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All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, microfilming, recording, scanning or otherwise,
without written permission from the Editors.

Produced by VGE Verlag GmbH, Essen, Germany
Printed by DIP – Digital Print, Witten, Germany, 2007

ISBN 978–3–937399–16–X



Preface

The 2nd GAMM Seminar on Continuum Biomechanics took place November
22 – 24, 2006, in Freudenstadt-Lauterbad, Germany. Like the first one, it was
organized by the Biomechanics Activity Group of the “Gesellschaft für Ange-
wandte Mathematik und Mechanik” (GAMM), which promotes scientific de-
velopment in all areas of applied mathematics and mechanics. The Semi-
nar venue was the Waldhotel Zollernblick in the climatic spa Freudenstadt-
Lauterbad located in the Black Forest region, Germany.

The GAMM Biomechanics Activity Group was formed on October 23,
2003, in Stuttgart with the major objective to foster the interest in biome-
chanical problems in the German-speaking area in order to keep pace with
international developments. After the 1st GAMM Seminar on Continuum
Biomechanics (November 24 – 26, 2004), the actual Seminar was the second
major initiative of the Activity Group providing a discussion forum on the
recent advances in theoretical, numerical, and experimental techniques in the
broad field of biomechanical engineering with special focus on soft and hard
tissues. The informal nature of the Seminar offered the opportunity to openly
exchange scientific ideas, where the welcoming atmosphere of the Waldhotel
Zollernblick with an exceptional view on the Swabian Alb furthermore con-
tributed to its overall success. In particular, exposed problems of continuum
biomechanics and computational biomechanics have been presented in 20 oral
presentations, out of which 11 contributions are published in this Proceedings
Volume. Since the organizers are confident that such Seminars help to mani-
fest and to enlarge the biomechanics community in Germany, we still aim at
establishing a biennial GAMM Seminar Series on Continuum Biomechanics.

Finally, we would like to express our thanks to the sponsors of the Semi-
nar, namely CADFEM GmbH, DYNAmore GmbH, LBBW-Stiftung, Robert
Bosch GmbH, SFB 404, and GAMM. The financial support allowed us to
schedule three invited presentations of renown scientists, to publish this vol-
ume of Proceedings, and last but not least to keep the fee low, so that, in
particular, younger researchers had the possibility to participate. The or-
ganization and execution of the Seminar as well as the preparation of the
Proceedings Volume was performed by the staff of the Institute of Applied
Mechanics (CE) of the University of Stuttgart. Also their extremely valuable
help is herewith most gratefully acknowledged.

Stuttgart, December 4, 2007

Wolfgang Ehlers

Nils Karajan
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Micromechanical Modelling of Skeletal Muscles:

From the Single Fibre to the Whole Muscle

M. Böl & S. Reese

Institute of Solid Mechanics, Braunschweig University of Technology,
Schleinitzstraße 20, 38106 Braunschweig, Germany

Abstract. The structure of a skeletal muscle is dominated by its hierarchical archi-
tecture in which thousands of muscle fibres are arranged within a connective tissue
network. The single muscle fibres consist of many force-producing cells, known as
sarcomeres, which contribute to the contraction of the whole muscle. There are a lot
of questions concerning the optimisation of muscle strength and agility. To answer
these questions, numerical testing tools can be an adequate alternative to standard
experimental investigations. From the mechanical point of view, the material be-
haviour of muscles is highly non-linear. They undergo large deformations in space
thereby changing their shape significantly, so that geometrical nonlinearity has to
be considered. Many authors use continuum-based approaches in combination with
the finite element method to describe such material behaviour. However, models of
this kind require realistic constitutive relations between stress and strain which are
difficult to determine in an inhomogeneous material.

The present approach is crucially based on the use of the finite element method.
The material behaviour of the muscle is split into a so-called active and a passive
part. To describe the passive part special unit cells consisting of one tetrahedral
element and six truss elements have been derived. Embedded into these unit cells
are further truss elements which represent bundles of muscle fibres. In summary,
the present concept has the advantage that a three-dimensional model is developed
which allows us to take into account many physiological processes at the micro
level.

1 Introduction

Skeletal muscles can be considered to be a complex organisation of thou-
sands of force-producing muscle fibres arranged within a connective tissue.
Muscles are responsible for the movement of the human body, they provide
strength, serve as shock absorption, and protect the skeleton system against
external loads. Skeletal muscles, like most biological tissues, undergo large de-
formations and exhibit highly non-linear mechanical behaviour. Their passive
properties can be described by non-linear hyperelastic constitutive relations,
see, e. g., [4]. In contrast to other biological tissues skeletal muscles show the
ability of active contraction where only tensile forces are generated.

One of the first mathematical models was developed by Hill [6, 7]. This
phenomenological model is derived from force-velocity measurements on an
entire muscle. As an early representative of the group of microstructural ap-
proaches, the concept of Huxley [8] is crucially based on investigations of
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the behaviour of the cross bridges. Both the phenomenological as well as the
micromechanically-based models are applied to describe the contraction of
the whole muscle. However, the focus of such methods is certainly rather
on the simulation of the whole body movement than on the microstructural
behaviour of a single muscle. To incorporate further, more complex geomet-
rical aspects of skeletal muscles, planimetric and three-dimensional models
were designed, see, e. g., [12, 1]. Most of these continuum-based models use
a macroscopic description of the passive muscle behaviour (soft tissue) com-
bined with a one-dimensional, possibly micromechanically-motivated, mod-
elling of the active muscle fibres.

The present contribution differs from earlier approaches insofar as it is
formulated at the meso mechanical level, as previously introduced in the
framework of rubber-like polymers, cf. [3]. In this way the actual geometry
of the muscle, i. e., the directional distribution of the muscle fibres, can be
easily taken into account. The mechanical behaviour of muscles is, as earlier
mentioned by Van Leeuwen [10], split into a passive and an active part. The
here proposed concept is based on the idea of representing the passive part by
means of an assembly of non-linear truss elements. In each truss element, the
force-stretch behaviour of a certain group of collagen fibres is implemented.
The truss elements are arranged in such a way that one of them lies on each
edge of one finite tetrahedral element. In this way a so-called tetrahedral unit
cell is formed. The tetrahedral element of the unit cell serves to model the
(near-)incompressible behaviour of skeletal muscles. By using a random as-
sembling procedure, we are able to model arbitrary geometries. An ensemble
of these unit cells lets us simulate the behaviour of the soft tissue alone. To
incorporate muscle activation, bundles of muscle fibres in form of non-linear
truss elements are embedded in the before mentioned assembly of unit cells.
These trusses contain a mathematical description of the activation at the
fibre level. In this way, we are able to simulate complex muscle structures by
arbitrary muscle fibre distributions.

2 Material Modelling of Skeletal Muscles

According to the aforementioned split of the material behaviour into active
and passive parts also the Helmholtz free energy

W = Wactive +Wpassive (1)

is additively decomposed into active (Wactive) and passive (Wpassive) contri-
butions.

2.1 The Active Material Behaviour

One fundamental property of a skeletal muscle fibre is its ability to contract
without any mechanical influence from outside. In the present contribution
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this behaviour is implemented into three-dimensional truss elements. The
force in one truss element is given by

Factive = ffibre P̄t ft (t) fλ (λfibre) fv (λ̇fibre) , (2)

where P̄t denotes the largest possible applied force inside the fibre. This force
is correlated with the activation function ft (t). Furthermore, fλ (λfibre) is a
function of the fibre stretch λfibre and fv (λ̇fibre) denotes a function depending
on the stretch rate λ̇fibre of the muscle fibre. Due to the fact that in this paper
only quasi-static contraction mechanisms are studied, we only concentrate
on the function of activation as well as the function of stretch. The function
depending on the stretch rate is chosen to be equal to one.

A typical skeletal muscle consists of thousands of muscle fibres. Due to this
high number of fibres it is impossible to discretise each muscle fibre by one

truss element. To compensate this, in (2), the ratio ffibre = Nfibre/Ntruss f has
been introduced, where Nfibre represents the number of fibres per reference
cross section and Ntruss f the number of truss elements in this cross section.

The Function of Activation: One way of controlling the force inside the
muscle is the variation of the impulse rate. The mechanical response initiated

Fig. 1. Isometric single motor unit twitch: (a) Force response of a single impulse
and (b) non-linear behaviour between the gain/sigmoid and stimulus rate.

by a motoneuron discharge is a single motor unit twitch as schematically
depicted in Figure 1 (a). In the time-depending function

g(t) =
P t

T
e1 − (t/T ) , (3)

P and T are the twitch force and the contraction time, respectively. Relation
(3) can be expressed for different types of motor units as follows:

gi(t) =
Pi t

Ti
e1 − (t/Ti) with i = 1, 2..., nMU , (4)

where nMU depicts the total number of motor unit types. The two twitch
parameters P and T are physically-based and can be found in the literature,
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see, e. g., [11]. Experimental studies of the frequency response of skeletal
muscles show that the relation between the isometric force and the stimulus
rate is non-linear, cf., e. g., [9]. This well-known sigmoid relationship S(Ti/I)
includes a change in the gain Gi of the nerve-muscle system depending on
the stimulus rate Ti/I, see Figure 1 (b).

The before mentioned non-linear behaviour is integrated in the here sug-
gested approach by allowing the gain in the motor unit force to vary as a
function of the stimulus rate, normalised with respect to the twitch contrac-
tion time Ti. The gain is determined from the sigmoid of the form

S(Ti/I) = 1 − e−2(Ti/I)
3
. (5)

Dividing (5) by the normalised stimulus rate leads to the gain

Gi =
S(Ti/Ii)

Ti/Ii
=

1 − e−2(Ti/Ii)
3

Ti/Ii
. (6)

In Figure 1 (b) the sigmoid behaviour (continuous shape) as well as the gain
(dotted shape) is depicted.

The insertion of the gain function into (4) yields the force response of a
motor unit as

hi(t) = Gi
Pi t

Ti
e1 − (t/Ti) = Pi︸︷︷︸

ai

Gi t

Ti
e1 − (t/Ti)

︸ ︷︷ ︸
bi

. (7)

The aim of this section is to derive the product P̄t ft (t) (see (2)). Therefore,
(7) has been multiplicatively split into the two parts ai and bi. Following
the principle of superposition, it is now possible to sum up the single twitch
forces for a certain pool of motor units (i = 1, 2..., nMU) in dependence of a
train containing nIMP discharges. This leads to the product of the maximum
force P̄t and the activation function ft(t), see also (2),

P̄t ft (t) =

nMU∑

i=1

ai

nMU∑

i=1

nIMP∑

j=1

bi(t− tij) (8)

with i = 1, 2, 3, ..., nMU and j = 1, 2, 3, ..., nIMP for intervals (t− tij ≥ 0).

The Function of Stretch: The dependence of the sarcomere force on the
sarcomere length is described by the isometric length-force curve (Figure 2
(a)). From the historical point of view, Blix [2] was the first who constructed
a length-force curve from a series of experiments performed at different mus-
cle lengths. He showed that the isometric force of a frog muscle increases
with increasing sarcomere length, passes through a maximum at a certain
length, addressed as optimum length (see point A in Figure 2 (a)), and de-
creases again. It is well-known that the muscle contraction is caused by the
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Fig. 2. Relation between contraction force: (a) Length of the sarcomere and over-
lapping of the actin and myosin filament and (b) comparison between the piecewise
linear and the continuous function.

interaction between the actin and myosin filaments sliding past each other.
This filament sliding can be seen to be caused by independent force gen-
erators, the so-called cross bridges. Experimental evidence was provided by
Gordon et al. [5] showing that the isometric length-force relationship of a
maximally activated sarcomere is directly related to the overlap between the
actin and myosin filaments, cf. Figure 2 (a), the overlap being proportional
to the number of available cross bridges and the sarcomere length.

From the mathematical point of view, it is more elaborate to implement
the piecewise linear function (Figure 2 (b), dotted curve) into a finite element
code. Therefore, we use in this work a continuous curve, see Figure 2 (b) and
also [1]. The mathematical representation of this function is given as follows:

f
λ
(λfibre) =





0 if λfibre < 0.4λopt ,

9

(
λfibre
λopt

− 0.4

)
2 if 0.6λopt > λfibre ≥ 0.4λopt ,

1 − 4

(
1 − λfibre

λopt

)
2 if 1.4λopt > λfibre ≥ 0.6λopt ,

9

(
λfibre
λopt

− 1.6

)
2 if 1.6λopt > λfibre ≥ 1.4λopt ,

0 if λfibre ≥ 1.6λopt .

(9)

Only one dimensionless constant λopt is used which defines the optimal fibre
stretch at which the sarcomere reaches its optimal length, cf. Figure 2 (b).

2.2 The Passive Material Behaviour

The behaviour of passive tissue is characterised by large deformations, a
non-linear stress-strain relation and (near-)incompressibility. To model such
behaviour, an approach originally developed for rubber-like materials, see [3],
is used. A so-called finite element unit cell has been developed that consists
of one tetrahedral element and six truss elements lying on each edge of the
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tetrahedron. The Helmholtz free energy of one unit cell then includes one
contribution coming from the tetrahedral element (Wtetr) and another one
coming from the truss elements (Wtruss j , j = 1, ..., 6):

Wpassive = Wtetr +

6∑

j=1

Wtruss j . (10)

It is well-known that soft tissue-like material can be seen as a three-dimensio-
nal network composed of a huge number of collagen fibres. The micromechan-
ical material behaviour of a bundle of collagen fibres is characterised by the
second summand of (10) and can be rewritten as

Wtruss j =
1

A0 j L0 j
fcollWcoll j (11)

with

Wcoll j = k nj Θ

[
λ coll j√
nj

βj + ln
βj

sinhβj

]
. (12)

Herein, A0 j and L0 j denote the cross section and the length of the unde-
formed truss element, respectively. As shown in [3] these parameters cancel
out of the formulation. Especially important is the fact that the truss length
L0 j does not correlate with the length of the collagen fibre bundle. The com-
putational efficiency of the present approach could not compete with classical
continuum-based finite element computations if the mesh density was linked
to the geometry of the microstructure.

Wcoll j represents the energy function of one collagen fibre and depends
on the Boltzmann’s constant k, the number of links per fibre nj , the absolute
temperature Θ, and the inverse Langevin function βj , cf. [3]. The fibre stretch
is computed by means of the relation λcoll j = rj/r0 j = Lj/L0 j , where rj
describes the end-to-end distance of the fibre in the deformed state and r0 j

the same distance in the undeformed case. The fact that the ratios rj/r0 j

and Lj/L0 j are set equal represents the micro-macro transition in the model.
Note again that this does not restrict the choice of L0 j , i. e., the density of
the finite element mesh.

Finally, the parameter fcoll = Ncoll/Ntruss c defines the ratio betweenNcoll,
the number of collagen fibres per reference volume and Ntruss c, the number of
truss elements in the same reference volume. It is obvious that one strives to
make fcoll as large as possible, because then the minimum number of elements
and consequently maximum computational efficiency is obtained.

