., the block vector R̄RR[X] has a non-unique parallel representation R̄RR[X] =
∑

p∈π(X) R̄RRp[X].

Within the presented interface M++/PANDAS, almost every callback routine (except the
function Pandas Init) is evaluated on the element level. This motivates the introduction
of cell vectors ū[C] ,∆ū[C] ,R̄RR[C] and cell matrices DR̄RR[C]:

ū[C] = (ū[X])X∈XC
∈ RNC ,

∆ū[C] = (∆ū[X])X∈XC
∈ RNC ,

R̄RR[C] =
(
R̄RR[X]

)

X∈XC
∈ R

NC ,

DR̄RR[C] =
(
DR̄RR[X, Y ]

)

X,Y ∈XC
∈ RNC ,NC .

(5.22)

Therein, XC = {X ∈ X ∩ conv(C) : NX > 0} defines the nodal points of the cell C and
NC =

∑

X∈XC
NX denotes the number of the degrees of freedom, which are associated

to the nodal points X ∈ XC . Furthermore, conv(C) ⊂ RD gives the convex hull of the
corner points XV of the cell C.

The above definition of cell vectors and cell matrices requires an efficient access to the
block vectors (5.18) and, especially, to the block matrices:

DR̄RR[X, Y ] ∈ R
NX ,NY , X, Y ∈ XC . (5.23)

In the current version of M++, this is realized by hash tables, where the keys for these
tables are points. By this choice for the data access, pointers can be completely avoided
in the parallel data structure described above.

Remark: Within a programming language, a pointer is a datatype, whose value is an
address, which is used to refer to (“point to”) another value stored elsewhere in the
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computer memory. On the one side, the use of pointers can provide a more efficient data
access than realized in the model with the hash tables, but, on the other side, the fact
that no pointers are needed is essential for a transparent and expandable parallel code,
cf. Wieners et al. [152]. 2

For the parallel assembling of the global linear system (3.49), the following routines of
the interface M++/PANDAS are called for each element C:

∗ Pandas Dirichlet: the local function DC assigns the respective Dirichlet values to
the cell vector ū[C] . This procedure is performed in parallel without communica-
tion. After DC is called for all cells C, the Dirichlet data has to be exchanged at the
processor interfaces in order to guarantee consistent start values on all processors p.

∗ Pandas Defect: based on the consistent solution vectors ū[C], the local residual
function RC is called in parallel (no communication) for every cell on each processor
p. This procedure results in additive representations of the residual vectors R̄RRp:

R̄RRp =
∑

µ(C)=p

R̄RR[C] . (5.24)

∗ Pandas Tangent: based on the consistent solution vectors ū[C], the local tangent
function TC is called in parallel (no communication) for every cell on each pro-
cessor p. This procedure results in additive representations of the algorithmically
consistent tangents DR̄RRp:

DR̄RRp =
∑

µ(C)=p

DR̄RR[C] . (5.25)

In the above relations, the notation µ(C) has been used for the unique master processor
of each cell C,

µ(C) ∈ π(C) , π(C) =
⋂

X∈XC

π(X) , (5.26)

which is a logical consequence of the chosen strategy (5.16) for the mesh distribution.

In principle, the above described assembling process leads to the global linear system
(3.49), which has to be solved within each Newton step:

DR̄RR∆ū = R̄RR with DR̄RR =
∑

p∈P

DR̄RRp and R̄RR =
∑

p∈P

R̄RRp . (5.27)

The strategy of explicitly assembling the whole problem is not target-oriented, as the
solution of the resulting huge linear system (5.27) usually cannot be performed on one
processor. Obviously, for this solution process, also parallel strategies have to be applied.

In order to solve linear systems of the type (5.27) in parallel, iterative linear solvers are
well suited and very efficient, cf., e. g., Bastian [5] or Wieners et al. [150, 152, 153].
Therein, for a given start iterate ∆ūm ∈ R

NX (m = 0), a typical step within a basic
iterative linear solver is organized as follows:
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∗ compute the residual vector rm
p for each p ∈ P (no communication):

rm
p = R̄RRp − DR̄RRp ∆ūm

p . (5.28)

Starting with an additive right-hand side R̄RRp , the matrix-vector multiplication of

an additive matrix DR̄RRp and a consistent vector ∆ūm
p results in an additive residual

vector rm
p .

∗ check for convergence (communication necessary):

||rm|| =
√

(rm)T rm =

√
∑

p∈P

(rm
p,col)

T rm
p,col < tol

with rm
p,col = (rm

p,col[X])X∈Xp

and rm
p,col[X] =







∑

q∈π(X)

rm
q [X] for p = µ(X) ,

0 else .

(5.29)

To determine the global norm ||rm||, the single entries of the local residual vectors
rm

p are collected as defined in (5.29)3. By doing this, a unique additive representation
of rm is obtained on the master nodal points such that the global norm ||rm|| can
be computed in parallel as shown in (5.29)1. If the user-defined tolerance is not
fulfilled, the iteration procedure has to be continued.

∗ determine the correction vector cm
p for each p ∈ P (communication necessary):

cm
p = (cm

p [X])X∈Xp

with cm
p [X] =

∑

p∈π(X)

cm
p,add[X] ,

cm
p,add[X] = B[X,X] rm

p,col[X]

and B[X,X] =




∑

p∈π(X)

DR̄RRp[X,X]





−1

.

(5.30)

The consistent correction vector cm
p is obtained within two steps. First of all,

the matrix-vector multiplication of a consistent preconditioner B (approximating

DR̄RR−1
) with a (unique) additive residual vector rm

p,col results in an additive correc-
tion vector cm

p,add. After this, the parallel representation of the correction vector
is changed to a consistent vector by an interface communication as described in
(5.30)2.
The preconditioner presented in (5.30)4 is the so-called point-block Jacobi precon-
ditioner, which is assembled by the consistent point-block diagonal entries of the
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local tangents DR̄RRp. These point-block objects collect the degrees of freedom corre-
sponding to a single nodal point X ∈ X . Within the presented model, other, more
sophisticated preconditioners can be realized, as, e. g., a block Jacobi preconditioner
with Gauß-Seidel blocks [153] or mutlilevel preconditioners [5].

∗ update the solution vector ∆ūm (no communication):

∆ūm+1
p = ∆ūm

p + cm
p . (5.31)

Due to the consistent correction vector cm
p , this update can be carried out in parallel

without any communication and leads to a consistent representation of ∆ūm+1 on
every processor p.

Note that within the iterative solution process of the global linear system (5.27), it is not
necessary to assemble the entries of the global consistent tangent matrix:

DR̄RR[X, Y ] =
∑

p∈π(X)∩π(Y )

DR̄RRp[X, Y ] , X, Y ∈ Xp . (5.32)

Remark: The presented basic iterative linear solver can be extended straightforward
within the underlying parallel data structure towards Krylov acceleration methods, like,
e. g., the GMRES method (Generalized Minimal RESidual; Barrett et al. [4]). In Wieners
et al. [153], the realization of the GMRES method within the presented model is discussed
in detail. 2

5.2.5 Example

In order to clarify the strategies within the DPO and the parallel solution of a linear
system of equations, some crucial points are illustrated in this section at the example of
a simple FE mesh consisting of two triangles [150, 152], cf. Figure 5.6.

In a first step, the mesh is read on one processor (master processor) by a sequential
insertion of the single cells, thus, leading to the point objects, which are stored in M. By
insertion of the first triangle C1 = (X1, X2, X3) in M, the following point set X , edges
Ē(XE) and faces F̄(XF ) are obtained:

X = {X1, X2, X3, X12 = 1
2
(X1 +X2), X13 = 1

2
(X1 +X3),

X23 = 1
2
(X2 +X3), X123 = 1

3
(X1 +X2 +X3)} ,

Ē(X12) = (X1, X2) , Ē(X23) = (X2, X3) , Ē(X13) = (X1, X3) ,

F̄(X12) = (X123, ∞) , F̄(X23) = (X123, ∞) , F̄(X13) = (X123, ∞) .

(5.33)

The insertion of the second triangle C2 = (X2, X3, X4) adds the new points

X4, X24 = 1
2
(X2 +X4), X34 = 1

2
(X3 +X4), X234 = 1

3
(X2 +X3 +X4) (5.34)
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Figure 5.6: Exemplary FE mesh consisting of two triangles.

to the point set X . Furthermore, new edges and faces have to be defined,

Ē(X24) = (X2, X4) , Ē(X34) = (X3, X4) ,

F̄(X24) = (X234, ∞) , F̄(X34) = (X234, ∞) ,
(5.35)

and, finally, the common face of the two cells is updated:

F̄(X23) := (X123, X234) . (5.36)

After the insertion of all cells is finished, boundary faces can be identified by testing the
faces F̄(XF ) for the exception point: XC right = XEx = ∞.

Assuming P = 2 for the number of processors and a parallel distribution with dest (C1) =
1 and dest (C2) = 2, the partition map π results in

π(X1) = π(X12) = π(X13) = π(X123) = {1} ,

π(X2) = π(X3) = π(X23) = {1, 2} ,

π(X4) = π(X24) = π(X34) = π(X234) = {2} ,

(5.37)

thus leading to the Distributed Point Objects with the local point sets Xp:

X1 = {X1, X2, X3, X12, X13, X23, X123} ,

X2 = {X2, X3, X4, X23, X24, X34, X234} .
(5.38)
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For the discussion of the parallel linear algebra, in a next step, degrees of freedom have to
be assigned to the respective points X ∈ X . Considering Taylor-Hood elements for the
triphasic model, this results in the assignments

NX = 4 for X ∈ XV̄ , NX = 2 for X ∈ XĒ , NX = 0 for X ∈ {XF̄ ∪ XC̄} , (5.39)

which altogether give NC =
∑

X∈XC
NX = 18 for each triangle C ∈ C.

On the distributed mesh, the residual vector rm from (5.28) is represented additively by
rm = rm

1 + rm
2 with

rm
1 = (rm

1 [X1], rm
1 [X2], rm

1 [X3], rm
1 [X12], rm

1 [X23], rm
1 [X13]) ,

rm
2 = (rm

2 [X2], rm
2 [X4], rm

2 [X3], rm
2 [X24], rm

2 [X34], rm
2 [X23]) .

(5.40)

For the evaluation of the norm ||rm||, a unique additive representation is obtained by
collecting the residual parts on the processors as described in (5.29)3:

rm
1,col = (rm

1 [X1], rm
1 [X2] + rm

2 [X2], rm
1 [X3] + rm

2 [X3],

rm
1 [X12], rm

1 [X23] + rm
2 [X23], rm

1 [X13])

= (rm[X1], rm[X2], rm[X3], rm[X12], rm[X23], rm[X13]) ,

rm
2,col = (0, rm

2 [X4], 0, rm
2 [X24], rm

2 [X34], 0)

= (0, rm[X4], 0, rm[X24], rm[X34], 0) .

(5.41)

Obviously, this strategy still yields rm = rm
1,col + rm

2,col, but the essential advantage of
the collected representation is due to the possibility that now the Euclidian norm can be
computed in parallel, cf. (5.29)1:

||rm|| =
√

(rm)T rm =
√

(rm
1,col)

T rm
1,col + (rm

2,col)
T rm

2,col . (5.42)

If the residual norm does not meet the stopping criterion, the correction vectors have to
be computed by applying the preconditioner B to rm on all master points, cf. (5.30):

cm
1,add = (B[X1, X1] r

m[X1], B[X2, X2] r
m[X2], B[X3, X3] r

m[X3],

B[X12, X12] r
m[X12], B[X23, X23] r

m[X23], B[X13, X13] r
m[X13]) ,

cm
2,add = (0, B[X4, X4] r

m[X4], 0, B[X24, X24] r
m[X24],

B[X34, X34] r
m[X34], 0) .

(5.43)

Finally, the correction vectors are transferred into a consistent representation for the
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parallel (local) update of the solution vector:

cm
1 = (cm

1,add[X1], cm
1,add[X2] + cm

2,add[X2], cm
1,add[X3] + cm

2,add[X3],

cm
1,add[X12] , c

m
1,add[X23] + cm

2,add[X23] , c
m
1,add[X13]) ,

cm
2 = (cm

1,add[X2] + cm
2,add[X2], cm

1,add[X4], cm
1,add[X3] + cm

2,add[X3],

cm
1,add[X24] , c

m
1,add[X34] , c

m
1,add[X23] + cm

2,add[X23]) ,

; ∆ūm+1
1 = ∆ūm

1 + cm
1 , ∆ūm+1

2 = ∆ūm
2 + cm

2 .

(5.44)
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In this chapter, three different numerical examples are presented in order to emphasize
and clarify single aspects of the theoretical discussions in this thesis. The first example
concerns the numerical simulation of a biaxial test with a micropolar material, which
consists of two materially incompressible constituents, namely a solid and a fluid phase.
With this example, dilatant and contractant shear band developments are going to be
illustrated, cf. Ehlers et al. [60]. In contrast to this 2-d simulation, the other two examples
are 3-dimensional initial boundary-value problems, which are both dealing with typical
failure mechanisms of natural slopes, cf. Ehlers et al. [62] and Wieners et al. [153]. Therein,
the modeled soil is assumed to behave as a non-polar material, which consists of the three
different constituents soil, water and air. Consequently, the triphasic model, which was
discussed in detail in the Chapters 2 and 3, is used for the description of this soil.

Figure 6.1: Front and back view of the Linux cluster “Leonardo da Vinci” of the Institute of
Applied Mechanics (Chair 2) at the University of Stuttgart.

As the simulations of the two 3-dimensional boundary-value problems are numerically
very expensive, they had to be computed in parallel with the FE code M++/PANDAS, cf.
Chapter 5. These parallel computations were carried out on two different Linux clusters,
which are located once at the University of Erlangen and second at the University of
Stuttgart. The cluster in Erlangen is part of the Institute of Applied Mathematics and
consists of 36 Xeon processors (2.2 GHz, 18 dual boards), 18 GB random access memory
(500 MB/processor) and one Gigabit network. The second cluster, Leonardo da Vinci, is
located at the Institute of Applied Mechanics (Chair 2) at the University of Stuttgart, cf.
Figure 6.1. This machine consists of altogether 98 Opteron processors (2.2 GHz, 47 dual
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boards and 1 quad board), 104 GB random access memory (at least 1 GB/processor) and
two Gigabit networks, which share the work coming from the system administration and
the data transfer of the parallel computations.

6.1 Biaxial test

In a straightforward extension of Ehlers et al. [60], who showed dilatant and contractant
shear band developments at the example of non-polar materials, here, these effects are
going to be illustrated at the example of a micropolar material, which characterizing
material parameters are taken from [64], cf. Table 6.1. The underlying mechanical model is
a biphasic model consisting of a materially incompressible, micropolar, elasto-viscoplastic
solid skeleton and a materially incompressible, viscous pore-fluid. Due to the fact that
such a model was not explicitly discussed in this thesis, all the necessary equations for
the numerical realization, which were partly mentioned in Chapter 2 and Section 4.4, are
summarized in the following set of equations:

∗ primary variables: solid displacement uS, pore pressure p and total rotation ϕ̄S.