The first summand of (10) is needed to describe the volumetric behaviour
of the unit cell. It is used here to give the structure additional “volumetric
stiffness”. Wtetr reads in detail

Wtetr =
K

4
(J2 − 1 − 2 lnJ) , (13)

where J = det F denotes the determinant of the macroscopic deformation
gradient F and K is the bulk modulus.
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3 Results

The aim of this section is to study how the deformation behaviour of skeletal
muscles deviates from the one of the single muscle/collagen fibre. To simplify
the discretisation, in a first step, an idealised fusiform muscle geometry is
applied, see Figure 3. The pathways of the fibres are computed by means of
the vector field

Γ (z) =



r(z) cos(α)
r(z) sin(α)

z


 . (14)

Herein the radial location of the muscle fibre is identified by α and r(z) is
the distance of the fibre from the z-axis, located in the centre of the muscle.
One possibility to express r(z) is r(z) = r2 exp(z ln(r2/r1)/h

2), where r2 is
the maximum radius of the muscle in the case of z = 0. The function r(z) is
limited to the interval z ∈ [−h, h], so that the minimum radius r1 is located
at z = −h and z = h, respectively.

Fig. 3. Two-dimensional view of the used idealised fusiform muscle geometry. (a)
Front view and (b) side view of the muscle/fibres.

3.1 Idealised Muscle Geometry

First of all a quasi-static simulation of an idealised muscle geometry as
sketched in Figure 4 (a) has been performed (r1 = 10 mm, r2 = 17 mm,
h = 50 mm and α = 22.5◦, cf. Figure 3). The geometry of the muscle is fixed
at one end and free to move at the other end. No external loads are used,
the muscle is only loaded by its activation. The finite element simulations
have been performed using the parameters listed in Table 1. Three different
stimulus rates (1/I = 5, 40, 160 imp/s) are used. Figure 4 (a) shows the re-
sults of the simulations. Here, the displacement-time behaviour is plotted. It
can be recognised that for low stimulus rates, such as 1/I = 5 imp/s, the dis-
placement response is characterised by single twitches. If the activation rate
increases, e. g., 1/I = 40 imp/s, the single twitches superpose each other, this
leads to a higher displacement level. Here, the shape of the single twitches
can be still seen. If the stimulus rate is high enough (1/I = 160 imp/s), the
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Table 1. Material parameters for the active and passive muscle properties.

displacement response is characterised by a plateau where no single twitch
shape can be identified. In this case the response of the activation is called
tetanic. In addition to the displacement curves in Figure 4 (a), the distribu-
tion of the forces in the truss elements representing the fibre bundles (active
material behaviour) is shown. The maximum deformation state for the differ-
ent stimulus rates is plotted. The largest deformation is reached at t = 4.5 s.
At this point the muscle has reached its maximum contraction. Here, the
forces of the truss elements representing the active material behaviour show
the highest values. For t > 4.5 s the muscle relaxes.

Table 2. Material parameters for the active and passive muscle properties.

One aim of this work is to apply the material model to realistic muscle
geometries to be responsive to patients-specific questions. Here, the longest
muscle of the human body, the sartorius muscle, is studied, see Figure 4 (b).
The action of the sartorius muscle is to cross the legs, by flexion of the knee,
and flexion and lateral rotation of the hip. Figure 4 (bi) shows the complete
sartorius muscle including the tendon (coloured grey). To study the contrac-
tion mechanism of the muscle, isotonic quasi-static simulation is applied. The
used parameters are shown in Table 2. The sartorius muscle belongs to the
group of fusiform muscles. Due to the spiral geometry of the muscle also
the deformation behaviour is characterised by a torsion-like deformation in
combination with a contraction, cf. Figure 4 (bii−iv). This is conform to the
physiological “function” of the muscle, because it bends the joints of the hip
and the knee in combination with a movement of the thigh to the middle
while the lower thigh is rotated to the inner site of the thigh.
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Fig. 4. (a) Simulation results of an idealised muscle geometry: Displacement-
time behaviour for three different activation rates (1/I = 5, 40, 160 imp/s) and
distribution of the forces in the muscle fibres. (b) Geometry and simulation results
(only tetrahedral elements are shown) of the sartorius muscle: (i) Muscle geometry
(red = muscle tissue, grey = tendon), (ii) axial, (iii) coronal and (iv) sagittal view
(light-grey = undeformed muscle, red = deformed muscle).
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4 Conclusions

In the present contribution a new approach for the simulation of skeletal
muscles is shown. The basic idea is to split the Helmholtz free energy into
two parts. One part represents the passive material behaviour of the mus-
cle, whereas the other part describes the active part. The passive part is
modelled by special unit cells which represent the surrounding soft tissue.
The active muscle behaviour is embedded in additional finite truss elements.
These elements lie inside of the soft tissue.

The development of a realistic muscle modelling based on the finite ele-
ment method is still at the very beginning. In the present paper, qualitatively
reasonable results, based on idealised as well as on realistic muscle geometries,
could be obtained. Further work will be directed to validate these results by
means of experimental investigations.
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Parallel 3-d simulations of a biphasic porous

media model in spine mechanics

W. Ehlers1, N. Karajan1, and C. Wieners2

1 Institute of Applied Mechanics (Civil Engineering),
Universität Stuttgart, Pfaffenwaldring 7, 70569 Stuttgart, Germany

2 Institute for Applied and Numerical Mathematics,
Universität Karlsruhe, Englerstr. 2, 76 128 Karlsruhe, Germany

Abstract. This contribution presents an extended model based on the Theory of
Porous Media (TPM), which is suitable for the simulation of electro-chemically
active soft tissues and, in particular, the intervertebral disc (IVD). The respective
non-linear constitutive equations include the modelling of the anisotropic material
behaviour as well as the osmotic pressure. We introduce a stable finite element
discretization, and we propose an iterative parallel solution method with a domain
decomposition preconditioner combining an algebraic coarse grid solver on an over-
lay mesh and approximate ILU solving on the subdomains. Finally, the efficiency of
the model is shown by a fully coupled 3-d simulation of a lumbar spine (vertebrae
L1 to L5), where one computation shows a healthy spine segment while the other
one includes a stiffened L4-L5 motion segment.

1 Introduction

For a better understanding of the complex coupled behaviour of the IVD and
its influence on the overall performance of the spine, an appropriate finite
element model describing all relevant effects would be of great benefit. In
this context, such a model will remarkably aid the design of new implants, if
it is possible to reproduce a realistic response due to external loads. However,
a realistic numerical simulation of such a complex biological structure requires
not only an elaborated material model but also an efficient solution method
for the discretized system.

The spine itself consists of several vertebrae and intervertebral discs em-
bedded in between. In our model we neglect the cartilaginous endplates sep-
arating the discs and the vertebrae since we expect that their mechanical
behaviour is of minor importance. Two main regions can be distinguished in
an axial cut through the IVD: a gelatinous core, the nucleus pulposus (NP),
enclosed by a fibrous, lamellar structure, the anulus fibrosus (AF). Both re-
gions are composed of a porous multi-component microstructure consisting
of a charged, hydrated extracellular matrix as well as an ionized interstitial
fluid, yielding a active swelling material. Herein, the solid skeleton consists
of proteoglycans (PG’s), glycosaminoglycans (GAG’s), and collagen fibres of
type I and II saturated by a liquid containing dissolved anions and cations
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as solutes. The large PG’s and GAG’s are thereby trapped in the collagen
network and carry negative fixed charges, which therefore underlie the same
motion as the whole solid matrix. For more details see, e. g., [1, 7, 14, 17] and
references therein.

Due to the porous microstructure of both the IVD and the vertebrae, these
materials can be adequately modelled in the framework of the TPM. The
respective constitutive equations, needed to capture all occurring phenomena,
are implemented and can be switched on and off via material parameters.
Furthermore, several inhomogeneities occur in the IVD. In particular, this is
the inhomogeneous distribution of the orientation and mechanical behaviour
of the collagen fibres in the AF as well as the concentration of the fixed
negative charges. These inhomogeneities are captured as is described in [7].

The arising coupled set of governing equations can be reformulated in
variational form which then allows for a discrete approximation by finite el-
ements. We use Taylor-Hood elements with quadratic approximations of the
solid displacement and linear pressure approximation, since they provide sta-
ble results also for small time steps and for a wide range of Darcy parameters.

For a full simulation of several spine segments, a sufficiently fine geome-
try resolution is essential. This leads to very large algebraic systems, so that
reliable numerical computations cannot be performed on single processor ma-
chines. Thus, a parallel finite element implementation is used, where parallel
Krylov methods are used together with a strong preconditioner for the so-
lution of the linearized problems. The efficiency of this solution method is
then demonstrated by numerical results showing the mechanical response of
vertebrae and intervertebral discs under loading forces. Herein, two compu-
tations are performed, one concerning a healthy lumbar spine and another
having the lowest motion segment, i. e., the L4-L5 segment, stiffened.

2 An extended binary porous media model

In a standard incompressible biphasic model for quasi-static processes with
no mass exchange between the constituents and negligible body forces, the
respective volume and momentum balances read

div [ (uS)′S + nF wF ] = 0 and div (TS + TF ) = 0 , (1)

cf. [4]. In this context, the porosity of the model is denoted by nF with its
counterpart nS = 1 − nF representing the solidity. The seepage velocity is
denoted by wF , whereas (uS)′S is the material time derivative of the solid
displacement vector with respect to the deforming solid skeleton. The overall
stress of the model T = TS + TF is the sum of the partial Cauchy stress
tensors of the solid and the fluid constituent, respectively.

Following this, the partial stress tensors are subjected to the principle of
effective stresses (cf. [3, 16]) yielding a split into hydrostatic and so-called
extra quantities

TS = −nS phyd I + TS
E and TF = −nF phyd I + TF

E , (2)
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where I denotes the second-order identity tensor. As is usual in hydraulics,
the fluid extra stress TF

E is neglected due to dimensional reasons, cf. [11]. In
order to capture the soft tissues swelling capability, osmotic effects have to
be incorporated using a further split

TS
E = −posm I + TS

E,mech (3)

of the solid extra stress into osmotic and purely mechanical contributions.
Thus, the overall pressure is given by ptot = phyd + posm. In this context,
posm models the colloid osmotic pressure and is understood as the pressure
difference between the internal osmotic pressure, which results from the con-
centrations of the NaCl-solutes and the fixed negative charges, and the exter-
nal osmotic pressure arising from the NaCl-solutes of the fluid surrounding
the tissue. Due to Lanir’s assumption [10] stating that the dissolved ions and
cations move very rapidly and do not generate concentration gradients in the
tissue, van’t Hoff’s osmotic law

posm = RΘ
[√

4 c̄ 2
m + (cfc

m )2 − 2 c̄m

]
(4)

can be applied to the whole domain and is not restricted to the boundary.
Herein, R is the universal gas constant, Θ denotes the absolute temperature,
c̄m is the molar concentration of the solutes in the surrounding (external)
fluid, and cfc

m is the molar concentration of the fixed negative charges with
respect to the fluid volume inside the tissue. Hence, the latter quantity is
deformation dependent, as volumetric deformations in the tissue directly in-
fluence the volume fraction nF of the fluid. If a local concentration balance
is postulated and integrated from initial quantities ( · )0S , cf. [6], the relation

cfc
m = cfc

0S nF
0S (JS − nS

0S)−1 , where JS = detFS , (5)

can be derived for the change of the concentration of the fixed charges. As a
consequence, (5)1 depends on the solid Jacobian JS measuring the volumetric
deformation of the overall tissue.

Further constitutive assumptions concern the purely mechanical solid ex-
tra stress. We proceed from the idealization of an hyperelastic solid skeleton,
which must be capable of capturing the isotropic extracellular matrix as well
as the anisotropic fibre reinforcements resulting from the collagen fibres of
Type I. Following [6], the resulting isotropic and anisotropic Cauchy stresses
can be expressed in a decoupled manner as

TS
E,mech := TS

E,iso + TS
E,aniso , where

TS
E,iso =

µS
0

JS
(FS FT

S − I ) + ΛS
0 (1 − nS

0S)2
( 1

1 − nS
0S

− 1

JS − nS
0S

)
I ,

TS
E,aniso =

µ̃S
1

JS
I−1
4 ( I

γ̃S
1 /2

4 − 1 ) (a ⊗ a) +
µ̃S

1

JS
I−1
6 ( I

γ̃S
1 /2

6 − 1 ) (b ⊗ b) .

(6)
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Here, µS
0 is the classical ground-state shear modulus, ΛS

0 is the second Lamé
constant, µ̃S

1 and γ̃S
1 are parameters concerning the mechanically equivalent

behaviour of the collagen fibre families, where a = FS a0 and b = FS b0 are
the fibre directions in the deformed configuration with given constant unit
fibre directions a0 and b0 in the reference frame. The corresponding mixed
invariants I4 = a · a and I6 = b · b describe the squared stretches in the
respective fibre direction. Finally, the set of independent unknowns in the
process is reduced by Darcy’s filter law

nF wF = −KS
0S

µFR
gradphyd , (7)

which is inserted into (1)1. The parameters KS
0S and µFR of (7) are the intrin-

sic permeability coefficient and the effective dynamic viscosity of the fluid,
respectively, and grad ( · ) denotes the gradient with respect to the location
vector x of the deformed configuration.

3 Weak formulation of the binary model

For the computational model, an interval in time [0, T ] and a reference domain
Ω = Ω0 ⊂ R3 is fixed. The primary variables are the solid displacement
uS and the hydrostatic pressure phyd. For a given displacement vector uS ,
the deformed configuration is denoted by Ω(uS), and the solid deformation
gradient on Ω(uS) is computed via its inverse F−1

S = I− graduS .

Data: A specific configuration is determined by the following data: the ref-
erence domain Ω0, appropriate load functionals defining traction forces t̄ and
the fluid efflux q̄, and essential boundary conditions for

uS(t,x) = uD
S (t,x) , x ∈ ΓS(t) ⊂ ∂Ωt ,

phyd(t,x) = pD
hyd(t,x) , x ∈ ΓF (t) ⊂ ∂Ωt ,

(8)

on some parts of the boundary (using Ωt = Ω(uS(t))). Due to the choice
of phyd as primary variable, the model does not a priori exhibit a stress-free
reference configuration. This becomes clear when (3) to (6) are combined in
order to compute the overall stress of the model, thereby using values of the
natural state, i. e., uS = 0 and phyd = 0. Due to (4), there is always an initial
osmotic pressure

posm,OS = RΘ
[√

4 c̄ 2
m + (cfc

0S)2 − 2 c̄m

]
. (9)

Hence, the constant part posm,OS I is added onto the mechanical extra stress
(6)1 to enforce a stress free reference configuration in the sense of classical
continuum mechanics. Note that without this modification, the model would
describe an initial swelling of the tissue until equilibrium between (9) and the
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tension in the mechanical extras stress (6)1 is reached. As this contribution is
concerned with numerical solution strategies, the described simpler approach
by directly starting with the initial osmotic pressure (9) is used here.

Finally, the model also depends on several material parameters. For a full
set of suitable parameters please refer to Table 1 in Section 5.

Variational formulation: With these settings, it is now possible to state
the full biphasic problem at time t ∈ [0, T ]: for a given traction vector t̄ and a
given efflux q̄ of the interstitial fluid find uS and phyd satisfying the essential
boundary conditions and the balance equations in weak form

∫

Ωt

TS
E,mech · gradv dv −

∫

Ωt

ptot div v dv =

∫

∂Ωt

t̄ · v da ,

∫

Ωt

div (uS)′S q dv +

∫

Ωt

KS
0S

µFR
grad phyd · grad q dv =

∫

∂Ωt

q̄ q da

(10)

for all test functions v and q satisfying v = 0 on ΓS(t) and q = 0 on ΓF (t).
Here, TS

E,mech depends (non-linearly) on the deformation gradient, and ptot

depends on its determinant.
For simplicity, the abbreviations u = uS and p = phyd are used in the

following.