∗ weak formulations of the balance relations:
∫

Ω

(σS
E − pI) · grad δuS dv −

∫

Ω

(nFρFR + nSρSR) g · δuS dv =

∫

Γt

t̄ · δuS da,

∫

Ω

[ (nF )′S + nF div (uS)′S ] δp dv −
∫

Ω

nF wF · grad δp dv =

∫

Γv

v̄F δp da,

∫

Ω

MS · grad δϕ̄S dv −
∫

Ω

(I × σS
E) · δϕ̄S dv = 0 .

(6.1)

∗ saturation condition and linearized volume balance of the solid:

nS + nF = 1 , nS = nS
0S (1 − div uS) . (6.2)

∗ kinematic relations for strains and curvatures:

ε̄S = graduS +
3

E ϕ̄S ,

κ̄S =
1

2
{

3

E [ grad ε̄S + (grad ε̄S)
13

T − (grad ε̄S)
23

T ] }2.

(6.3)

∗ additive split of strains and curvatures and micropolar elasticity laws:

ε̄S = ε̄Se + ε̄Sp , κ̄S = κ̄Se + κ̄Sp ,

σS
E = 2µS ε̄Se sym + 2µS

c ε̄Se skw + λS ( ε̄Se sym · I ) I , MS = 2µS
c (lSc )2κ̄Se .

(6.4)
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Lamé constants µS = 5 583 kN/m2 , λS = 8 375 kN/m2

effective densities ρSR = 2 600 kg/m3, ρLR = 1 000 kg/m3

solid volume fraction nS
0S = 0.67

effective liquid weight γFR = 10 kN/m3

gravitation g = 0 m/s2

Darcy permeability coefficient kF
0S = 10−7 m/s

yield criterion α = 1.074 0 · 10−2, β = 0.119 6, γ = 1.555

δ = 1.377 · 10−4 m2/kN , ε = 4.330 · 10−6 m2/kN

κ = 10.27 kN/m2, m = 0.593 5

plastic potential ψ1 = 1.33, ψ2 = 0.107

viscoplasticity η = 100 s, σ0 = 10.27 kN/m2, r = 1

Cosserat parameters lSc = 10−3 m, µS
c = 4 · 103 kN/m2

kσ = 0, kM = 12

Table 6.1: Biaxial test: material parameters [64].

∗ evolution equations for plastic strains and plastic curvatures:

(ε̄Sp)
′
S =

1

η

〈
F̄ (σS

E)

σ0

〉r
∂ Ḡ

∂ σS
E

,

(κ̄Sp)
′
S =

1

2
{

3

E [ grad (ε̄Sp)
′
S + (grad (ε̄Sp)

′
S)

13

T − (grad (ε̄Sp)
′
S)

23

T ] }2.

(6.5)

∗ micropolar yield function and micropolar plastic potential:

F̄ = Φ̄1/2 + β I + ε I2 + 1
2
kM (MS · MS)1/2 − κ = 0 ,

Φ̄ = IID
sym(1 + γ ϑ)m + kσ IIskw + 1

2
α I2 + δ2 I4 ,

Ḡ = Γ̄1/2 + ψ2 I + ε I2 ,

Γ̄ = ψ1 IID
sym + kσ IIskw + 1

2
α I2 + δ2 I4 .

(6.6)

∗ Darcy equation:

nF wF = − kF
0S

γFR
(grad p− ρFR g) . (6.7)

Therein, the definitions of the different invariants in (6.6) are given in Appendix A.2.2.

The initial boundary-value problem describing the numerical simulation of the biaxial
test is a 2-d simulation, in which plane strain conditions are prescribed, cf. Figure 6.2. In
particular, a fluid-saturated, micropolar and porous material is considered, where during
the time period 0 ≤ t ≤ τ a linearly increasing horizontal stress σ1 is applied, which is
kept constant for t ≥ τ . After the consolidation process is finished, which is resulting from
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Figure 6.2: Biaxial test: initial boundary-value problem.

the increase of σ1, the specimen is loaded with a displacement driven vertical stress such
that ū2 = (ū2)

′
S [t − (τ + tcons)]. While the top and bottom boundaries of the specimen

are impermeable, the side boundaries are assumed to be ideally permeable. Furthermore,
the rotation is set to zero at only one FE node at the bottom of the sample, at which,
additionally, the horizontal displacement is prevented, cf. Figure 6.2. From the numerical
point of view, the prescribed initial boundary-value problem characterizes a homogeneous
problem. In order to obtain a shear band localization, an imperfection is included in the
sample, cf. Figure 6.2, by a weakening of the Lamé constants µS and λS.

The application of two different lateral loads, namely σ1 =110 kN/m2 and σ1 =140 kN/m2,
leads to the development of both dilatant and contractant shear bands. The reason for
the onset of the different types of shear bands stems from the fact that, when viscoplastic
yielding occurs, the lower lateral load leads to a yield point in the brittle regime, whereas
the higher lateral load produces a yield point in the ductile regime, cf. the remark on
Page 29. Furthermore, the onset of the weakening material behavior is much earlier in
the calculation with the lower lateral load, cf. Figure 6.3.

Both calculations are carried out on a FE mesh with 2 048 quadrilateral elements, in which
the displacement uS is discretized by quadratic ansatz functions and both the pore-fluid
pressure p and the total rotations ϕ̄S are discretized by linear ansatz functions. This
choice leads to altogether 16 964 degrees of freedom for each simulation. Comparing the
deformed FE meshes, cf. Figure 6.4, and the accumulated plastic strains, cf. Figures 6.5
and 6.6, it is furthermore seen that the final vertical displacement of ū2 = 6.6 mm yields
comparable shear band developments for the different lateral loads. However, as a result
of dilatancy, the maximum value of the accumulated plastic strains is approximately 50
per cent higher in the dilatant case than in the contractant one. The reason for this fact
mainly results from the incompressibility constraint of the pore-fluid. To explain this
behavior in more detail, one has to take a closer look at the different pore-fluids pressures
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Figure 6.3: Biaxial test: load-deflection curves.

and seepage velocity developments shown in the Figures 6.5 and 6.6. In the case with the
higher lateral load, a high pore-fluid pressure is obtained and, as a result of contractancy,
the pore-fluid is pressed out of the shear band, whereas, in the case with the lower lateral
load, these effects are vice versa, i. e., a seepage flow into the shear band is obtained due
to the negative pore-fluid pressure.

Furthermore, proceeding from the porosity of the specimen directly after the lateral load
is applied, the final porosity developments in the shearing zones exhibit either an increase
or a decrease. These effects are also corresponding to the developments of either dilatant
or contractant shear bands, respectively.

Figure 6.4: Biaxial test: undeformed (left) and deformed FE meshes for σ1 = 110 kN/m2 (mid-
dle) and σ1 = 140 kN/m2 (right), deformation scaled four times.



118 Chapter 6: Numerical examples

0.1400

0.1300

0.1200

0.1100

0.1000

0.0900

0.0800

0.0700

0.0600

0.0500

0.0400

0.0300

0.0200

0.0100

0.0000

0.1100

0.1029

0.0957

0.0886

0.0814

0.0743

0.0671

0.0600

0.0529

0.0457

0.0386

0.0314

0.0243

0.0171

0.0100

0.3274

0.3271

0.3268

0.3265

0.3261

0.3258

0.3255

0.3252

0.3249

0.3246

0.3243

0.3239

0.3236

0.3233

0.3230

0.3274

0.3271

0.3268

0.3265

0.3261

0.3258

0.3255

0.3252

0.3249

0.3246

0.3243

0.3239

0.3236

0.3233

0.3230

0.000E+00

-2.747E-06

-5.494E-06

-8.241E-06

-1.099E-05

-1.373E-05

-1.648E-05

-1.923E-05

-2.198E-05

-2.472E-05

-2.747E-05

-3.022E-05

-3.296E-05

-3.571E-05

-3.846E-05

PSfrag replacements

accum. plastic strains total rotations

pore-fluid pressure

inital porosity final porosity

seepage velocity

Figure 6.5: Biaxial test: dilatant shear band development (σ1 = 110 kN/m2).
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Figure 6.6: Biaxial test: contractant shear band development (σ1 = 140 kN/m2).
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6.2 Excavation problem

This example concerns a standard excavation problem carried out at a natural slope
shown in Figure 6.7. Therein, the top figure describes the total geometrical situation
after the excavation process has been realized and the bottom figure shows a perspective
image of half of the problem. Note that due to the symmetry of the configuration, it is
sufficient to consider only half of the geometry in the numerical computations. In this
example, the modeled soil is assumed to behave like a clayey silt. The characterizing
material parameters are given in accordance to [62] in Table 6.2. Note that in contrast
to [62], the value for the intrinsic permeability KS

0S was chosen to 10−9 m2, which is a
very large value for realistic soils. This is due to the fact that the current version of the
parallel iterative solver is very sensible with respect to small values of KS

0S [153]. This
motivates further development on the parallel preconditioner to achieve more robustness.
Nevertheless, the obtained results from the parallel simulations show a similar behavior
concerning the failure mechanism of the considered slope in comparison with the results
of [62].
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Figure 6.7: Excavation problem: sketch of the whole slope (top) and perspective view on half
of the excavated slope (bottom).

As was shown by Ehlers et al. [62], it can be observed that the slope under study results in
a stable configuration under gravitational load as long as the ground-water table is so low
that the pore-liquid does not leak at the slope, cf. Figure 6.8. If this situation is changed
by an increase of the ground-water table, cf. Figure 6.9 (top), the failure of the slope is
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Lamé constants µS = 5 583 kN/m2 , λS = 8 375 kN/m2

effective densities ρSR = 2 720 kg/m3, ρLR = 1 000 kg/m3

gas phase R̄G = 287.17 J/(kgK), θ = 283 K, p0 = 105 N/m2

solid volume fraction nS
0S = 0.54

gravitation g = 9.81 m/s2

fluid viscosities µLR = 10−3 Ns/m2, µGR = 1.8 · 10−5 Ns/m2

intrinsic permeability KS
0S = 10−9 m2, π = 1.0

van Genuchten model αgen = 2 · 10−4, hgen = 1.5

jgen = 2.3, εgen = 0.5, γgen = 0.333

residual saturations sL
res = 0.1, sG

res = 0.1

yield criterion α = 1.074 0 · 10−2, β = 0.119 6, γ = 1.555

δ = 1.377 · 10−4 m2/kN , ε = 4.330 · 10−6 m2/kN

κ = 10.27 kN/m2 , m = 0.593 5

plastic potential ψ1 = 1.33, ψ2 = 0.107

viscoplasticity η = 500 s, σ0 = 10.27 kN/m2, r = 1

Table 6.2: Material parameters of the modeled soil [62].

initiated, thus leading to a development of a shearing domain with a certain thickness, cf.
Figure 6.9 (bottom).

Furthermore, the stream lines presented in Figure 6.10 show clearly that the pore-liquid
leaks at the surface of the slope. Note that this fact is important for a realistic modeling
of the underlying problem, as the leaking of the pore-liquid prevents the development
of a positive pressure (excess pressure) for pLR at the boundary surface of the slope,
which would lead to unrealistic results. The leaking of the pore-fluid is realized within
the calculation by a flexible setting of the Dirichlet boundary conditions p̄LR, i. e., if the
capillary pressure pC falls below a critical value at a certain node on the boundary surface
due to an increase of the liquid saturation sL, cf. Figure 2.5 (right) on Page 30, the value
of pLR at this node is set to the ambient pressure. At the beginning of the calculation, the
values of pLR are not specified at the boundary surface of the slope, in order to prevent
a predefined distribution of the liquid saturation sL = sL (pLR, pGR) on this boundary
surface. Such a predefined distribution would occur within the used triphasic model, as
Dirichlet boundary conditions are already set at the boundary surface of the slope for the
effective gas pressure, where pGR is set to the ambient gas pressure.

6.2.1 Convergence behavior and computational expense

For a proper discussion of the convergence behavior of the underlying spatial discretiza-
tion, the described boundary-value problem was calculated by Wieners et al. [153] on
four different FE meshes, where the coarsest mesh, cf. Figure 6.11 (left), contains 964
tetrahedra. Starting from this mesh (refinement level 0), three uniform refinements result
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Figure 6.8: Excavation problem with uncritical ground-water table: liquid saturation sL [-] (top)
and accumulated plastic strains εpv [-] (bottom) after the excavation process (defor-
mation scaled 3 times).

into the finest spatial discretization (refinement level 3) with altogether 493 568 cells, cf.
Figure 6.11 (right).

Using Taylor-Hood elements with quadratic ansatz functions for the displacement uS and
linear ansatz functions for the pressure terms pLR and pGR, cf. Figure 3.3 on Page 41,
the convergence behavior depicted in Figure 6.12 is obtained. Thereby, the development
of the displacements u1 and u2 along line 1 (x1 = 29 m, x2 = 21 m; cf. Figure 6.7) and
the liquid saturation sL along line 2 (x1 = 29 m, x3 = 0 m; cf. Figure 6.7) are shown
exemplarily for the four different meshes. In these three figures, an excellent convergence
behavior can be identified for the regularly refined FE meshes.

Note that the number of cells increases by the factor 8 with every uniform refinement
step, i. e., each tetrahedron is subdivided into 8 tetrahedra per refinement, cf. Table 6.3.
Furthermore, for a stable numerical integration, a quadrature formula of fifth order has
to be used [137], which leads to 15 integration points per element, and, thus, to a huge
number of internal variables.
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Figure 6.9: Excavation problem with increased ground-water table: liquid saturation sL [-] (top)
and accumulated plastic strains εpv [-] (bottom) after the excavation process (defor-
mation scaled 3 times).
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Figure 6.10: Excavation problem: stream lines of the pore-liquid flow starting from 3 different
lines at x3 = 1m, x3 = 36m and x3 = 49m.

In order to be able to compare the computing times of the different FE meshes, all cal-
culations were carried out on 14 processors of the Linux cluster in Stuttgart. Note that
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Figure 6.11: Excavation problem: initial finite element mesh (left) and final mesh after three
uniform refinement steps (right).

this choice for the number of processors is a compromise between the calculations on the
coarsest and the finest FE meshes with regard to the computing time. For example, the
computing time of the calculation on the FE mesh with 493 568 cells (refinement level 3)
can be reduced significantly by choosing more processors, e. g., a parallel calculation with
24 processors on this cluster results in a computing time of approximately 34 hours. In
Table 6.3, it can be observed that the computing times for all calculations give reasonable
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Figure 6.12: Excavation problem: convergence behavior; displacement u1 [m] and u2 [m] plotted
along line 1 (top) and liquid saturation sL [-] plotted along line 2 (bottom).
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cells DOFs integration points time [h] EK [%]

level 0 964 5 436 14 460 00:04:56 100

level 1 7 712 38 185 115 680 00:37:06 103

level 2 61 696 285 893 925 440 05:56:22 89

level 3 493 568 2 211 941 7 403 520 46:54:11 90

Table 6.3: Excavation problem: computational expense for the full simulation of 280 times steps
on different refinement levels.

results concerning the increase of complexity between the single refinement levels. For
example, there is a factor of 7.9 in the computing time from level 2 to 3, which is ap-
proximately equal to the increase of the number of the cells and which is slightly greater
than the increase of the degrees of freedom (DOFs). Nevertheless, looking at the quan-
tity EK, one can recognize that the efficiency for the calculation on the FE mesh with
the refinement level 1 gives an unrealistic value, which is greater than 100 %. This fact
indicates that there exists some parallel overhead for less than 40 000 degrees of freedom
for calculations of this boundary-value problem on the chosen number of processors.

refinement level 0 1 2 3

Newton iterations (avg.) 2.4 2.8 3.2 3.4

computing time [s] (avg.) 0.8 6.7 70.7 570.7

Table 6.4: Excavation problem: average number of Newton iterations per time increment and
average computing time for one implicit Euler step on different meshes.