Discretization in time: For a given time series 0 = t0 < t1 < t2 < · · · < T ,
the backward Euler method reads as follows: for a given un−1 depending on
∆tn = tn − tn−1, t̄n = t̄(tn) and q̄n = q̄(tn), the unknowns un and pn of the
time step n are computed satisfying the essential boundary conditions

un(x) = uD
S (tn,x) , x ∈ Γ n

S := ΓS(tn) ,

pn(x) = pD
hyd(tn,x) , x ∈ Γ n

F := ΓF (tn) ,
(11)

and

Rn
S(un, pn)[v] = 0 , for all v with v = 0 on Γ n

S ,

Rn
F (un, pn)[q] = 0 , for all q with q = 0 on Γ n

F ,
(12)

where the residuals are given by

Rn
S(u, p)[v] =

∫

Ω(u)

TS
E,mech(gradu) · gradv dv

−
∫

Ω(u)

[
p + posm(gradu)

]
div v dv −

∫

∂Ω(u)

t̄n · v da ,

Rn
F (u, p)[q] = −

∫

Ω(u)

div (u − un−1) q dv

− ∆tn

∫

Ω(u)

KS
0S

µFR
gradp · grad q dv + ∆tn

∫

∂Ω(u)

q̄n q da .

(13)
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Discretization in space: In the special case of small deformations and
∆tn KS

0S/µFR ≈ 0 , the incremental problem is close to a saddle point prob-
lem: Compute w and r satisfying

∫

Ω

(C gradw) · gradv dv −
∫

Ω

r div v dv = −RS [v] ,

−
∫

Ω

div w q dv = −RF [q]

(14)

for all v with v = 0 on Γ n
S and q with q = 0 on Γ n

F . This system has the
same structure as the Stokes system. Thus, in order to avoid oscillations, a
stable discretization uh ∈ Vh and ph ∈ Qh satisfying the inf-sup condition

sup
vh 6=0

∫

Ω

qh div vh dv

( ∫

Ω

C gradvh · gradvh dv
)1/2

≥ β
( ∫

Ω

q2
h dv

)1/2

(15)

for all qh ∈ Qh with
∫

Ω
qh dv = 0 has to be used, where β is a constant which

is independent of the mesh width. In this context, numerically stable Taylor-
Hood elements (Q2/Q1) are applied with isoparametric 20-node bricks for
the displacements u and trilinear pressure p, see [2].

Consistent Newton iteration: In every time step, choose suitable start
iterates un,0 and pn,0 satisfying the essential boundary conditions (11), and
for k = 1, 2, 3, ... compute increments w and r (with homogeneous boundary
conditions on the Dirichlet boundary parts) by solving the linearized varia-
tional problem of the form

an,k
SS (w,v) + an,k

FS (r,v) = −Rn
S(un,k−1, pn,k−1)[v] ,

an,k
SF (w, q) + an,k

FF (r, q) = −Rn
F (un,k−1, pn,k−1)[q] ,

(16)

for all test functions v and q with homogeneous boundary conditions on the
Dirichlet boundary parts. The bilinear forms an,k

SS (·, ·) and an,k
FS (·, ·) are the

derivatives of Rn
S(·) with respect to the solid and the fluid component at

(un,k, pn,0), and an,k
SF (·, ·), an,k

FF (·, ·) are the derivatives of Rn
F (·).

Then, a suitable damping factor sn,k ∈ (0, 1] is determined such that for
the updated variables

un,k = un,k−1 + sn,k w ,

pn,k = pn,k−1 + sn,k r
(17)

the residual norm is decreasing. If no such damping parameter is found,
the time increment ∆tn is reduced. Close to the solution of the incremental
problem it is expected that no damping is necessary, i. e., sn,k = 1.
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4 A parallel linear solver

The porous media model is realized in the FEM research software PANDAS

[5, 15], and a parallel front end for assembling and solving the system is pro-
vided by M++ (see [18, 19] for details on the parallel programming model
and for the definition of general interfaces). The main feature of this software
is a geometry-based data structure relying on the concept of distributed ob-
jects, where every object is associated to a geometric point. In particular, the
unknowns are associated to their nodal points. This allows for a transpar-
ent realization of the parallel consistency requirements for the finite element
solution along the parallel interface.

Within the non-linear and time-dependent simulation, the most sensible
part of the parallelization is the solution of the linear problems within every
Newton step. Here, we use a parallel GMRES method, as is described in [19],
together with a domain decomposition preconditioner.

From numerical experiments it is well-known that overlapping domain de-
composition preconditioners with coarse grid correction applied to the Stokes
system with Taylor-Hood elements are very efficient, see [8, 9]. Hence, this
type of preconditioning is a good choice for the discussed application to
complex bio-mechanical structures, although two major modifications are
required due to the following reasons: Only a moderate number of proces-
sors is used so that the subdomain problems are too large for exact solving.
Moreover, the underlying geometry is too complex to allow for a small coarse
mesh. Thus, an inexact sub-domain solver is used (a multilevel ILU with
pivoting and dropping strategy by Mayer [12, 13]) and the coarse problem is
constructed on an independent overlay mesh.

Altogether, this preconditioner can easily be constructed within the par-
allel interface, i. e., it requires only algebraic and geometric information and it
is, thus, fully decoupled from the modelling and finite element discretization
provided by PANDAS.

5 Numerical experiments

For the numerical application to the human lumbar spine we use the material
model described in section 2 with three different sets of parameters listed in
Table 1. Herein, the vertebrae are considered as a homogeneous uncharged
hard tissue, thereby neglecting its original structure consisting of a dense
cortical shell and a soft spongiosa inside. Furthermore, the AF and NP of the
IVD are modelled with all occurring inhomogeneities as is described in [6].
In this context, the parameters addressing the mechanical behaviour of the
collagen fibres are only given at selected points, i. e., at internal and external
regions in dorsal and ventro-lateral positions, which are needed for a linear
interpolation in the AF.

The presented initial boundary value problems concern a lumbar spine
with removed processes, one having healthy IVD’s and another having the
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lowest motion segment stiffened, i. e., the lowest IVD behaves like a vertebra.
Moreover, all free surfaces are drained (phyd = 0), the lower surface of the
L5-vertebra is totally fixed in space (uS = 0), and the top surface of the
L1-vertebra is loaded with the traction vector t̄, which results in a vertical
(FV ) and horizontal (FH) force when integrated over the surface. The traction
vector is then linearly increased with time, until the healthy and the stiffened
lumbar spine show a tip deflection of 54.3 mm. The corresponding tip-loads
are FV = 85 N, FH = 21 N and FV = 108 N, FH = 27 N with loading
times t = 0.201 s and t = 0.255 s for the healthy and the stiffened spine,
respectively. Results of the 3-d simulation are depicted in Figure 1 showing
the total pressure in the sagittal plane of the spine.

Vertebrae: Treated with no distinction between cortical shell and spongiosa.

nS
0S = 0.2 [ - ] KS

0S= 2.7 · 10−5 [mm2]

cfc
0S = 0.0 [mol/mm3] µF R= 3.8 · 10−8 [Ns/mm2]

µS
0 = 192.0 [MPa] ΛS

0 = 225.7 [MPa]

Nucleus Pulposus: Treated as isotropic and charged material.

nS
0S = 0.3 [ - ] KS

0S= 3.5 · 10−12 [mm2]

cfc

0S = 0.3 · 10−6 [mol/mm3] µF R= 6.9 · 10−10 [Ns/mm2]

µS
0 = 0.5 [MPa] ΛS

0 = 0.75 [MPa]

Anulus Fibrosus: Treated as inhomogeneous anisotropic charged material.

nS
0S = 0.3 [ - ] KS

0S= 6.2 · 10−12 [mm2]

cfc
0S = 0.1 · 10−6 [mol/mm3] µF R= 6.9 · 10−10 [Ns/mm2]

µS
0 = 0.95 [MPa] ΛS

0 = 2.2 [MPa]

Ventro-Lat. Int. Ventro-Lat. Ext. Dorsal Int. Dorsal Ext.

µ̃S
1 [MPa] 0.0343 0.1463 0.0059 0.0508

γ̃S
1 [ - ] 44.051 97.135 30.464 54.239

Table 1. Material parameters of the biphasic model for the vertebrae, nucleus
pulposus and anulus fibrosus, respectively.

The lumbar spine was discretized using 72 320 20-node Taylor-Hood el-
ements yielding a total of 982 044 degrees of freedom. The computations
were carried out in parallel on the cluster “Leonardo da Vinci” of the Insti-
tute of Applied Mechanics (CE) at the Universität Stuttgart, using 84 CPU’s
(2.2GHz Opterons with 1GB RAM/CPU). The full simulation time was 5:44
[h:min] and 11:32 [h:min] for the healthy and the stiffened spine, respectively.
In both computations a fixed time increment ∆tn = 0.003 s is used.

As expected, the force which is required to accomplish the same defor-
mation with the stiffened lumbar spine is remarkably higher than the force
needed for the healthy lumbar spine. Moreover, the maximum total intradiscal
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pressure ptot in the L3-L4 disc is also raised from 0.7MPa to 1.0MPa com-
paring the healthy with the stiffened state. Note that this is even a higher
value than the 0.95MPa of total disc-pressure reached in the healthy L4-L5
disc. Hence, it is obvious that the stiffening of a motion segment causes a
surplus load in the adjacent IVD, when deformations are kept constant.

FV

FH

85 N

21 N

108 N

27 N

−0.5 −0.3 0.0 0.3 0.6 0.9
ptot [MPa]

Fig. 1. Sagittal cut illustrating the load-deformation behaviour and the total pres-
sure development inside the IVD’s for a healthy lumbar spine (middle) and one
having the L4-L5 motion segment stiffened (right). The reference configuration is
shown on the left.
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Abstract. Osteochondral grafting is one of the treatment options to repair dam-
aged cartilage. However, the surgical impaction of the osteochondral plug to an-
chor it into the defect site can be traumatic and subsequently cause cell death and
cartilage degeneration. Little is known about the relationship between mechanical
loading and biological response.

An experimental-numerical approach of cartilage impaction is presented. Bovine
plugs were hit in a controlled laboratory setting using different impaction devices
to simulate the surgical procedure. A comparison between field (surgeon) and ex-
perimental (lab) data was performed.

Numerical simulations were then conducted to better understand the underly-
ing mechanobiological processes. A commercially available FE-code, improved by
utilizing sophisticated material models, has been used. The theoretical background
of the material model is presented, based on an overlay concept. The spatial dis-
tributions of mechanical field variables are compared to biological endpoints (e. g.
live-dead cell assays).

1 Clinical Background

Changes in demographics and recreational habits of modern industrial soci-
eties have caused a substantial increase of joint disease and associated health
care costs. Articular cartilage lesions can be debilitating and initiate degen-
erative processes of the joint. In 1998 in Germany alone about 5 millions
patients1 suffered from degenerative osteoarthritis with far-reaching conse-
quences in quality of life.

Articular cartilage is an avascular tissue (i. e. blood vessels are absent)
with a limited capacity of self-repair. Consequently, joint injuries do not heal
satisfactorily. Several methods to repair cartilage lesions are routinely used or
subject of worldwide research activities. Among these, osteochondral grafting
involving either autogenic or allogenic tissues is a common clinical procedure

1 Informationssystem für Gesundheitsberichterstattung des Statistischen Bundes-
amtes, 1998
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for cartilage repair. Osteochondral grafts are bone-cartilage plugs of cylin-
drical shape which are harvested from undamaged and non-weightbearing
joint areas. These plugs are then implanted into the damaged cartilage ar-
eas through press-fitting, i. e. so-called recipient holes with slightly negative
tolerances are prepared.

Compared with alternative treatment options the osteochondral graft-
ing is of interest because the lesion is replaced with true hyaline cartilage.
Though, osteochondral grafting is indicated only for focal cartilage defects
(lesions up to 10 cm2). In order to anchor the plugs in the recipient hole
they are press fitted through impaction. Typically, a surgical mallet is used
for tapping. Recently, it has been shown that the insertion process of os-
teochondral grafts causes cell death, particularly in the superficial zone [2].
Primarily, this process is apoptotic which may cause progressive degeneration
of the cartilaginous tissue over time.

Harvested plug Insertion process Hit sequence

Fig. 1. Harvested osteochondral autograft plug prior to implantation. Implantation
of the graft using a plastic tamp device and a surgical mallet (OATS system, Arthrex
Inc.). Typical hit sequence showing that the surgeon applies load levels between 50
and 75 N and 33 hits with an overall impulse of 7 Ns [20].

Figure 1 shows the tapping procedure using the OATS (Osteochondral
Autograft Transfer System) procedure (Arthrex Inc.), and a typical tapping
sequence of a graft implantation performed at the Rush University Medical
Centre, Chicago (USA).

2 Experimental Studies

Currently, little is known about the mechanobiological processes in articular
cartilage which are initiated by impaction loading. At the Rush University
Medical Centre, Chicago (USA) several experimental studies have been per-
formed focusing on the viability of chondrocytes in osteochondral grafts that
had been impact loaded by the original surgical instruments. Using mechan-
ical testing devices in conjunction with high speed video analysis, the de-
formation of cartilage during impaction has been studied [14, 15, 20]. Based
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on the experimental results, at present numerical studies are performed to
analyse correlations between mechanical loading conditions of chondrocytes
and their typical response resulting in tissue degeneration due to the trans-
plantation process. The coordinated experimental-numerical approach aimed
at numerical (in silico) experiments providing data for the improvement of
osteochondral grafting procedures.

Two in vitro studies with 45 osteochondral plugs in total were performed.
8 mm diameter grafts were harvested from the trochlear region of bovine knee
joints using the Arthrex OATS system. Once these plugs were obtained, the
bone was trimmed so that the entire length of the plugs was 10 mm. Using the
original plastic tamp device (modified with a load cell), and a surgical ham-
mer the donor plugs were placed into recipient holes at the condyles of the
knee joint (Figure 1). The plugs from the recipient holes served as unloaded
controls. At the end of defined time intervals (0, 4, and 8 days respectively)
the re-implanted grafts were removed from the culture, and a 2 mm×2 mm
portion of each plug was stained for analysis of cell viability using a confocal
laser-scanning microscope. Additionally, these in vitro studies served as ba-
sis to characterise the impaction profiles in a mechanical sense to calibrate
reproducible compression tests. In Figure 1 a typical hit sequence of the clin-
ically observed re-implantation process is shown. Among the various aspects
of characterizing the impaction process mechanically the reader’s attention
should be focused on the mean overall impulse of 6.98 Ns as a measure of the
clinical relevant overall intensity of the impact sequence necessary to anchor
the graft in the recipient hole.