For simplicity of the comparison of the results, a common time series was fixed for all
refinement levels. In Wieners et al. [153], the time steps were chosen in such a way that
the simulation on the finest mesh gave a significant increase of average computing time
for one implicit Euler step, which was associated with the increase in the average number
of Newton steps and in the average number of iterations within the GMRES method for
the solution of one linear problem. Based on these experiences, in this thesis, smaller
time steps were chosen such that a moderate increase of computing time is obtained for
the simulation on the FE mesh with refinement level 3, cf. Table 6.4. Furthermore, by
this choice for the time steps, the average computing time for the solution of one linear

refinement level 0 1 2 3

GMRES iterations (avg.) 25.3 41.8 76.9 149.7

computing time [s] (avg.) 0.2 1.6 15.7 118.2

number of linear problems 695 825 926 985

Table 6.5: Excavation problem: performance of the GMRES solver (average number of iterations
per Newton step, average computing time for the solution of one linear problem and
total number of linear problems for the full simulation of 280 time steps).
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problem with the GMRES method reflects the increase of complexity between the single
refinement levels quite good, cf. Table 6.5.

6.2.2 Influence of the viscoplastic regularization

According to Table 6.2, the material parameters of the modeled soil include a value of
η = 500 s for the viscosity. Changing this value for a parameter study of η, the influence
of the viscoplastic regularization technique on the result of the FE simulation of the
excavation problem can be illustrated. Therefore, a rather fine FE mesh with 495 632 cells
leading to altogether 2 204 733 degrees of freedom is generated, which has a comparable
complexity to the level 3 mesh of the last section, cf. Figure 6.11 (right). In contrast to
the level 3 mesh, the experiences due to the obtained results concerning the failure of the
slope, cf. Figure 6.9 (bottom), are used for the generation of this FE mesh. Consequently,
a rather fine spatial discretization is chosen for the area, in which a failure of the slope is
expected, cf. Figure 6.13 (a).

The results in Figure 6.13 (b)–(f) show the accumulated plastic strains for 5 different
values of η, namely η = 500 s, 400 s, 300 s, 200 s, 100 s. Interestingly enough, these cal-
culations were not carried out with the increased but with the “uncritical” ground-water
table shown in Figure 6.8 (top). From the obtained results, it becomes evident that the
value of η has a big influence on the failure behavior of slope under study. As the slope
results in a stable configuration for the results shown in Figure 6.13 (b) and (c), any
further decrease of the value of η leads to an increase of plastic strains and, thus, to a
beginning failure of the slope for the simulation with the smallest value of η. The reason
for this behavior is obvious. The decreasing values of the viscosity lead to a decrease of
the corresponding overstresses coming along with the viscoplastic regularization method.
Thus, yielding occurs for smaller values of the stresses and, furthermore, the develop-
ing shear band is limited to a narrower zone in comparison to the simulation with the
increased ground-water table, cf. Figure 6.9 (bottom).

The simulations described above were each carried out on 30 processors of the Linux
cluster in Stuttgart, where approximately 15 GB memory was used for each computa-
tion. Note that the calculation of 250 time steps for the simulation with η = 100 s
took only approximately 20 hours. This fact clearly shows the capability of the interface
M++/PANDAS. By using this tool, a flexible testing of large scale initial boundary-value
problems can be carried out in a moderate computing time.

6.3 Slope failure problem

In the second parallel simulation, a slope failure problem is discussed, which is caused by
an extreme rainfall event [153]. Therein, the slope under study is assumed to consist of
three different soil strata, cf. Figure 6.14. The soil stratum at the bottom of the model
(stratum 3) should behave purely elastic, whereas the other two strata can show plastic
material behavior, if the elastic range of the soil is exceeded. Furthermore, the small
soil stratum in the middle (stratum 2) obtains an intrinsic permeability coefficient KS

0S,



6.3 Slope failure problem 127

(a) FE mesh with 495 632 cells
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(f) η = 100 s

Figure 6.13: Excavation problem: 5 calculations on a FE mesh with 495 632 cells (a); accumu-
lated plastic strains εpv [-] for different values of η (b)–(f) (scaled 5 times).
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Figure 6.14: Slope failure: perspective view (top) and side view (bottom) on the slope.

which is lower by the factor 1000 than the intrinsic permeability coefficient of the other
two soil strata, cf. Table 6.2. Therefore, pore-liquid within the partially saturated soil is
prevented from streaming through this “impermeable” stratum.

The slope under study is in a stable situation before the rainfall starts with an infiltration
rate (negative efflux) of v̄L = −10−5 m3/(m2 s) corresponding to 36 l/(m2 h). In this
example, the heavy rainfall event is assumed to last for 2.5 hours, which gives altogether
90 mm rainfall. Due to this heavy rainfall, pore-liquid is accumulated at the top of the
impermeable soil stratum, cf. Figures 6.15 and 6.16 (top). Thus, as a result of buoyancy,
failure of this part of the slope is initiated, whereas the backward part of the slope remains
in its initial stable state, cf. Figures 6.15 and 6.16 (bottom).

6.3.1 Convergence behavior and computational expense

The calculation of this problem is again carried out on four different, uniformly refined
FE meshes, where the initial mesh (level 0) and the finest mesh (level 3) are shown in
Figure 6.17. Note that it is essential for obtaining reasonable results, that already the
initial (coarse) mesh has a sufficient mesh resolution near the impermeable stratum.

Like in the previous example, the convergence behavior of the spatial discretization shows
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very good results. In order to illustrate this statement, in Figure 6.18, the distribution
of the effective liquid pressure pL is plotted along line 1 (x1 = 21.68 m, x2 = 14.26 m;
cf. Figure 6.14) and the development of the displacement u1 and the accumulated plastic
strains εpv are plotted along line 2 (x1 = 22 m, x2 = 9 m; cf. Figure 6.14).

cells DOFs integration points time [h] EK [%]

level 0 1 000 5 339 15 000 00:16:11 100

level 1 8 000 38 381 120 000 03:55:02 55

level 2 64 000 291 589 960 000 56:50:30 30

level 3 512 000 2 274 501 7 680 000 633:08:52 22

Table 6.6: Slope failure: computational expense for the full simulation of 800 times steps on
different refinement levels.

For a reasonable comparison of the computing times of the four different calculations,
all computations were carried out on 24 processors of the Linux cluster in Erlangen. In
Table 6.6, the number of cells and integration points, the degrees of freedom, the total
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Figure 6.15: Slope failure: liquid saturation sL [-] (top) and accumulated plastic strains εpv [-]
(bottom) due to a heavy rainfall (scaled 3 times).
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Figure 6.16: Slope failure: distribution of the pore-liquid saturation sL [-] (top) and development
of the accumulated plastic strains εpv [-] (bottom) in the cutting planes shown in
Fig. 6.14 (top).

Figure 6.17: Slope failure: initial finite element mesh (left) and final mesh after three uniform
refinement steps (right).

computing time and the efficiency EK for the four FE meshes are shown. Therein, it can
be observed that the four FE meshes result in similar problem sizes like in the convergence
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Figure 6.18: Slope failure: convergence behavior; effective liquid pressure pL [MN/m2] plotted
along line 1 and displacement u1 [m] and accumulated plastic strains εpv [-] plotted
along line 2.

studies for the excavation problem, cf. Section 6.2.1. Furthermore, one recognizes that
the increase of computing time between the different levels is almost constant for the first
three levels, i. e., there is approximately a factor of 14.5 between the computing times of
the levels 0 and 1 and the levels 1 and 2. Although the total computing time of about
27.5 days for the solution on the finest mesh is rather long, the increase of computing
time with respect to the calculation on the level 2 mesh is only around 11.1, which is
smaller than for the coarser meshes. The quantity EK reflects also this good behavior of
the level 3 computation, as the decrease of only 8 % efficiency from the level 2 to the level
3 computation is rather small.

refinement level 0 1 2 3

Newton iterations (avg.) 1.6 2.2 3.5 3.7

computing time [s](avg.) 1.2 17.3 253.8 2847.6

Table 6.7: Slope failure: average number of Newton iterations per time increment and average
computing time for one implicit Euler step on different meshes.

Like in the previous example, the time step sizes were chosen in an appropriate manner for
all four FE meshes such that no time step has to be repeated because of a non-converging
Newton method, cf. Table 6.7. Furthermore, Table 6.8 shows a moderate increase of
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average computing time for the solution of the linear systems.

refinement level 0 1 2 3

GMRES iterations (avg.) 29.3 64.3 127.7 265.3

computing time [s] (avg.) 1.4 6.5 64.5 702.9

number of linear problems 1 277 1 756 2 836 2 987

Table 6.8: Slope failure: performance of the GMRES solver (average number of iterations per
Newton step, average computing time for the solution of one linear problem, total
number of linear problems for the full simulation of 800 time steps).

6.3.2 Parallel speed-up and efficiency of M++/PANDAS

In order to discuss the parallel scaling properties of M++/PANDAS by use of the quantities
speed-up SP and efficiency EP , calculations of the slope failure problem were carried out
on both FE meshes with the refinement levels 2 and 3, cf. Table 6.6. For convenience,
each simulation contains only 20 time steps. The calculations presented in this section
were all carried out on the Linux cluster in Stuttgart.

In Table 6.9 and Figure 6.19, the results for the calculations on the mesh with 64 000
cells (refinement level 2) are shown. Starting with a calculation of the whole problem on
1 processor, altogether 12 parallel simulations were carried out with different numbers
of processors. Therein, the number of processors is increased by 2 until the mesh is
distributed on 24 processors, which results in a calculation with approximately 2 667 cells
on each processor. Looking at the computational expense of the single calculations, the

processors cells/processor time [h] SP [-] EP [%]

1 64 000 3:01:40 1.00 100

2 32 000 1:48:25 1.68 84

4 16 000 1:04:32 2.82 70

6 ≈ 10 667 0:46:19 3.92 65

8 8 000 0:38:29 4.72 59

10 6 400 0:36:00 5.05 50

12 ≈ 5 334 0:34:19 5.29 44

14 ≈ 4 572 0:29:29 6.16 44

16 4 000 0:29:46 6.10 38

18 ≈ 3 356 0:31:08 5.84 32

20 3 200 0:32:57 5.51 28

22 2 909 0:32:42 5.56 25

24 ≈ 2 667 0:34:20 5.29 22

Table 6.9: Slope failure: speed-up and efficiency; 20 time steps on the FE mesh with refinement
level 2.
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Figure 6.19: Slope failure: progression of speed-up (left) and efficiency (right); 20 time steps on
the FE mesh with refinement level 2.

computing time of approximately 3 hours on 1 processor can be maximally reduced by
roughly a factor of 6 by the calculations with 14 and 16 processors, respectively. These
calculations correspond to a parallel efficiency of around 40 %, i.e., when using 14 (or 16)
processors, the theoretically possible speed-up of 14 (or 16) is only reached by a factor
around 0.4. By choosing more than 16 processors, in this example, even an increase
of computing time is obtained, which is well reflected by the decreasing values for the
speed-up.

Table 6.10 shows the results of the simulations on the FE mesh with refinement level 3.
Due to the restriction of 1 GB memory per compute node on the cluster in Stuttgart, the

processors cells/processor time [h] SP [-] EP [%]

14 ≈ 36 572 5:18:14 1.00 100

16 32 000 4:45:54 1.11 97

18 ≈ 28 445 4:41:57 1.13 88

20 25 600 4:14:59 1.25 87

22 ≈ 23 273 4:05:37 1.30 82

24 ≈ 21 334 3:53:45 1.36 79

26 ≈ 19 693 3:52:06 1.37 74

28 ≈ 18 286 3:40:46 1.44 72

30 ≈ 17 067 3:38:07 1.46 68

32 16 000 3:45:04 1.41 62

34 ≈ 15 059 3:43:04 1.43 59

36 ≈ 14 223 3:48:28 1.39 54

38 ≈ 13 474 3:45:36 1.41 52

40 12 800 3:44:12 1.42 50

42 ≈ 12 191 3:49:40 1.38 46

Table 6.10: Slope failure: speed-up and efficiency; 20 time steps on the FE mesh with refinement
level 3.
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calculation of the slope failure problem on such a fine mesh needs at least 14 processors,
which is, therefore, the reference calculation for the quantities speed-up and efficiency in
this example. Like in the simulations with the coarser FE mesh, the computing time can
be reduced by increasing the number of processors until a minimum computing time is
obtained, which is given here by approximately 3 hours and 40 minutes by the calculation
on 30 processors. This simulation gives a parallel efficiency of 68 % with respect to the
calculation on 14 processors.

Looking at the results given in Tables 6.9 and 6.10, it can be observed that, in both cases,
the speed-up SP increases continuously to a maximum value. After that, depending on
the load balancing, i. e., the size of the processor interfaces and, therefore, the amount of
parallel communication, the increase of processors can both lead to a decrease or increase
of the speed-up. Obviously, a continuous increase of processors after having reached a
maximum value for the speed-up leads, in a global sense, to an increase of computing
time. Furthermore, due to the obtained results, no a priori statement can be made
concerning the optimal number of processors for an arbitrary parallel simulation with a
certain number of degrees of freedom.

Finally, it can be concluded that the parallel scaling properties of M++/PANDAS are not
optimal in comparison with famous commercial parallel FE tools. Nevertheless, recalling
the underlying idea of the interface M++/PANDAS, i. e., parallelization of a sequential FE
code by coupling with a parallel solver without any change within the sequential code, a
comfortable parallel scaling behavior is obtained by M++/PANDAS.
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7.1 Summary

In the present thesis, the single steps necessary for the numerical simulations of localization
phenomena were presented and discussed. Therein, the numerical aspects of this whole
procedure were paid special attention to, namely, to the problems coming along with the
modeling of softening material behavior and the problem to efficiently deal with large
numbers of unknown quantities within the solution process. By the resulting interface
M++/PANDAS, wherein an existing sequential code containing advanced material models
is parallelized by coupling with a program containing parallel data structures and efficient
parallel solvers, a basis was established for further developments in the field of large scale
FE computations of multiphasic problems.

Within the framework of this thesis, the simulations of geotechnical questions were taken
as examples of use for the numerical studies. Based on the Theory of Porous Media
(TPM), a thermodynamically consistent continuum mechanical model was presented in
order to model fully and partially saturated soils properly. The proposed triphasic model,
which consists of the constituents solid, liquid and gas, was discussed in detail, whereby
a simplified biphasic model was obtained by neglecting the compressible gaseous phase.
Subsequently, the numerical realization of this model in the context of the finite element
method was pointed out. In addition to the numerical realization of standard single-phasic
material models, it was emphasized that the multiphasic character has to be considered
in order to obtain stable numerical solutions, for example, by the choice of special ansatz
functions for the different unknowns, which finally resulted in the application of the well-
known Taylor-Hood elements.