Test setup Stress-strain curves

Fig. 2. Quasi-unconfined compression tests of bovine osteochondral grafts on a
5 kN DARTEC servo-hydraulic testing machine (9000-series). Analysis of the rate
dependent stress-strain behaviour.
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In order to analyse the characteristic material properties relevant for the
constitutive modelling in case of impaction loading and to produce data for
the calibration of the material model, quasi-unconfined compression tests of
osteochondral grafts have been performed on a material testing machine us-
ing set velocities (see Figure 2). The subchondral bone plug was clamped into
a fixation device simulating a compression state as in the clinical situation.
Deformation rates were varied in the range of 0.001 mms−1 to 100 mms−1.
The conditions under high impact velocity corresponded to the clinically rel-
evant deformation of approximately 15% of the initial height of the cartilage
layer applied in about 3 ms. As can be seen in Figure 2, the rate-dependent
nonlinear stress-strain curves show an increase of the global graft stiffness
with increasing deformation rate, but with a beginning saturation of this ef-
fect at about 1 mms−1. Obviously, the low permeability of articular cartilage
causes a high hydrostatic pressure within the tissue as the interstitial fluid
cannot flow out of the graft during the loading time.

Cell viability – Hit with 150 N Cell viability ratio

Fig. 3. Cross-section of the graft with superficial zone at the top, green: living
cells, red: dead cells. Analysis of the cell viability over time shows time and load
dependency.

The deformation process was further studied using grey scale correlation
image analysis. In particular, differences between layers were studied. Based
on high-speed video images of the compression process, a sequence of pictures
documenting the deformation of cartilage was extracted.

To provide systematic and reproducible studies of the cell viability de-
pendent on the overall intensity of impact during osteochondral grafting im-
paction tests with a pneumatic device for controlled impulse application have
been performed. The device shows improved reproducible single hit load-time
characteristics compared with the material testing machine [10]. Clamped os-
teochondral grafts were subjected to uniform hit sequences at different load
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levels (37.5 N, 75 N, 150 N, and 300 N respectively). The number of hits was
defined in accordance to the previously identified overall impulse.

In Figure 3 the changes in cell viability dependent on the load magni-
tude and the time after implantation of the grafts in comparison to unloaded
controls are shown. Analysing these results two effects can be discussed: Ini-
tial cell death related to mechanical loading of the chondrocytes is observed.
Expectedly, the cell viability ratio decreases with increasing load magnitude.
However, an adjustment of the cell viability ratio could be observed over time
which appears to be independent of load magnitude and therefore may be
impulse driven (which was held constant in this experiment). We speculate
that a secondary apoptotic cell response affects cell viability after impaction.
At present the exact cell signalling pathway is unknown but mechanical load
definitely plays a role.

3 Material Model and Numerical Simulation

3.1 Material Characteristics of Articular Cartilage

According to its function, namely low friction and high wear resistance, ar-
ticular cartilage presents itself as a complex hydrated composite structure
(cf. [12, 13] and others). It consists of a porous, permeable and deformable
solid skeleton which is completely filled with a fluid component (interstitial
fluid). Cartilage cells (chondrocytes) are embedded in the extracellular matrix
(ECM) consisting of a network of collagen fibres, and embedded proteogly-
cans, glycoproteins and several kinds of lipids. Typically, articular cartilage
is subdivided into four zones, which differ in volume ratio and morphology
of the constituents.

Early biomechanical approaches based themselves on the description of
the mechanical behaviour of organic tissue by means of isotropic linear-elastic
models. Recent theoretical and computational capabilities permit improved
modelling of biological tissue even considering their discrete structural com-
ponents. Thus, as a matter of principle, it became possible to utilise more
complex material models developed for technical problems also for biome-
chanical simulations. There are a huge number of publications dealing with
the material behaviour of hyaline articular cartilage, and its appropriate mod-
elling (for an overview cf. [9]).

We propose a biphasic phenomenological macrostructural approach de-
scribing microstructural effects by means of suitable constitutive equations.
The thermodynamically consistent material model is based on a so-called
overlay concept illustrating the assumption of the superposition of stress,
and assuming an additive decomposition of the stress tensor as well as the
free Helmholtz energy density. Within this context, the material to be anal-
ysed is assumed to be fictitiously composed of several “layers”. Each layer is
characterised by original material properties but the same deformation under
mechanical loading. Consequently, in each layer a unique stress response on
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external loads can be obtained which usually differs from that one in the
other layers (about the basic idea of the overlay concept and its biomechan-
ical application see [16, 17]). Concerning the current state of the art it is
generally recognised that articular cartilage is subjected to finite deforma-
tions. Due to the varying orientation of the collagen fibres the solid matrix of
the cartilage tissue has to be considered as an anisotropic elastic material ad-
ditionally characterised by tension-compression nonlinearities. Typically, the
rate-dependency of a biphasic material behaviour is exclusively attributed to
the fluid flow through the solid matrix. However, recent observations demon-
strate that viscoelastic properties of the solid phase must not be neglected.
Therefore, its intrinsic viscoelasticity is considered by appropriate constitu-
tive relations.

3.2 Viscoelastic Biphasic Constitutive Theory

It is generally accepted in the literature that articular cartilage can be re-
garded as a saturated porous media. Within the context of material mod-
elling, the theory of porous media is based on the mixture approach of im-
miscible components (see e. g. Bowen [3], Prevost [18], de Boer [1] and Ehlers
[4, 6]). Recently, this theory has been increasingly applied to soft biological
tissues.

Like in the continuum mechanics of single-phase materials, the governing
equations for multiphase materials (local balance laws) must be completed
by constitutive equations. Equation (1) describes the stress decomposition
for the mixture

T = T S + T F = T S
E − p J C−1 . (1)

Variables in (1) are defined as follows: second Piola-Kirchhoff stress tensors
T for the mixture, T S for the solid phase as well as T F for the fluid phase,
the deformation gradient F (J = detF ), the right Cauchy-Green tensor C ,
and the effective fluid pressure (pore pressure) p. The presence of the effective
fluid pressure term indicates the impact of the fluid flow on the deformable
solid skeleton. The development of the effective second Piola-Kirchhoff stress
T S

E is governed by the solid deformation as well as nonmechanical processes,
and needs its own material law. Our custom formulation for the effective solid
stress, including anisotropic rate-dependent effects, is presented below.

Combining the first and the second laws of thermodynamics, and consid-
ering some well-established constitutive assumptions, the following material
description of the dissipation inequality for isothermal processes can be ob-
tained for the mixture

− ̺S
0 ψ̇

S +
1

2
T S

E ·· Ċ ≥ 0 . (2)

Here ψS denotes the free Helmholtz energy density of the solid phase, and
̺S
0 the partial solid phase density with respect to the reference configuration
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of the solid phase. Time derivatives denote the material time derivative with
respect to the reference configuration of the solid phase.

As mentioned above, the presented material model is based on the overlay
concept. The basic idea of this concept can be impressively explained on the
uniaxial simplification of complex material models in case of small deforma-
tions. For physical reasons, the formulation of these models can be based on
rheological systems consisting of several elements, including springs, dashpots
and friction elements (see e. g. [11]). For three-dimensional finite deformations
the overlay concept is equivalent to a multiplicative split of the deformation
gradient. To model cartilage behaviour, the deformation gradient is assumed
to be split into an elastic part Fe and a viscous part Fv (see e. g. [5, 11, 19])

F = Fe Fv . (3)

A (physically incompatible) viscous intermediate configuration is now defined
in addition to the reference and current configurations. Consequently, the
following additive decomposition of the effective stress is proposed

T S
E = Teq0 + Tov (4)

with Teq0 representing the hyperelastic equilibrium state. The stress tensor
Tov defines the viscous overstress due to the intrinsic viscoelasticity of the
solid phase. Without any loss of generality, only one overstress variable will
be used to present the definition of the constitutive relations.

According to the additive split of the stress tensor, the following consistent
representation of the free Helmholtz energy density ψS will be assumed

ψS = ψeq0 (C ) + ψov

(
Ĉev

)
with Ĉev = F −T

v C F −1
v . (5)

With (4) and (5) and some algebra, the dissipation relation (2) becomes
{[

− ̺S
0

∂ψeq0

∂C
+

1

2
Teq0

]
+

[
− ̺S

0 F −1
v

∂ψov

∂Ĉev

F −T
v +

1

2
Tov

]}
·· Ċ

+ 2 ̺S
0 F −1

v

∂ψov

∂Ĉev

F −T
v C ··F −1

v Ḟv ≥ 0 . (6)

Using relation (6), stress-strain relations for the hyperelastic equilibrium and
the viscous overstress state can be written

Teq0 = 2 ̺S
0

∂ψeq0

∂C
, Tov = 2 ̺S

0

∂ψov

∂C
(7)

with

ψeq0 = ψeq0 (C ,M ) , ψov = ψov (CC−1
v ,Mv) . (8)

Structural tensors M = A ⊗A and Mv = F −1
v (Âv ⊗ Âv)F −T

v define the
preferred fibre directions. At hyperelastic equilibrium, the directional vectors
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A and Av must coincide for the same structural elements. An equation for
the viscous part of the deformation gradient can be written

Ḟv =
1

ηv
Fv Tov C with ηv > 0 . (9)

The elastic and viscous potentials (ψeq0 and ψov respectively) are isotropic
tensor functions, and are assumed to be decomposed into isotropic and trans-
versely isotropic parts (10) and (11)

ψeq0 = ψiso
eq0 (I, II, III) + ψaniso

eq0 (I4) , (10)

ψov = ψiso
ov (Iov, IIov, IIIov) + ψaniso

ov (I4ov) . (11)

Strain invariants I, II, III and I4 for the overall strain tensor and the cor-
responding structural tensor are defined as

I = tr C , II =
1

2

(
(tr C )2 − tr C2

)
, III = detC , (12)

I4 = tr (MC ) . (13)

Invariants for the viscous potential, Iov, IIov, IIIov and I4ov, are equivalent
to (12) and (13). The viscosity function ηv was defined in accordance with
Lion [11]

ηv = ηv0 exp

[
− 1

so

‖T̂ov‖
‖Ĝ‖3

]
(14)

with

‖T̂ov‖ =

√
tr
(

(TovCv )
2
)
, ‖Ĝ‖ =

√
tr (Cv

2 ) . (15)

For numerical studies, we use the following compressible Fung type ap-
proach regarding the isotropic part of the elastic potential ψiso

eq0 which be-
comes a Neo-Hooke material for small deformations

ψiso
eq0 =

C1

α

[
eα (I − ln III − 3) − 1

]
+ D2 (ln III)2 . (16)

To simplify the estimation procedure for the material parameters, a similar
Fung type approach is used at this stage for the transversely isotropic part
of the elastic potential ψaniso

eq0

ψaniso
eq0 =

C2

β

[
eβ (I4 − 1)2 − 1

]
. (17)

The constants C1, α, D2, C2 and β are hyperelastic material parameters to
be identified from suitable experiments.
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It can be easily shown that the special formulations (16) and (17) satisfy
the requirement of a stress free undeformed configuration with a zero energy
value as well as the requirement of polyconvexity. Furthermore, at zero or infi-
nite values for the right Cauchy-Green strain tensor, the corresponding parts
of the Helmholtz free energy density increase to infinite values as expected.

In order to implement the present viscoelastic material model into a com-
mercial finite element (FE) code, we defined the special functions ψiso

ov and
ψaniso

ov for the viscous potentials for simplicity

ψiso
ov =

C1ov

αov

[
eαov (Iov − ln IIIov − 3) − 1

]
+ D2ov (ln IIIov)

2, (18)

ψaniso
ov =

C2ov

βov

[
eβov (I4ov − 1)2 − 1

]
. (19)

The material parameters C1ov, αov, D20v, C2ov and βov, were similar to the
isotropic elastic potentials. Further details of the material model are provided
in [7, 8].

3.3 Quasi-Unconfined Compression of an Osteochondral Graft

The above presented biphasic material model with intrinsic large strain trans-
versely isotropic viscoelastic solid phase properties has been implemented into
the FE code MSC-Marc using provided material interfaces within the context
of poroelasticity.

Due to the unpredictable and numerically unstable boundary conditions
(tangential contact with undefined friction state between the plug and the
walls of the recipient hole), the numerical simulation of the real grafting pro-
cess poses an exceptional challenge. Consequently, the present study focuses
on the numerical simulation of the deformation state of osteochondral grafts
obtained in the compression tests mentioned above.

Osteochondral graft FEM model Numerical result

Fig. 4. Numerical simulation of the quasi-unconfined compression of osteochondral
grafts using the soil option of the FE-code MSC-Marc with a user-defined material
model for the effective stress at finite strains.
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To numerically simulate the impact loading of clamped osteochondral
grafts, we used an idealized model of a cylindrical cartilage plug under uncon-
fined compression between impermeable plates (see Figure 4). The axisym-
metric FE model was spatially discretized using 60 eight-noded Herrmann-
type elements provided by MSC-Marc for solving mixed formulations. The
load controlled impaction process is treated as a frictionless contact prob-
lem. Material parameters were estimated from in-house experimental results
and data in the literature. In Figure 4 a typical pore pressure distribution is
shown obtained during the adaptation phase of the numerical model.

4 Conclusions

Osteochondral grafting is a common method of treating focal degenerative or
traumatic joint defects. However, impact loading occurring during re-implan-
tation of the grafts may affect the viability of chondrocytes, and result in sub-
sequent tissue degeneration. Both necrotic and apoptotic effects are reported.
Knowledge of the mechanobiological environment during re-implantation of
osteochondral grafts may be important to prevent cell death, and to sustain
cartilage function.

A combined experimental-numerical approach to analyse the mechanics
and the biology of the grafting process has been presented. The FE analysis
of compression tests at impact loading is conducted with a complex biphasic
material model for large deformations. Currently, systematic numerical simu-
lations of the plug impaction are being performed to correlate the spatial dis-
tribution of mechanical variables with cell response (e. g. cell viability ratio).
The aim of these studies is to detect the active mechanobiological principles
controlling cell metabolism during and after the osteochondral graft insertion
process and, consequently, to be enable to perform numerical experiments in
order to improve the surgical procedure.
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Abstract. Previous studies have shown that the material behaviour of cortical
bone changes due to aging from ductile to more brittle, accompanied by loss of
fracture energy. Based on published data from one-dimensional mechanical test-
ing for tension [7], first we describe the measured stress-strain curves characterised
by their published value for Young’s modulus, elastic, plastic and fracture energy,
fracture stress and strain, by employing the nonlinear Ramberg-Osgood power law.
The experiments have shown a relationship between the mechanical behaviour, age
and microstructure, especially the porosity, mineralization and fraction of the sec-
ondary osteonal area. By analogy to common procedures in fracture and damage
mechanics, we consider these ‘individual values’ as independent damage parameters.
Afterwards we postulate by means of the statistical regression of these independent
damage parameters the time dependent material behaviour. From measurable indi-
vidual parameters only, we are able to predict the stress-strain curves of individuals
for arbitrary times.

1 Aging of the Corticalis

The adult human skeleton consists of two kinds of bone tissue:

1. The spongiosa or cancellous bone, which is a spongy-like material with
curved plates and rods. It is primarily found in the inner of the vertebrae
and in the metaphysis of long bones near to the articulated joints.

2. The corticalis or compacta, which makes up 75% - 80% of the whole
skeletal mass. The outer shell of all skeletal bones and the whole mid-
dle shaft of the long bones, diaphysis, are compost of corticalis. It is a
compact, solid material which consists of lamellar layers. The lamellae
themselves have three forms of appearance: the secondary osteons (Fig-
ure 1, (2) and (3)), interstitial lamellae (Figure 1, (4)) and the inner and
outer circumferential.