In the context of the chapter dealing with the proper numerical treatment of softening
material behavior, a comprehensive overview of three main branches of regularization
techniques, namely, the rate-dependent models, the micropolar continua and the integral-
and gradient-type non-local models, was presented, whereby the history and the main
publications of the respective methods were discussed. Therein, it was pointed out that
many regularization methods have certain limits for their validity due the respective phys-
ical motivation or due to the given application range of the single method. In particular,
the viscoplastic ansatz can only be applied in cases of dynamic or quasi-static boundary-
value problems of rate-dependent materials, and the use of a micropolar continuum is
only recommendable in the context of its regularizing effect in cases of shear dominant
problems of materials with a granular or beam-like microstructure. Furthermore, for the
non-local models, as far as the author is aware, no appreciable limitations with regard
to their validity exist. In the numerical simulation of a tensile bar, each method showed
an adequate regularizing effect in order to preserve the well-posedness of the problem.
Nevertheless, differences concerning the characteristics of the solution and the numerical
convergence behavior between the single regularization methods were recognized. In gen-
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eral, it can be concluded that the application of the rate-dependent model clearly shows
the best numerical convergence behavior. Following this, whenever the material under
study and the respective boundary-value problem are appropriate, the application of such
models or at least the combination of them with other regularization methods are strongly
recommended for an improvement of the numerical convergence behavior.

In order to enable 3-dimensional FE simulations based on TPM models from a numerical
viewpoint, the sequential code PANDAS had to be expanded in terms of parallel strategies.
This was carried out by an interface, which combines the two programs M++ and PANDAS,
whereby the actual parallel solution process is governed by M++ and no changes with
regard to this parallelization procedure had to be additionally implemented into PANDAS.
Obviously, this concept is not restricted to the application to PANDAS but can be applied
straightforward to other sequential FE codes.

Finally, the capability and efficiency of the presented mechanical models as well as their
numerical realizations were proved at challenging numerical examples. In particular, dila-
tant and contractant shear bands were presented in the framework of a biphasic micropo-
lar continuum. Furthermore, the interface M++/PANDAS was tested at two 3-dimensional
simulations of failure mechanisms of natural slopes. Therein, the excellent convergence
behavior of the applied model towards a reference solution by uniform refinements of
the underlying FE meshes was presented. In addition, the parallel scaling properties
of M++/PANDAS were discussed in detail by consideration of the quantities speed-up,
efficiency and scale-up.

7.2 Outlook

Realistic FE simulations based on advanced continuum mechanical models are a demand-
ing task, which will become more and more interesting and important in the future. In
this context, the developed interface M++/PANDAS can be understood as a prototype im-
plementation, which can be expanded and advanced in many points. First of all, besides
the presented triphasic model, other material models containing anisotropy, chemical re-
actions, damage models, etc. can be integrated in the interface and tested at large scale
problems in a reasonable time.

In order to increase the numerical efficiency of the solution process, the tool M++ and, as
a consequence, also the interface M++/PANDAS, can be extended with respect to adaptive
strategies in time and space. Furthermore, the stability and efficiency of the iterative linear
solvers can be increased by special adjustments concerning the respective characteristics
of the single problems under consideration.

Finally, the enormous number of internal variables in the presented 3-d examples, which
result from the need of many integration points for a stable numerical quadrature, could
be a motivation for a completely new approach for the numerical solution procedure.
Instead of solving the equations for the determination of the plastic strains and the plastic
multiplier locally within each finite element, these quantities could be transferred to the
nodes of the FE discretization, such that the respective equations could be solved in a
strong sense at these nodes. In combination with parallel solution strategies, this approach
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would result in a significant decrease of the computational expense for 3-d simulations, if
stable numerical solutions are obtained by the realization of this idea.





Appendix A: Tensor calculus

The main definitions for the tensorial expressions, which were presented within this thesis,
are briefly summarized here. Therein, the chosen notation follows the rules and definitions
of the absolute tensor notation given in the work by de Boer [19] and in the lecture notes on
vector and tensor calculus by Ehlers [52]. For simplicity, the underlying coordinate system
for the following definitions is a normalized Cartesian basis, in which no differentiation
between covariant or contravariant basis systems has to be carried out. Furthermore, the
well-known summation convention of Einstein holds for indices appearing twice within a
term.

A.1 Tensor algebra

A.1.1 Basic tensor products

Among the variety of different tensor products, here, only the rules for the products,
which were used within the discussions of this thesis, are presented, namely the dyadic
and scalar products as well as the linear mapping (“contracting product”) and the tensor
product. For a better understanding of the absolute tensor notation, additionally, an
orthonormal basis notation of the respective products is given.

Dyadic product

Within a dyadic tensor product, all the basis vectors ei of the involved tensors are com-
bined in a dyadic sense. The order (or rank) of the resulting tensor equals the sum of the
ranks of the involved tensors:

C = a ⊗ b = ai bj ei ⊗ ej,

4

C = A ⊗ B = Aij Bkl ei ⊗ ej ⊗ ek ⊗ el .
(A.1)

Note that within the used notation, vectors (or 1-st order tensors) are symbolized by
bold, small Latin characters, whereas tensors of n-th order (n > 1) are defined by bold,
capital Latin characters. Furthermore, the rank of a n-th order tensor is clarified by the
superscripted rank for n > 2.

Scalar product

The scalar product can only be carried out between tensors of the same order, whereby
the single basis vectors are combined scalarly and the result of this product always yields
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a scalar value:
α = a · b = ai bi ,

α = A · B = Aij Bij .
(A.2)

Linear mapping and tensor product

The linear mapping as well as the tensor product are operations, in which the rank of
the resulting tensor is reduced (contracted) with respect of the sum of the ranks of all
involved tensors. In both operations, the resulting tensor is formed by a combination of
both scalar and dyadic products of the basis vectors of the involved tensors:

c = A b = Aij bj ei ,

C = A B = Aij Bjk ei ⊗ ek ,

C =
4

A B = AijklBkl ei ⊗ ej .

(A.3)

A.1.2 Symmetric and skew-symmetric parts of a tensor

Each arbitrary 2-nd order tensor A can be uniquely decomposed into symmetric and
skew-symmetric parts:

A = Aij ei ⊗ ej = Asym + Askw ,

Asym := 1
2
(A + AT ) ; Asym = AT

sym ,

Askw := 1
2
(A − AT ) ; Askw = −AT

skw ,

(A.4)

whereby the transpose of a tensor is given by AT = Aji ei ⊗ ej.

A.1.3 Fundamental tensors

A fundamental tensor is a tensor, whose coefficient matrix is exclusively built by combi-
nations of basis vectors and which is independent of any variable quantity.

2-nd order fundamental tensor

The 2-nd order fundamental tensor (or identity tensor) I leads to an identical map, if it
is applied to an arbitrary vector a or an arbitrary 2nd order tensor A, respectively:

a = I a , A = IA , I := δij ei ⊗ ej , (A.5)

where δij is the so-called Kronecker symbol, which takes for i = j the value 1 and otherwise
the value 0.



A.1 Tensor algebra 141

3-rd order fundamental tensor

The 3-rd order fundamental tensor (or Ricci permutation tensor)
3

E is defined via the
following relation:

3

E := eijk (ei ⊗ ej ⊗ ek) , (A.6)

whereby the so-called permutation symbol eijk is given by

eijk =







1 : even permutation

−1 : odd permutation

0 : double indexing

−→







e123 = e231 = e312 = 1

e321 = e213 = e132 = −1

all remaining eijk vanish

(A.7)

This fundamental tensor is very often used in connection with the outer tensor product
of tensors, e. g., the outer tensor product of a vector and a tensor, cf. Section A.1.6.