The secondary osteons are cylindric tubes, which are permanently re-built
by the remodelling process. The remodelling is regulated by the mineral
metabolism and the appearance of microcracks caused by ordinary impact.
Osteoblasts cut a tunnel along the longitudinal axis of bone, eating away
the damaged tissue. Afterwards, the tunnel is filled up by circular rings of
lamellae surrounding the vascular channel (Figure 1, (3)), both of them to-
gether forming the so called haversian system or osteon (Figure 1, (2)). The
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Fig. 1. Corticalis with pores (1), low mineralised (2) and fully mineralised (3)
osteons with haversian channels, interstitial lamellae (4).

angular fragments filling the gaps between are known as interstitial lamellae.
These fragments have formerly been concentric or circumferential lamellae.
If an individual gets older, the corticalis in general becomes more porous (cf.
Figure 1, (1)), because erosion cavities arise and the haversian channels grow
in diameter. The osteons occurring in old-aged individuals usually have a
lower mineral content than in younger ones. The amount of haversian bone
increases with age. The geometry of the bone changes as well, e. g., the wall
of the diaphysis becomes thinner with age. Not only are the histological and
microstructural parameters age-dependent, but the mechanical behaviour as
well. The ultimate specific fracture energy decreases with age significantly. So
do the strength and the ultimate strain. These developments are well known,
first documented by [6], [1], and [4]. Due to the progress in microstructural
analyses in bone, two actual studies [9] and [7] publish experimental data,
concurrently measuring mechanical and microstructural parameters from in-
dividuals of different age. The authors spared no effort to get this data, but
there was no obvious correlation between the individual values for age, for the
mechanical behaviour, or for the histological and microstructural parameters.
So up to now, there is no material law postulated, which connects this statis-
tical trends. We decided to work with the experimental data from McCalden
[7] to derive a simple model for the time depend nonlinear behaviour.
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2 The Ramberg-Osgood Power Law

At autopsies, McCalden et al. [7] harvested the femora of forty-six individuals,
aged 20 to 102 years. They have taken five equal specimens from each individ-
ual and tested them in tension (strain controlled) to failure. Afterwards, they
determined the porosity of the cross-sectional area and the corrected osteonal
area, based on the cross-sectional area corrected by porosity using an image-
analysis system. They have used a colorimetric method to determine the mil-
ligrams of Ca2+ per gram of dry weight of bone. All these values have been
published graphically in diagrams versus age. To describe the stress-strain
curves, they provide the Young’s modulus for the linear part, the ultimate
strain and the ultimate stress, and they defined the so-called ‘elastic’ energy
as the triangle area and a ‘plastic’ energy as the trapeziodal area, shown in
Figure 2. The fracture energy is the area underneath the stress-strain curve.
Based on this data, we have calculated the dashed line and optimized it to

Fig. 2. The published data of person 24, a 66 years old male, and the fitted stress-
strain curve as example.

get the two material parameters n and k in the Ramberg-Osgood power law
yielding

ε =
σ

E
+ k

( σ

E

)n

. (1)
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The parameters have to fulfil the conditions that the stress-strain curve is
tangent to the dash line in the fracture point and the integral satisfies best
the measured value of the fracture energy

Wu =

εu∫

0

σ dε . (2)

Fig. 3. Individual material parameter factor k.

We restrict the solution for n to 50 and so we get solutions for 45 of the 46
searched curves. Figure 3 and Figure 4 show the individual material parame-
ters n and k of the Ramberg-Osgood power law versus age. Unfortunately, we
cannot find any coherence between these material parameters and the histo-
logical and microstructural measured values. Neither with multilinear regres-
sion nor with covariance analysis, any statistical correlation could be found.
The linear regression with age has not proved satisfactory. Nevertheless, the
Ramberg-Osgood power law seemed to be successful to describe the mechan-
ical behaviour with only a few parameters. This minimizes the database if
mechanical testing has to be documented. Figure 5 shows stress-strain curves
each for one decade being constructed by the mean target value of the indi-
viduals of each decade.
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Fig. 4. Individual material parameter exponent n .

Fig. 5. Stress-strain curves of the average target value for each decade.

3 Hookian and Damaged Spring in Parallel

Let us now divide the corticalis in its two lamellae forms: the osteons (ost) and
the interstitial lamellae (ins). The strain in the corticalis of both constituents



38 I. Ott et al.

Fig. 6. Hookian and damaged spring in parallel, representing the osteons and the
interstitial lamellae.

is the same, but, if we assume different Young’s moduli for the two different
lamellar forms, the stresses are different. Therefore, the simplest model is
that of springs in parallel, see Figure 6. The effective Young’s modulus E∗

for such a system, taking into account the area fraction osc for the osteons,
is

E∗ = osc E∗
ost + (1 − osc)E∗

ins (3)

with E∗
ost : effective Young’s modulus for the osteons ,

E∗
ins : effective Young’s modulus for the interstitial lamellae ,

hence the stress-strain curve for the macrostructure of the corticalis is

σ = osc σost + (1 − osc)σins . (4)

For the published pore fraction has no subdivision into the haversian channel
and the pores in the interstitial lamella we assign the pore fraction equally
to both springs. The haversian channels are orientated longitudinally. Thus,
the microstructure of the osteon can be modelled as unidirectional hollow
cylinders. We consider a representative volume RVE on the microstructure
level to describe macroscopic properties of the material in terms of a spatially
effective elastic tensor. The prerequisite for this is, that the RVE contains
a sufficient number of defects with a statistically homogeneous distribution.
If the defects do not interact with each other, homogenization leads to the
effective Young’s Modulus (plane strain) [5] for the macrostructure

E∗
ost =

1 − p

1 + p (2 − 3 ν2)
Eost (5)
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with

p : Volume or area fraction of the pores ,

ν : Poisson’s ratio ν = 0, 4 and

Eost : Young’s modulus for the microstructure (undamaged material) .

The behaviour of the osteons until fracture is linear elastic, because they tend
to be less mineralised than the interstitial lamellae, in which they are situated.
Because the tensile strength increases with mineralization, we expect crack
growth to occur only in the comparatively older interstitial tissue. The less
mineralised bone in relatively young haversian systems has a lower Young’s
modulus than the older surrounding bone [8]. The stress-strain curve for the
hookian spring, representing the material behaviour of the osteon, can thus
be described as

σost = ε
1 − p

1 + p (2 − 3 ν2)
Eost . (6)

We model the microstructure and behaviour of the interstitial lamellae up to
fracture using the damage model for brittle fracture under uniaxial tension.
Up to a well-defined loading level, which may be seen as a kind of usual im-
pact or overall load configuration, there is no crack growth. The bone growth
is accustomed to this strain. Microcracking starts, if the bone is strained over
the yieldpoint. Acoustic emission [10] shows that in the preyield region the
specimens are almost silent, but as the curve bends over, there is a burst of
noise, which quiets down somewhat in the postyield region, before appearing
again as the final crack destroys the specimen. The well-known model for
this behaviour (cf., e. g., [5]), is based on the complementary energy of the
undamaged material and energy changes caused by the presence of microc-
racks, giving rise to the energy release rate G. For a plane region, containing
a single mode-I crack with the initial length 2 a0 and the actual crack length
2 a, the stress-strain curve can be described assuming that beyond a certain
loading σ0 or strain ε0, the crack grows according to the fracture criterion G:

ε(σins, a) =
σins

Eins

(
1 +

2 π

∆a
a2

)
(7)

with a = a0 for σins,0
√

π a0 = K0 ,

∆a > 0 for σins

√
π (a0 + ∆a) = KR(∆a) ,

K0 initial stress-intensity factor ,

KR current stress-intensity factor .
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As usual, we represent the crack-resistance curve KR (∆a) by an evolution
law with the internal variable η:

KR(∆a) = K∞


1 −

(
1 − K0

K∞

)
e
−η

∆a

a0


 . (8)

Knowing well that the energy release rate for penny-shaped cracks differs
slightly from the one for a single mode-I crack, we accept the error for the
sake of simplicity of the model. Due to the working hypothesis that the initial
crack length is equal to the mean void radius r0, it becomes possible to
associate the measured microstructural geometry to the variable a0 in the
damage law. Based on [3], the pores are assumed to be spherical voids, and
are evenly distributed and homogeneous. The measured area fraction p by a
random cut through a cubic cell with one embedded spherical void leads to
the expect ratio n by

n =
3

√
6 p

π
(9)

with

r0 = n b radius of the void ,

VRVE = 8 b3 volume of the cubic RVE .

Using the abbreviation γ = K∞K0 where K∞ is the plateau value and

Fig. 7. Geometry of the RVE for brittle facture in the interstitial lamellae.

K0 is the initial value for the crack resistance curve KR, and including the
geometry variables n for the initial crack length and m for the crack growth
related to the cubic RVE leads to:

ε

ε0
=

σins

σins0

1 + π
2 (n + m)2

1 + π
2 n2

, (10)

σins

σins0
=

√
n√

n + m

[
γ − (γ − 1) e

−η
m

n

]
. (11)
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This is a stress-strain curve for the interstitial-lamellae-nonlinear spring with
damage up to brittle facture parameterised by m. Unknown are the yieldpoint
with the initial stress σ0 and the initial strain ε0, the ratio γ of the crack
resistance, and the evolution parameter η. Hence the stress-strain curve for
the damaged corticalis is

σ = ε(m)

[
Eost osc

1 − p

1 + p (2 − 3 ν2)
+ Eins

1 − osc

1 + π
2 (n + m)

2

]
, (12)

It is linear in the interval 0 < ε < ε0 for m = 0

and nonlinear in the interval ε0 < ε < εu for 0 < m < mu.

Eins is the Young’s modulus of the undamaged interstitial material. To find
the unknowns, the measurement of the mechanical behaviour of the specimens
have to keep the following conditions:

• Measured Young’s modulus E∗ in the linear interval

E∗ = Eost osc
1 − p

1 + p (2 − 3 ν2)
+ Eins

1 − osc

1 + π
2 n2

.

• Measured fracture point with the values for ultimate stress σu and ulti-
mate strain εu

σu = εu(mu)

[
Eost osc

1 − p

1 + p (2 − 3 ν2)
+ Eins

1 − osc

1 + π
2 (n + mu)

2

]
.

• The derivative of σins with respect to the ultimate strain εu has to be
zero, because the cracks become instable at the fracture point

d σins

d εu
= 0 for m = mu, ε(mu) = εu .

• The derivative of σ with respect to the ultimate strain εu has to be
osc · E∗

ost

d σ

d ε
= Eost osc

1 − p

1 + p (2 − 3 ν2)
for m = mu .

• The derivative of σins with respect to the strain ε has to be positive
because the stress has to be monotonically increasing

d σins

d ε
> 0 for 0 ≤ m ≤ mu .
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• The integration of the stress-strain curve with the integration limits 0
and εu has to be equal to the measured fracture energy

Wu =

εu∫

0

σ dε =

=
1

2
ε2

u Eost osc
1 − p

1 + p (2 − 3 ν2)
+

1

2
ε2
0 Eins

1 − osc

1 + π
2 n2

+ (1 − osc)

mu∫

0

σins
d ε

d m
dm .

Fig. 8. Nonlinear stress-strain curves of the springs in parallel and the nonlinear
spring for the interstitial lamellae, scaled for its area fraction.

This system of equations has an explicit solution. It can be solved numerically
by a self-developed software. Figure 8 shows the stress-strain curve for the
published data of person 24. Within this model, it is possible to calculate
a quasi-bilinear behaviour (person 19) as well as a quasi-brittle behaviour
(person 40), cf. Figure 9. This model seems to be successful to describe the
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material behaviour of the corticalis in tension. The microstructure of the bone
is used to calculate the material behaviour up to fracture.

Fig. 9. Examples for quasi-brittle facture (person 40) and bi-linear behaviour (per-
son 19).

4 Time-Dependence of the Material Parameters of the

Spring-in-Parallel Model

The crack resistance ratio γ (Figure 10) and the evolution parameter η (Fig-
ure 11) show linear time dependence with a smaller coefficient of determi-
nation R2 than the material parameter of the Ramberg-Osgood power law.
Fortunately they are not needed for a prognosis of an individual material
behaviour in the future, because they can be generated. We can find a strong
time-dependence between the ratio of the internal damage variable vs. age,
see Figure 12. The hypothesis, that the energy up to the yield strain ε0 is
a kind of usual impact load is confirmed by the time-dependent regression
curve of the calculated strain ε0, see Figure 13. The polynomial has a plateau
for the persons between 30 and 70 years. For younger persons, the value is
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Fig. 10. Ratio crack resistence γ vs. age.

higher, whereas in the last decades, from 70 to 100 years, the value decreases
rapidly. This is a load behaviour as expected. In contrast to a lot of studies,
which propose a linear correlation or power law regressions, McCalden [7] did
not find any correlation between the measured Young’s Modulus E∗ for the
linear interval and the measured mineral content Ca2+. The result is surpris-
ing, because it is generally accepted, that the Young’s modulus depends on
the mineral fraction, cf., e. g., [2]. This might be due to the fact that the mi-
crostructure varies tremendously in the specimens. We find a time-depended
correlation, which is not so strong but relevant between the sum of the calcu-
lated, undamaged Young’s moduli per mineral fraction versus age, see Figure
14.

5 Prediction of the Prospective Individual Material

Behaviour

With the results of the experiments from McCalden [7] from dead persons
and with our damage-based model, we are now able to determinate the actual
material behaviour for the first time for living persons without a destructing
testing. We calculate the target mechanical values necessary for our calcu-
lation program (fracture energy Wu, ultimate strain εu, ultimate stress σu)
by linear regressions of the histological and biological values sex (set 1 for
female and 0 for male), age in years, pores area fraction p[−], mineral content
of the dry bone Ca2+[−], and the corrected osteon area fraction osc[−],which
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can be gained by biopsy.

Wu = −0, 419916 + 0, 28993 sex− 0, 0304638 age− 2, 219989 p

+22, 0020239 Ca++ − 2, 414871 osc ,

R2 = 0, 734 ,

εu = −0, 0358782 + 0, 00188142 sex− 0, 000281694 age

−0, 000891402 p+ 0, 345772 Ca++ − 0, 0202157 osc ,

R2 = 0.671 ,

σu = 134, 4726 + 4, 857621 sex− 0, 219051 age− 170, 647433 p

+19, 889533 Ca++ − 23, 525239 osc ,

R2 = 0, 751 .

In the reconstruction of the experiments, we have used the measured effec-

Fig. 11. Evolution parameter η vs. age.

tive Young’s modulus E∗ for the parallel spring, calculated from the measured
Young’s modulus. Because we did not find any correlation to the histological
values, we took instead the regression shown in Figure 14. We calculate the in-
dividual loading capacity of a whole bone, using the individual stress-strain
curve, and the individual geometry, which is determined through imaging
techniques for bone. We also find the usual individual impact for living indi-
viduals, determined by the yield strain ε0, which was until now impossible to
define. Provided that the individual evolution of time-dependend histological
parameters is equal to the statistical ones, we can take the derivative of the
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Fig. 12. Ratio γ/η vs. age.

Fig. 13. Yield strain ε0 defined by the beginning of crack propagation vs. age.

regressions to calculate future behaviour. McCalden [7] found

p(t) = −1, 8347 + 22, 046 p , R2 = 0, 533 ,

osc(t) = 34, 799 + 19, 194 osc , R2 = 0, 203 .