4-th order fundamental tensors

4-th order fundamental tensors are built by dyadic combinations of the 2-nd order iden-
tity tensor I. By additional transpositions of the respective basis vectors, altogether
three different 4-th order fundamental tensors can be defined, which have the following
properties:

(I⊗ I)
23

T A = A (identical map) ,

(I⊗ I)
24

T A = AT (“transposing” map) ,

(I⊗ I) A = (A · I) I = (trA) I (“tracing” map) .

(A.8)

Therein, the transpositions ( · )
ik

T indicate an exchange of the i-th and k-th basis systems.

A.1.4 Spherical and deviatoric parts of a tensor

Each arbitrary 2-nd order tensor A can be decomposed into spherical and deviatoric parts:

A = AK + AD ,

AK := 1
3
(A · I) I ,

AD := A − 1
3
(A · I) I = A − AK .

(A.9)

By the above definition, the deviatoric part AD always results in a traceless tensor, i. e.,
AD · I = 0.
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A.1.5 Incomplete mapping

If higher order tensors are applied to other tensors in the sense of incomplete mappings,
one has to know how many of the basis vectors have to be linked by scalar products.
Therefore, an underlined superscript ( · )n indicates the order of the desired result after
the tensor operation has been carried out. In this context, an incomplete mapping of two
3-rd order tensors results in the following way in a 2-nd order tensor:

C = (
3

A
3

B)2 = Aijk Bjkn (ei ⊗ en) . (A.10)

A.1.6 Outer tensor product of vector and tensor

The outer tensor product of a vector a and a 2-nd order tensor B is defined by

a × B = [
3

E (a ⊗ B) ]2 = eijk aj Bkt (ei ⊗ et) . (A.11)

A.2 Invariants

A.2.1 Invariants of a 2-nd order tensor

From the solution of the eigenvalue problem, the principal invariants of an arbitrary 2-nd
order tensor A yield:

IA = A · I = trA ,

IIA = 1
2
(I2A − AT · A) ,

IIIA = 1
6
I3A − 1

2
I2A (AA · I) + 1

3
AT AT · A = det A .

(A.12)

A.2.2 Specific invariants of the yield criterion

According to the above definitions, the specific invariants of the presented yield criterion
can be expressed by the following relations:

∗ Single-surface yield criterion by Ehlers [49, 50]:

I = σ · I , IID = 1
2

σD · σD , IIID = det σD . (A.13)

∗ Micropolar single-surface yield criterion by Ehlers & Volk [64]:

I = σ · I , IIDsym = 1
2

σD
sym · σD

sym , IIID
sym = det σD

sym ,

IIskw = 1
2

σskw · σskw , IIM = 1
2
M ·M .

(A.14)

Therein, σ denotes both the standard and micropolar stress tensors and M denotes the
couple stress tensor of the micropolar theory. Within a multiphasic formulation, both
stress quantities are related to the solid constituent.
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Integral- and gradient-type non-local models

In Section 4.2, a connection was established between integral- and gradient-type non-local
models. Based on the work by Engelen et al. [67], a detailed derivation of this connection
will be presented now. Starting point of this derivation is the integral-type formulation
of a non-local quantity ¯̄f(x):

¯̄f(x) =
1

Vr

∫

�
3

w(x− y) f(y) dv . (B.1)

Following the definitions from Equations (4.3) and (4.27), the representative volume Vr

and the weighting function w(x− y) are given by

Vr =

∫

�
3

w(x− y) dv ,

w(x − y) =
1

l
√
π

exp

[

−(x − y) · (x − y)

l2

]

.

(B.2)

Note that, in contrast to Equations (4.2) and (4.3), the evaluation of the above integrals
has to be carried out on R3 within this derivation, which results in a constant value for
the representative volume. Thus, the above integral formulation corresponds to a free
boundary problem.
By insertion of the Taylor series expansion for f(y) with respect to the point x, cf.
Equation (4.4), in (B.1), the following relation is obtained:

¯̄f(x) =
1

Vr
{

∫

�
3

w(x − y) dv

︸ ︷︷ ︸

Vr

f(x) + [

∫

�
3

w(x − y) (y − x) dv

︸ ︷︷ ︸

r

] · ∇f(y)|
y=x

+

+ 1
2!

[

∫

�
3

w(x− y) [ (y − x) ⊗ (y − x) ] dv

︸ ︷︷ ︸

R

] · ∇∇f(y)|
y=x

+

+ 1
3!

[

∫

�
3

w(x − y) [ (y − x) ⊗ (y − x) ⊗ (y − x) ] dv

︸ ︷︷ ︸

3

R

] · ∇∇∇f(y)|
y=x

+

+ 1
4!

[

∫

�
3

w(x − y) [ (y − x) ⊗ (y − x) ⊗ (y − x) ⊗ (y − x) ] dv

︸ ︷︷ ︸

4

R

] ·

· ∇∇∇∇f(y)|
y=x

+ . . . } .

(B.3)

143



144 Appendix B: Integral- and gradient-type non-local models

Therein, as already introduced in (4.4), the notation ∇(·) = grad (·) has been used for
convenience. In the above equation, some integrals turn out to be zero. This is due to
the fact that the weighting function w(x−y) is symmetric and that the terms (y−x) are
skew-symmetric with respect to y − x = 0. Consequently, the following relations hold:

r =

∫

�
3

w(x − y) (yi − xi) dv ei = 0 ∀ i ,

R =

∫

�
3

w(x − y) (yi − xi) (yj − xj) dv (ei ⊗ ej) = 0 i 6= j ,

3

R =

∫

�
3

w(x − y) (yi − xi) (yj − xj) (yk − xk) dv (ei ⊗ ej ⊗ ek) =
3

0 ∀ i, j, k .

(B.4)

Using the same reasoning, Engelen et al. [67] concluded that within the series of integrals
in front of the fourth-order derivatives of f ,

4

R =

∫

�
3

w(x − y) (yi − xi) (yj − xj) (yk − xk) (yl − xl) dv (ei ⊗ ej ⊗ ek ⊗ el) , (B.5)

the integrals are non-zero in the following situations:

(a) i = j = k = l ,

(b) i = j ∧ k = l ∧ i 6= k ,

(c) i = k ∧ j = l ∧ i 6= j ,

(d) i = l ∧ j = k ∧ i 6= j .

(B.6)

Discussing the second-order term R, one concludes to

R =







R11 0 0

0 R22 0

0 0 R33







ei ⊗ ej ,

R11 =

∫

�
3

w(x− y) (y1 − x1)
2 dv ,

R22 =

∫

�
3

w(x− y) (y2 − x2)
2 dv ,

R33 =

∫

�
3

w(x− y) (y3 − x3)
2 dv .

(B.7)
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Due to the fact that the integrals are evaluated on R
3 and due to the symmetry properties

of w(x−y), the three integrals R11, R22 and R33 result all in the same constant value C̄1:

C̄1 := R11 = R22 = R33 . (B.8)

Thus, the third term in (B.3) gives

1

Vr 2!
R · ∇∇f(y)|

y=x
=

1

Vr 2!
C̄1 (ei ⊗ ei) ·

∂2f

∂xl ∂xm

(el ⊗ em) =

= C1
∂2f

∂x2
i

= C1 ∆f(x) .

(B.9)

Proceeding analogously with the fourth-order term
4

R, finally, the gradient-type non-local
formulation from (4.5) is obtained:

¯̄f(x) = f(x) + C1 ∆f(x) + C2 ∆∆f(x) + . . . . (B.10)

In the above relations, the abbreviations ∆(·) = div[∇(·)] and ∆∆(·) = ∆2(·) have
been used for convenience, cf. Equation (4.5). Note that many authors use the notation
∇2(·) = ∆(·) within this context, cf., e. g., Engelen et al. [67] or Jirásek [95].
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[27] de Borst, R.; Mühlhaus, H.-B.: Computational strategies for gradient continuum
models with a view to localization of deformation. In Bićanic, N.; Owen, D. J. R.;
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