A Damage-based Model to Describe Aging in Cortical Bone 47

Fig. 14. Ratio of sum of the calculated undamaged Young’s moduli per mineral
content versus age.

We keep the mineral content constant, because there was no relationship to
time. With the time-dependency of the ratio of our internal variables η and
γ, we may get an anticipation of the future mechanical behaviour of the cor-
ticalis.
Acknowledgement : Figure 1 with friendly permission from Dr. F. Schöni-
Affolter, Universität Fribourg / Schweiz, Departement Medizin, Abteilung
Histologie. Special thanks to Dr. rer. nat. Olaf Mosbach-Schulz from the In-
stitut für Statistik, Universität Bremen. His profound knowledge was a great
help for the statistical interpretation.
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Numerical Investigations on the Biomechanical

Compatibility of Hip-Joint Endoprostheses

U. Nackenhorst & A. Lutz

Institute of Mechanics and Computational Mechanics, University of Hanover
Appelstraße 9a, 30167 Hannover, Germany

Abstract. A computational approach for studies on the biomechanical compati-
bility of artificial hip-joint implants based on detailed three-dimensional finite ele-
ment models is presented. The stress adaptive bone remodelling is described in a
thermodynamic consistent constitutive framework. Special attention is laid on the
description of the loading conditions due to joint forces and muscle loads. By an
inverse simulation technique a statically equivalent load set is computed based on
measured bone mass density distributions. Results for two alternative treatments
are compared, one with a classical stem-endoprosthesis and one with a minimal
invasive resurfacing device. By these results it is demonstrated that computational
mechanics can assist in the development of new prosthesis designs regarding their
biomechanical compatibility.

1 Introduction

Artificial joint replacement is one standard surgery for joint diseases. With
more than 100.000 implantations per year hip-joint endoprosthetics is the
most frequent treatment in Germany. A typical complication is aseptic loos-
ening of the implantbone integration with the indication for revision. Stress
shielding caused by unphysiological load transfer due to the stiff implant
is discussed as one major source for these failure scenario. Besides the re-
quirement on the biocompatibility of the implanted materials, investigations
on optimised prosthesis designs with better biomechanical compatibility are
performed. Computational mechanics can assist to accelerate these develop-
ments.
Since Wolff [1] stated his law of bonetransformation in the late 19th century
the relation between bone formation an mechanical demand is well accepted.
Pioneering work in this field has also been done by Pauwels [2]. Starting with
the late 1980s going along with increased computer performance and related
development of computational mechanics first theories on stress adaptive
bone remodelling have been developed [3–7], which have been refined for
more and more detailed analysis in the following years, e. g., [8–12]. A state
of the art modelling approach will be presented in Section 2. Besides the
description of the mechanically driven change of bone mass density within a
thermodynamical consistent constitutive framework, special emphasis is laid
onto the proper formulation of the loading conditions due to joint loads and
muscle forces.
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At this stage these modelling approaches are far beyond a quantitative predic-
tion of stress driven bone reaction, because the mechanotranduction process,
i. e. the mechanical stimulation of bone cells and the signaling mechanism are
not well explained till now. However, these models allow a qualitative deci-
sion between more or less biomechanical compatible endoprosthesis designs.
Those studies will be presented in Section 3, where the computational results
obtained for a standard hip-joint prosthesis are compared to those from the
analysis of a minimal invasive resurfacing treatment. The reliability of the
conclusions will be underlined by clinical studies.

2 Modeling Approach

The finite element method is an established and powerful numerical tool
for stress analysis, which enables investigations of the mechanical behaviour
for rather complicated 3-dimensional structures. For the simulation of stress
adaptive bone remodelling a special constitutive description is needed, which
describes the evolution of internal bone structure caused from changed load-
ing conditions. For these macroscopic analysis a continuums approach is as-
sumed, where the local bone structure is described by an averaged bone
mass density. A couple of theories have been presented on this target, start-
ing with purely phenomenologically motivated approaches [4–7] over more
detailed anisotropic models [9, 10] to formulations which are consistent in a
theoretical framework of constitutive modelling [10–12]. However, it seems to
be nearly impossible to validate these models because of ethic reasons. The
constitutive model used for our investigations is sketched below.
We start with the statement of a free energy function as

Ψ = Ψ̃(ε, ̺) , (1)

which depends on the elastic strain ε and the bone mass density ̺, where ̺
is interpreted as internal variable. With these assumption from the entropy
balance for an isothermal and quasi-static process the following form of the
Clausius Duhem inequation is derived,

(
σ − ̺

∂Ψ

∂ε

)
· ·ε̇ −

(
̺
∂Ψ

∂̺
+ Ψ

)
˙̺ ≥ 0 . (2)

From classical arguments in thermo continuum mechanics it is concluded
that the term in the first bracket describes hyper-elasticity, the stress state
can be derived from a free energy potential with respect to conjugate strain
measures. The second term describes the biological aspects. The term in the
brackets vanishes only, when

• the derivative of the free energy density with respect to the mass density
is less than zero

• the free energy density is a linear function in ̺
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The first conclusion describes the process direction in an obvious kind, i. e.
if locally bone mass is added the strain energy is reduced and visa verse.
The second point gives important hints on the formulation of the constitu-
tive coupling, i. e., the relationship between Young’s modulus and bone mass
density. Regarding this relation the empirical equation investigated by Carter
and Hayes [13]

E(̺) = 3790 ̺3 (3)

is cited quite often. Despite some problems in physical consistency of this
representation (̺ is a dimensional property) from the constitutive restrictions
derived from the entropy inequality we conclude, that under the assumption
of linear elastic mechanical behaviour the exponent has to be two as shown
below.
For the first order approach of linear elastic material behaviour the strain
energy function can be expressed as

Ψ =
1

2̺
εT E

E0
C0 ε , (4)

where C0 represents the linear elastic constitutive matrix for an arbitrarily
chosen reference material, e. g. cortical bone, characterised by E0. Now, from
the more general representation of (3) of form

E = E0

(
̺

̺0

)n

, (5)

it is concluded from the second fundamental statement that the exponent is
n = 2. Besides, this conclusion is in agreement with a statistical analysis per-
formed by Rice et al. [14], who derived on a broad data basis of experimental
results a clear dominance of the quadratic term. Thus, the free energy density
is rewritten as

Ψ =
1

2̺0
εT ̺

̺0
C0 ε , (6)

by which the linearity in ̺ is shown.
A second issue is the development of evolution equations for the internal
variable, i. e., bone mass density, within an established computable framework
of inelasticity, cf. [15]. In analogy to a damage surface a growth function

f = Ψ − Ψbio = 0 (7)

is defined, where Ψbio represents a biological target value. By this simple
formulation it is stated, that the bone tries to find a mass distribution such
that at each point the physiological strain energy density is apparent. Now
from classical arguments in theory of materials and the assumption that a
biological dissipation functional

Dbio = ̺
∂Ψ

∂̺
˙̺ (8)
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takes extreme values, an evolution rule for the local bone mass density is
derived

˙̺ = λ̇
∂f

∂̺
, (9)

which is solved implicitly with return mapping like schemes.
A well known numerical instability in this context is checkerboarding using
low order spatial finite element representations, see, e. g., [8]. This can be
avoided by a smoothing step, where the mechanical stimulus, i. e., strain en-
ergy density distribution in this simple approach, is projected onto the nodal
points using a superconvergent recovery technique [16].
An additional important issue on the simulation of bone remodelling phe-
nomena is the description of the loading conditions, a topic which has not
been discussed intensively in literature so far. A couple of results measured
with instrumented hip-joint implants [17] and additionally simulations to
compute related muscle forces for well defined motions have been reported,
see, e. g., [18]. However, these loading conditions reflect short time reactions,
while bone remodelling is a long term process. From computational point
of view it is hopeless to simulate bone remodelling on basis of those data.
Therefore, the concept of statically equivalent load sets will be suggested.
The general idea is to compute a statically equivalent load set based on mea-
sured bone mass density distributions by an inverse simulation technique.
First attempts on this strategy have been reported in [19], the application
on detailed 3-dimensional finite element models of a femoral bone have been
outlined in [20].
Results computed by use of a genetic optimisation strategy are depicted in
Figure 1, where the resultant statically equivalent joint load and muscle forces
are collected. From these studies we concluded, that at least 6 muscle groups
have to be taken into account for a reliable simulation of the bone remodelling
behaviour due to hip-joint replacement with standard stem-endoprosthesis to
be discussed in the next Section.
For the evaluation of local effects the forces computed by this first step have
to be distributed for a more physiological representation of the modeling
approach. For this purpose locally a minimisation problem

min
Fi

(
nnodes∑

i=1

|Fi| ri − F j

)2

(10)

is solved, where Fi are the equivalent finite element nodal forces, ri denote
the associated directions and F j is the statically equivalent force computed
from the prior step. The computed nodal force-distribution is shown in Fig-
ure 2. With this load set the mass density distribution shown in Figure 2
has been computed. This result is in good agreement with CT data which
underlines the proposed approach.



Biomechanical Compatibility of Hip-Joint Endoprostheses 53

no. muscle Fx Fy Fz FR

joint force -952.93 -529.03 832.34 1371
2 gluteus medius 144.47 152.43 -172.47 272
1 gluteus minimus 363.97 274.36 -372.80 589
3 vastus lateralis 13.08 -63.02 123.79 139
4 psoas major. illiacus 38.25 190.03 -107.97 222
8 biceps fem., caput breve -0.47 -20.33 -4.56 21
5 glueteus maximus 222.83 0.08 -21.07 223
7 vastus intermedialis -2.60 11.48 56.49 58
9 vastus medialis -0.42 0.00 -6.95 7
6 adductor longus 0.21 -1.68 -3.99 4

Fig. 1. Primary muscle forces after [20].

Fig. 2. Distributed joint force and mass density distribution in equilibrium state.

3 A Comparison of Two Hip-Joint Endoprosthesis

The first system analysed is the Zweymüller prosthesis which has been intro-
duced in 1979 and seems to be the most frequently implanted non-cemented
stem-prosthesis in Europe. The finite element model used for these investi-
gations is shown in Figure 3. The computed results are depicted in Figure 6,
where the change of bone mass density due to the changed mechanical envi-
ronmental conditions is illustrated for a frontal place cut. A loss of cortical
bone mass density (atrophy) has been computed along the stem, which is in
good agreement with clinical observations,see, e. g., [21]. This loss of bone
stock might cause problems for revisions and therefore, this implant is rated
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as low biomechanical compatible.

Fig. 3. FE-Model of Zweymüller-prosthesis and femur.

Especially for younger patients attempts on minimal invasive treatment are
under investigation to ensure a rather good bone mass stock in the femoral
bone for probable revisions. An design for rather low resections is the hip
resurfacing technique. In Figure 4 the geometry of such a cap-prosthesis re-
covered from stereolithography (STL) data, the subsequently constructed
CAD model and the generated FE model of the femoral bone with prosthesis
are depicted.
The change of bone mass density distribution is illustrated in Figure 5.
The pictures indicate stress shielding immediately under the cap while the
femoral neck and the distal cortical structures are almost unaffected. Espe-
cially, the cortical structure and the spongious topology in the area of the
greater trochanter are not influenced by the prosthesis. Therefore, this device
provides a good bone stock when retreatment becomes necessary.

4 Conclusions

A modelling approach for numerical studies on boneremodelling caused from
artificial hip-joint replacement has been presented in this contribution. The
biological reaction of bones due to changes in mechanical demand has been
described by a simple phenomenological model within a thermodynamically
consistent framework on theory of materials by which a proper computational
framework is defined. Special care has been taken on the description of the
loading conditions due to joint loads and muscle forces. Statically equivalent
loads have been computed by an inverse simulation approach based on mea-
sured bone mass density distributions. The joint loads have been distributed
carefully to obtain realistic bone structures in a biomechanical equilibrium
stage.
The biomechanical compatibility of two different hip-prosthesis has been anal-
ysed using detailed three-dimensional finite element models. While traditional
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stem-endoprostheses lead to stress shielding and loss of bone mass density in
the surrounding bone, the bone stock is kept quite well using hip resurfac-
ing techniques. By these studies it has been demonstrated illustratively that
computational mechanics enables comparative studies on the biomechanical
compatibility of bone implants.
Future research will concentrate on biologically motivated growth rules based
on micromechanical concepts for modelling bone cells in an far realistic en-
vironment [22].

Fig. 4. Geometry of the cap-prosthesis, CAD model and generated FE model.

postoperative longterm state

Fig. 5. Bone remodelling caused from hip resurfacing treatment.
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postoperative longterm state

Fig. 6. Bone mass distribution computed for a Zweymüller-prosthesis.
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Abstract. A continuum triphase model (i. e., a solid having the interstices filled
with water containing nutrients) based on the Theory of Porous Media (TPM) is
proposed for the phenomenological description of transversely isotropic biological
tissues. However, the description of stress, strain or nutrient driven growth and
remodelling phenomena is most notable. Finally, we gain a coupled solution to
determine the solid motion, mixture temperature, inner pressure as well as the
solid and nutrient volume fractions.

1 Introduction

Biological materials are characterized by their high functionality. Substantial
characteristics of biological materials are the ability to grow or degenerate,
vary their shape and inner structure to optimize the load transfer. For ex-
ample, the arteries are composed of spiral fibres (double helix) gathering the
tensile and inner pressure load. In an intervertebral disk the compression load
is deflected over a fluid, which is stored in a strong impermeable tissue ma-
trix. Plus, the bones might show an optimized internal density with internal
structure distribution.

Thereby, growth and remodelling are continuous processes and result of a
time depending phase conversion between tissue cells and nutrients, whereby
the nutrients themselves can be transported through the tissue. Overall we
consider that biological tissues mostly consist of multi-component materials,
frequently showing an anisotropic internal structure plus reaction on chang-
ing load cases with internal biological and/or chemical activities. In terms of
comprehensive overviews on the experimental findings of the growth phenom-
ena, the reader is referred to, e. g., Fung [18, 19] and Taber [30]. An overview
of different models for the description of growth phenomena can be found in
Ricken et al. [26]. In this investigation, a description based on the Theory of
Porous Media will be used, see Biot [4–6], Bowen [11, 12], Ehlers [15, 16], de
Boer [10] or Bluhm [7].

The growth processes are driven by mechanical, chemical, genetic, metabolic,
and hormonal influences. Due to the lack of detailed knowledge and specific
parameters to quantify all these influences, a holistic numerical simulation
can not be provided nowadays. However, the capability of tissue to remodel
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its structure and density due to a changing stress state has been well known
for over a century. Moreover, the precondition for tissue growth is the exis-
tence of a growth material like nutrients. Therefore, in this work a calculation
concept is presented for the description of stress and nutrient induced growth
based on the well established Theory of Porous Media.

2 Basic Model

The examined porous body consists of ϕS (solid) which is saturated by a fluid.
The fluid itself is composed of ϕL (liquid) and ϕN (nutrients). The porous
body occupies the control space of the porous solid BS with the boundary
∂BS and real volumes vα where the index α denotes κ ∈ {S, L, N} individual
constituents. The boundary ∂BS is a material surface for the solid phase
and a non-material surface for the liquid and nutrient phases. The volume
fractions nα refer the volume elements dvα of the individual constituents ϕα

to the bulk volume element dv with

nα(x, t) =
dvα

dv
,

S,L,N∑

α

nα(x, t) =

S,L,N∑

α

ρα

ραR
= 1 , (1)

where x is the position vector of the spatial point x in the actual placement
and t is the time, see, e. g., de Boer [10]. The volume fractions nα in (1)1
meet the volume fraction condition (1)2 for κ constituents ϕα. Furthermore,
the partial density ρα = nα ραR of the constituent ϕα is related to the real
density of the materials ραR involved via the volume fractions nα, see (1)2.

The saturated porous solid will be dealt with an immiscible mixture of
all constituents ϕα with particles Xα, also with its own independent motion
function

x = χα(Xα, t) , Xα = χ−1

α (x, t) , (2)

where (2)1 represents the Lagrange description of motion. The function χα

is postulated to be unique and uniquely invertible at any time t. The exis-
tence of a function inverse to (2)1 leads to the Euler description of motion,
see (2)2. A mathematical condition, which is necessary and sufficient for the
existence of equation (2)2, is given if the Jacobian Jα = det Fα differs from
zero. Therein, Fα is the deformation gradient. Fα and its inverse F−1

α are de-
fined as Fα = (∂x)/(∂Xα) = Gradα χα and F−1

α = (∂Xα)/(∂x) = grad Xα.
The differential operator “Gradα” denotes a partial differentiation with re-
spect to the reference position Xα of the constituent ϕα and the differen-
tial operator “grad” referring to the spatial point x. During the deforma-
tion process, Fα is restricted to det Fα > 0 . The spatial velocity gradi-
ent Lα = (Gradα x′

α )F−1
α = gradx′

α, where (Fα)′α = (∂x′
α)/(∂Xα) =

Gradα x′
α denotes the material velocity gradient, can be additively decom-

posed into a symmetric part Dα = (Lα + LT
α ) / 2 and a skew-symmetric

part Wα = (Lα − LT
α ) / 2 with Lα = Dα + Wα.
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With the Lagrange description of motion (2)1, the velocity and accelera-
tion fields of the constituents ϕα are defined as material time derivatives of
the motion function (2)1

x′
α =

∂χα(Xα, t)

∂t
, x′′

α =
∂2χα(Xα, t)

∂t2
. (3)

For scalar fields depending on x and t, the material time derivatives are
defined as follows

(...)′α =
∂(...)

∂t
+ [grad(...)] · x′

α , (4)

with grad (...) = ∂(...)/∂x, see, e. g., de Boer [10].
The local statements of the balance equations of mass are given for the

constituents ϕα by

(ρα)′α + ρα div x′
α = ρ̂α, (5)

and the local statements of the balance equations of momentum read as

div Tα + ρα (b − x′′
α) + p̂α − ρ̂α x′

α = 0 . (6)

In (5) and (6), ‘div’ denotes the spatial divergence operator, ρ̂α represents
the mass supply between the phases which has to conform to

ρ̂S + ρ̂L + ρ̂N = 0 , (7)

Tα is the partial Cauchy stress tensor, ρα b specifies the volume force and p̂α

describes the interaction forces of momentum of the constituents ϕα which
are restricted to

p̂S + p̂L + p̂N = 0 . (8)

The last term ρ̂α x′
α on the left hand side of (6) describes the part of the

momentum resulting from the mass supply. Due to the time scale of growth
and remodelling processes in biological systems this part seems to be neg-
ligible for most of applications. Nevertheless, we should keep in mind that
this growth momentum has to be considered if fast growth and remodelling
processes are examined.

The balance of moment of momentum for non-polar materials states that
the material time derivative of the moment of momentum is equal to the
moments of all external forces. The evaluation of this balance equation yields
Cauchy’s second equation of motion, namely the symmetry of the stress ten-
sor Tα = (Tα)T. At last, in order to close the set of equations, the saturation
condition (1)2 must be considered.

In the further description, the system is investigated under the condition
of a materially incompressible mixture body:

(ρSR)′S = 0 , (ρLR)′L = 0 , (ρNR)′N = 0 , (9)



62 T. Ricken & J. Bluhm

which leads to the conclusion that the volumetric deformations are only a
result from the change in the porosity, i. e., from the volume fraction nS.
In this approach, energy transfer will be neglected between all phases and
accelerations are excluded (x′′

α = 0).

3 Constitutive Modelling

For the treatment of the entropy inequality in analogy to Coleman & Noll
[14], we define the set of free but not overall independent process variables

P = {CS, JL, JN, nα, wLS, wNS, grad nL, grad nN} , (10)

for fixed values of which the entropy inequality must hold and the free-
available variables A with

A = {Dα, (nα)′α} , (11)

which contains selective derivatives of the values contained in P . In (10),
besides the volume fractions nα and the seepage velocities wLS = x′

L
− x′

S

and wNS = x′
N
−x′

S
, additionally the right Cauchy-Green deformation tensor

CS = FT

S
FS and the liquid and nutrient Jacobians JL and JN are considered.

This is necessary because of the assumed mass transfers between the phases,
which leads to the fact that the volume fractions can not, as usual, be ex-
pressed by the well known relation Jα = ρα

0α/ρ
α = nα

0α/n
α gained from the

integration of the local balance equation of mass.

In (10), the quantity nN is not an independent process variable. Taking
into account the saturation condition (1)2, the volume fraction of the nutrient
can be expressed by nS and nL. This dependence will be considered thru the
evaluation of the entropy inequality. The entropy inequality for the isothermal
triphasic mixture body

S,L,N∑

α

{− ρα(ψα)′α − ρ̂α ( ψα − 1

2
x′

α · x′
α)+

+ Tα ·Dα + êα − p̂α · x′
α} ≥ 0

(12)

will be rearranged in such a way to ensure no neglecting of dependencies
which can influence constitutive modelling. In order to keep the complexity
of the evaluation in a justifiable scope, the dependency of the Helmholtz free
energies ψα on the process variables P will be restricted as follows:

ψS = ψS {CS, nS}, ψL = ψL {JL, nL}, ψN = ψN {JN, nN} . (13)
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For further investigations, the relations nα ραR (ψα)′α will be replaced by1

ρS (ψS)′
S

= 2 nS ρSR FS

∂ψS

∂CS

FT

S ·DS + nS ρSR
∂ψS

∂nS
(nS)′S ,

ρL (ψL)′
L

= nL ρLR JL

∂ψL

∂JL

I · DL + nL ρLR
∂ψL

∂nL
(nL)′L ,

ρN (ψN)′
N

= nN ρNR JN

∂ψN

∂JN

I ·DN + nN ρNR
∂ψN

∂nN
(nN)′N .

(14)

For saturated porous media the saturation condition (1)2 is a constraint with
respect to the volumetric deformation of the constituents. Therefore, the sat-
uration condition must be considered in view of the evaluation of the entropy
inequality. Here, the material time derivative of the saturation condition will
be used with

−(nS)′S − (nL)′L − (nN)′N + grad nL ·wLS + grad nN ·wNS = 0 . (15)

With respect to the evaluation of the the local statement of the entropy
inequality (12) equation (15) has to be considered as a constraint, see, e. g.,
de Boer [9]. Therefore, we use the concept of Lagrange multipliers by adding
(15) to the entropy inequality, multiplied by the scalar quantity λ with

λ {left hand side of (15)} = 0 , (16)

which does not modify the statement of (12). At last, the interconnection
between the spatial velocity deformation gradients Dα with the volume frac-
tions and their material time derivative nα and (nα)′α as well as the mass
supplies ρ̂α have to be reflected. In the case of no mass exchanges, this can
be done by replacing the Jacobian by the volume fractions but in this inves-
tigation mass exchanges are considered. Hence, the local statements of the
balance equations of mass (5) in the form

(nα)′α + nα (Dα · I) − ρ̂α

ραR
= 0 , (17)

will be added to the entropy inequality, which yield the interrelations men-
tioned above. Therefore, we gain to

λα [ (nα)′α + nα (Dα · I) − ρ̂α

ραR
] = 0 , (18)

which will be added to the entropy inequality. In (18), the Lagrange multi-
pliers λα are non-dimensional.

1 Here, use has been made of

(Jα)′α =
∂Jα

∂Fα

· (Fα)′α =
∂detFα

∂Fα

· (Fα)′α = Jα FT−1

α · (Fα)′α F−1

α Fα = Jα FT−1

α ·

Lα Fα = Jα Fα F−1

α · LT

α = Jα I · Dα .



64 T. Ricken & J. Bluhm

The entropy inequality (12), enlarged by the material time derivative
of saturation condition (16) and the balance equations of mass (18), both
multiplied with the corresponding Lagrange multiplier, reads

DS · { TS − 2 nS ρSR FS

∂ψS

∂CS

FT

S + λS nS I }+

+ DL · { TL − nL ρLR JL

∂ψL

∂JL

I + λL nL I }+

+ DN · { TN − nN ρNR JN

∂ψN

∂JN

I + λN nN I }−

− (nS)′S { λ− λS + nS ρSR
∂ψS

∂nS
}−

− (nL)′L { λ− λL + nL ρLR
∂ψL

∂nL
}−

− (nN)′N { λ− λN + nN ρNR
∂ψN

∂nN
}−

− ρ̂L { (ψL − 1

2
x′

L · x′
L +

1

ρLR
λL)−

− (ψS − 1

2
x′

S · x′
S +

1

ρSR
λS) }−

− ρ̂N { (ψN − 1

2
x′

N · x′
N +

1

ρNR
λN)−

− (ψS − 1

2
x′

S · x′
S +

1

ρSR
λS) }−

− wLS · { p̂L − λ grad nL }−

− wNS · { p̂N − λ grad nN } ≥ 0 ,

(19)

where use has been made of

ρ̂S = −ρ̂L − ρ̂N , p̂S = −p̂L − p̂N . (20)

With (11) the entropy inequality (19) can be satisfied if the following struc-
ture is obtained:

DS · {(. . .)︸︷︷︸
= 0

} + DL · {(. . .)︸︷︷︸
=0

} + DN · {(. . .)︸︷︷︸
=0

}−

− (nS)′S {(. . .)︸︷︷︸
= 0

} − (nL)′L {(. . .)︸︷︷︸
=0

} − (nN)′N {(. . .)︸︷︷︸
=0

} + Dis︸︷︷︸
≥ 0

≥ 0 ,
(21)
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where

Dis =

−ρ̂L { (ψL − 1

2
x′

L · x′
L +

1

ρLR
λL) − (ψS − 1

2
x′

S · x′
S +

1

ρSR
λS) }−

−ρ̂N { (ψN − 1

2
x′

N · x′
N +

1

ρNR
λN) − (ψS − 1

2
x′

S · x′
S +

1

ρSR
λS) }−

− wLS · { p̂L − λ grad nL } − wNS · { p̂N − λ grad nN } ≥ 0 .

(22)

Considering the aforementioned remarks, we obtain necessary and sufficient
conditions for the unrestricted validity of the second law of thermodynamics.
Firstly, with the relation

λα = λ+ nα ραR ∂ψα

∂nα
, (23)

we obtain for the Cauchy stress tensors

TS = 2 nS ρSR FS

∂ψS

∂CS

FT

S − (nS)2 ρSR
∂ψS

∂nS
I − nS λ I ,

TL = nL ρLR JL

∂ψL

∂JL

I − (nL)2 ρLR
∂ψL

∂nL
I − nL λ I ,

TN = nN ρNR JN

∂ψN

∂JN

I− (nN)2 ρNR
∂ψN

∂nN
I − nN λ I .

(24)

In view of the dissipative mechanism, the following approaches for the inter-
action forces p̂L and p̂N as well as the mass supplies ρ̂L and ρ̂N are postulated:

p̂L = λ grad nL − SL wLS − βLN

p̂
wNS ,

p̂N = λ grad nN − SN wNS + βLN

p̂ wLS ,

ρ̂L = −δLρ̂ (ΨL − ΨS) − δSLN

ρ̂ (ΨN − ΨS) − δLN

ρ̂ (ΨL − ΨN) ,

ρ̂N = − δNρ̂ (ΨN − ΨS) + δSLN

ρ̂ (ΨL − ΨS) + δLN

ρ̂ (ΨL − ΨN) ,

(25)

with

SL = αL0 [αL1 I + αL2 M̄]−1 + αL3 I ,

SN = αN0 [αN1 I + αN2 M̄]−1 + αN3 I ,
(26)

where M̄ defines an arbitrary positive definite second order tensor. Moreover,
in (25) use has been made of the abbreviation for the chemical potential
functions

Ψα = ψα − 1

2
x′

α · x′
α + nα ∂ψ

α

∂nα
+

1

ραR
λ . (27)
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With these approaches, the dissipation mechanism (22) means

Dis = SL wLS ·wLS + SN wNS ·wNS +

+ δLρ̂ (ΨL − ΨS)2 + δNρ̂ (ΨN − ΨS)2 + δLN

ρ̂ (ΨL − ΨN)2 ≥ 0 ,
(28)

and is fulfilled if the restrictions

αβ{0,1,2,3} ≥ 0 , δβ
ρ̂ ≥ 0 , δLN

ρ̂ ≥ 0 , (29)

with β ∈ {N, L} and SL, SN as positive definite second order tensor hold.
In the further investigation we assume that the nutrient phase ϕN is

included in the liquid phase ϕL with

ϕF = ϕL + ϕN, nF = nL + nN, ρFR =
nL

nF
ρLR +

nN

nF
ρNR, (30)

i. e., both phases are assigned to the same velocity x′
F

= x′
L

= x′
N

and to the
same pressure λ.

3.1 Stress

With the assumptions ∂ψF/∂JF = 0 and ∂ψF/∂nF = 0 where ϕF = ϕL +ϕN

and from (24) we gain the following constitutive relations for the partial
Cauchy stress tensors

TS = − nS λ I − (nS)2 ρSR
∂ψS

∂nS
I + 2 ρS FS

∂ψS

∂CS

FT

S

= − nS λ I − (nS)2 ρSR
∂ψS

∂nS
I + TS

E ,

TF = −(nL + nN )λ I = − nF λ I , nF = nL + nN,

(31)

of the constituents solid and fluid with the realistic fluid pressure λ.
A convenient and common way to formulate anisotropic constitutive rela-

tions is the usage of the concept of integrity bases which allows a coordinate-
invariant formulation, see, e. g., Spencer [29], Boehler [8], Betten [3] or Zheng
& Spencer [31, 32]. In this contribution we will restrict ourselves to a trans-
versely isotropic material response, i. e., only materials with one preferred
direction will be considered. Therefore, we introduce the so-called structural
tensor M = A ⊗ A where A denotes the preferred A-axis with ‖A‖ = 1
with respect to the reference configuration. The stored energy function will
be formulated in dependency of the principle invariants I1,2,3 of CS and the
basic invariants J4,5 of the argument tensors (CS,M) with

I1 := trCS, I2 := tr[det[CS]C−T

S
] = tr[CofCS] ,

I3 := detCS = J2

S
, J4 := tr[CS M] , J5 := tr[C2

S
M] ,

(32)
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see, e. g., Reese et al. [22] or Schröder et al. [28]. Now we are able to construct
the solid Helmholtz free energy function, which will be decomposed into an
isotropic part ψS

iso
and a transversely isotropic part ψS

ti
, i. e.,

ψS = ψ̂S (nS, I1, I2, I3, J4, J5) = ψS
iso

(nS, I1, I2, I3) + ψS
ti

(J4, J5)

= (
nS

nS

0S

)n ψS

iso, neo (I1, I2, I3) + ψS

ti (J4, J5) .
(33)

The term in (33) connected with the solid volume fraction nS describes the
change of solid rigidity relating to the reference solid volume fraction nS

0S

at t = t0. Carter & Hayes [13] identified the material parameter n in (33)
from in situ experiments of human and bovine trabecular bone specimens
with and without marrow to a value of n = 3, see also Nackenhorst [21].
However, from experimental investigations done by Rice et al. [23] as well
as a thermodynamical consistent derivation done by Krstin et al. [20], the
density-elasticity relation parameter n is defined with a value of n = 2. The
isotropic part of the Helmholtz free energy function ψS

iso, neo
is of Neo-Hookean

type, viz:

ψS
iso, neo

= ψS
iso, neo

(I1, JS =
√

I3)

=
1

ρS

0S

{λS
1

2
(ln JS)2 − µS ln JS +

1

2
µS(I1 − 3)} ,

(34)

where µS and λS are the macroscopic Lamé constants. For the transversely
isotropic part of the Helmholtz free energy function we choose for this first
approach a slightly modified function suggested, e. g., in Reese et al. [22] with

ψS

ti = ψS

ti(J4) =





1

2 ρS

0S

α1 (J4 − 1)α2 for J4 ≥ 1 ,

0 for J4 < 1 ,
(35)

where α1 ≥ 1 and α2 > 1 are parameters due to the stiffness of the preferred
direction A. Due to the structure of ψS both the invariance condition and
the polyconvexity condition are satisfied. The latter implies quasiconvexity
which ensures, under some further technical assumptions, the existence of
minimizers of related variational principles in finite elasticity, see, e. g., Ball
[1], Schröder & Neff [27] or Balzani et al. [2] and references therein. In (35),
the distinction of case represents the reasonable assumption that in living soft
tissues the preferred direction results from fibres, which cause no stress in the
case of shortening. Due to the fact that J4 represents the squared stretch in
the fibre direction A, the suggested decomposition in (35) appears suitable.
In the case of hard tissues, the distinction of case in (35) can be neglected
for J4 < 1.

With (31)1 and (33)-(35), the solid effective Cauchy stress tensor reads

TS

E = 2 ρS FS

∂ψS

∂CS

FT

S = (
nS

nS

0S

)n JS

ρS

ρS

0S

TS

E, iso, neo + JS

ρS

ρS

0S

TS

E, ti , (36)
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where

TS

E, iso, neo
=

1

JS

[ 2µS KS + λS ( ln JS ) I ] ,

TS

E, ti =
1

JS

α1 α2 [ tr(CS M) − 1 ]α2−1 FS MFT

S

=
1

JS

α1 α2 [ tr(m) − 1 ]α2−1 m .

(37)

Herein, the Karni-Reiner strain KS = 1/2 (BS − I) with the left Cauchy-
Green tensor BS = FS FT

S
and m = FSA ⊗ FSA = a ⊗ a as the structural

tensor has been used, both related to the actual placement.

3.2 Filter Velocity and Transversely Isotropic Permeability

The solid body is saturated by the fluid phase. The motions of both solid
and fluid are connected by the interaction forces p̂F = p̂L + p̂N = −p̂S.
From (25)1,2 with βLN

p̂
= 0 for the constitutive modelling of p̂F we gain the

restriction

p̂F = λ grad nF − SF wFS , (38)

where SF = SL + SN with (26) is obtained with

SF = αF0 [αF1 I + (1 − αF1)M ]
−1

+ αF3 I . (39)

In (39), the parameter αF2 was replaced by the relation αF2 = 1−αF1 which
allows a weighting between the fully isotropic state (αF1=1) and the complete
transverse isotropic state (αF1=0). From (6) with (31)2, (38), and (39) with
αF3 = ρ̂F, where with respect to (29)1 αF0 αF1+αF3 ≥ 0 has to be ensured, as
well as the assumption x′′

F
= o, we derive the balance equation of momentum

for the fluid phase in the form

div (−nF λ I) + ρF b + λ grad nF−

−(αF0 [αF1 I + (1 − αF1)M ]−1) wFS − ρ̂F x′
S

= o .
(40)

The last term ρ̂F x′
S

on the left hand side of (40) describes the influence of
the mass supply due to the momentum of the body. In order to obtain a
determination for the filter velocity nF wFS, we rearrange (40) to

nF wFS =
(nF)2

αF0

[αF1 I + (1 − αF1)M ] (−gradλ+ρFR b− ρ̂F

nF
x′

S) .(41)

The base permeability can either be described by use of the initial Darcy
permeability kF

0S
[m/s] and the specific weight γFR [N/m3] or of the intrinsic

solid permeability kS

0S
[m2] and the effective shear viscosity µFR [Ns/m2] ,

where

(nF)2

αF0

= (
nF

1 − nS

0S

)m
kF

0S

γFR
= (

nF

1 − nS

0S

)m
kS

0S

µFR
(42)

and m denotes a dimensionless material parameter, see also Eipper [17],
Ehlers [16], Ricken [24] or Ricken & de Boer [25].
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3.3 Mass Supply

As mentioned before, we assume a mass exchange which acts only between the
solid and nutrient phase (ρ̂N = −ρ̂S, ρ̂L = 0). Additionally, the assumptions
ΨL −ΨS = 0, and ΨL −ΨN = 0 are made. This simplification is explained by
the fact that no expert knowledge is available in view of the formulation of
the aforementioned functions. Thus, with respect to the description of remod-
elling processes, the mass supply term of the solid phase will be formulated
directly. With (25)4, the solid mass supply is defined by

ρ̂S = δNρ̂ (ΨN − ΨS) , (43)

where δNρ̂ ≥ 0, see (29)2. In view of a growth and degeneration description in

biological tissues it is necessary to allow a change in sign for ρ̂S, depending
on the direction of the process. Accordingly, the chemical potential functions
are interconnected as follows:

ρ̂S ≥ 0 → ΨN ≥ ΨS, ρ̂S ≤ 0 → ΨN ≤ ΨS. (44)

As a first approach, we postulate ρ̂S as a function of the total Kirchhoff solid
stresses, the solid Jacobian and the nutrient content, i. e.,

ρ̂S = ρ̂S ( nN, τS, JS ) = ρ̂S ( nN, nS, λ, CS, JS ) . (45)

In order to define the stress dependency of the mass exchange, we introduce
the effective stress τvMi related to the distortion strain energy of von Mises.
The mass exchange rate between the solid and nutrient phase in (45) is
postulated in dependence on the nutrient content nN, the solid Jacobian JS

and the effective solid stresses τvMi with

ρ̂S = ρ̂S
max ρ̂S

nN ρ̂S

JS
ρ̂S

τvMi
,

ρ̂S

nN = − exp [−κnN (nN)2 ] + 1 ,

ρ̂S

JS
= − exp [−κJS

(JS − 1)2 ] + 1 ,

ρ̂S
τvMi

= −2 exp [− log(2) τvMi/τvMi0] + 1 ,

(46)

where ρ̂S
max [kg/(s m3)] denotes the maximum mass exchange rate, κnN and

κJS
are parameters due to the nutrient and strain dependency respectively

and τvMi0 defines the optimal effective stress state where no mass exchange is
expected. Although, the knowledge about the capability of biological tissues
to grow and remodel is rather old, data for the parameters are difficult to
obtain. Therefore, in the numerical examples we choose parameters which
are reasonable with respect to the solutions. At present, a parameter study
is treated by the authors. In Figure 1, the characteristics of ρ̂S

nN , ρ̂S

JS
, and

ρ̂S
τvMi

are given.
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ρ̂S

nN [−] ρ̂S

JS
[−] ρ̂S

τvMi
[−]

nN [−] JS [−]

τvMi [Pa]

Fig. 1. Constituent parts of the mass transfer rate ρ̂S with κnN = 5, κJS
= 10 , and

τvMi0 = 5.

4 Numerical Treatment

Weak formulations are formed within the framework of a standard Galerkin
procedure. Under consideration of all assumptions made plus the constrain
conditions and the constitutive equations, we obtain the set ℜ of unknown
quantities with five independent fields ℜ = ℜ(x, t) = {uS ,wFS , n

S, nN, λ}
wherein uS denotes the displacement of the solid phase. The filter velocity
nF wFS will be calculated using the balance of momentum from (41). Finally,
the set of unknown quantities ℜ can be reduced to four quantities with

ℜ = ℜ(x, t) = {uS, n
S, nN, λ} . (47)

In order to determine the independent fields given in (47), weak forms have
to be formed. Therefore, we use for the mixture the sum of the balance
equations of momentum (6) multiplied with the weight function δuS as well
as the balance equations of mass (5) of the overall mixture, solid, and nutrient
phase multiplied with the weight functions δλ , δnS, and δnN, respectively.
As a result, the used set of equations according to the actual placement can
be evaluated to weak forms which are given in Ricken et al [26].

The weak forms of the balance equations are implemented in the well
known finite element program FEAP developed by Taylor. The finite element
discretization was realized with the Galerkin method. In order to ensure sta-
ble numerical results, so called Taylor-Hood elements are used with quadratic
ansatz functions for uS and linear ansatz functions for λ, nS, and nN.

5 Numerical Example

Notably, the following examples are more or less of academic character. This
is caused by the fact that for some parameters no realistic quantities are
known at the current state. Due to the manifold number of load cases and
material properties of living biological tissues the description necessitated
much simplification before a solution could be attempted. Basically, in the
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numerical example presented, the performance of our calculation concept can
be obtained. In view of further investigations and biological knowledge, this
model is able to describe the basic behaviour of biological tissues and can be
expanded to further findings.

5.1 Transverse Isotropic Material Behaviour

Within many biological materials, an anisotropic material behaviour, which is
caused by the internal structure of the material, can be observed . For example
the transverse isotropic behaviour of a muscle results from the muscle fibres
which are arranged in bundles. Thereby, the muscle behaves more rigid in the
direction of the fibres than perpendicular to it, see Figure 2. The material
parameters are given in Table 1.

Fig. 2. Transverse Isotropic structure of a muscle.

Parameter Value Unit Parameter Value Unit

µS 1 · 103 Pa ρ̂S
max 0 kg/d m3

λS 0 Pa kF

0S 8.3 · 102 m/d

ρSR

0S 2 · 102 kg/m3 γFR 1.0 · 104 N/m3

ρLR

0S 1 · 103 kg/m3 αF1 1.0 −

ρNR

0S 1 · 103 kg/m3 αF3 0.0 −

nS

0S 0.5 − α1 1.0 · 103
−

nL

0S 0.45 − α2 3.0 −

nN

0S 0.05 − m 0 −

Table 1. Parameters for tension test.

In order to clarify the anisotropic material behaviour, a calculation of
a disk including a cavity has been carried out. Thus, a tension test with a
sample specimen is simulated which possesses a circular defect in the centre.
The specimen is fastened at the left side and pulled on the right side; the
upper and lower surface are free, see Figure 3 (a).



72 T. Ricken & J. Bluhm

(a) (b)

Fig. 3. Boundary conditions and discretization (a) and transverse isotropic material
structure (b) for tension test.

The specimen consists of solid matrix that is filled with fluid. The fluid can
not leave the sample test specimen at the edges. However, in this example,
no mass exchanges are considered. In the first case the solid matrix consists
of an isotropic material, whereas in the second case it behaves transverse
isotropic, i. e., the fibres in horizontal direction are strengthened, see Figure
3 (b).

As shown in in Figure 4, the deformation behaviour of the two materials
differs during the same load. At the edges of the defect the isotropic material
is affected by large volume stains (red and blue range), whereas the volume
strains in the case of the transverse-isotropic material have a low distribution
around the defect. From this we can consider that a biological material, which
is reinforced by fibres, will protect injuries against large load peaks.

5.2 Optimized Organic Structures

Apart from the growth process, biological materials are able to adapt their
internal structure for a given load case. A substantial characteristic is the
optimization of weight reduction, where structures are only formed where it
is necessary for stability. An example is the structure of our skeleton which
was developed by evolution to a system optimal for our purposes. This evo-
lutionary process is subjected to the following simulation. In order to come
closer to this phenomenon, a simple study of a cantilever with a given load
is regarded, see Figure 5. In the example, the material distribution evaluates
to the state of optimal stress and low strain state. The material parameters
are given in Table 2. In Figure 5 (a) the red areas mark the places with a
high mass content, while the blue ranges refer to a low material one. In Fig-
ure 5 (b) the pertinent change of the effective stress is represented. It can
be recognized that the inner structure of the cantilever adjusts itself to the
given load so that an optimal structure is finally formed. In the case of any
changes in the load case, the formed structure would change again. With this
simulation it is possible to optimize technical products as well as, e. g., the
basic structure of an automobile.
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Fig. 4. Volumetric strain distribution for isotropic and transverse isotropic
biological material.

(a) (b)

Fig. 5. Structure optimization of organic material: material (a) and effective stress
(b). Load = 2 kN.



Parameter Value Unit Parameter Value Unit

µS 1 · 104 Pa ρ̂S
max 1 kg/d m3

λS 0 Pa kF

0S 8.3 · 102 m/d

ρSR

0S 0.2 · 10−3 g/mm3 γFR 1.0 · 104 N/m3

ρLR

0S 1.0 · 10−3 g/mm3 αF1 1.0 −

ρNR

0S 0.2 · 10−3 g/mm3 αF3 0.0 −

nS

0S 0.5 − α1 1.0 · 103
−

nL

0S 0.05 − α2 3.0 −

nN

0S 0.45 − m 0 −

κnN 5.0 − κJS
2.0·106

−

τvMi0 10.0 N/mm2

Table 2. Parameters for Structure optimization test.

References

1. Ball, J. M.: Convexity conditions and existence theorems in non-linear elas-
ticity. Archive of Rational Mechanics and Analysis 63 (1977), 337–403.
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On Multiscale Modelling of Perfused Tissues

Using Homogenisation of a Strongly

Heterogeneous Biot Continuum
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Department of Mechanics, Faculty of Applied Sciences, University of West
Bohemia, Univerzitńı 22, 30614 Plzen̆, Czech Republic

Abstract. The homogenisation approach is combined with the technique of the
dual porosity (the strong heterogeneity in permeability). The resulting limit model
of perfusion in deforming tissue involves new constitutive laws whose coefficients can
be computed for specific microstructures using local problems and few parameters
related to the microstructure. In the paper, we report the essential features of the
two-scale modelling and illustrate its performance on a 2D example.

1 Introduction

It is generally accepted that biological tissues can well be approximated using
models of porous media saturated with fluids. Many existing models are in-
troduced purely on the phenomenological basis of the theory of porous media
or using the theory of mixtures. In these cases, there are many model param-
eters to be identified from experiments which, however, pertain somewhat
cumbersome. Especially in the large deformation problems, when the coeffi-
cients depend on the deformation, the “curve fitting” strategy may become
ambiguous serving unreliable results in the prospect of the model applicabil-
ity for predictions.

We claim that many important constraints and relationships between ma-
terial parameters can hardly be introduced without a more refined descrip-
tion of the microstructure based on its geometrical arrangement. When such
option is available, various averaging techniques can be employed to com-
pute the effective structural parameters. Here, we report on the two-scale
modelling which, as a prerequisite, requires a well defined (whatever sim-
plified) microstructural geometry and a micromodel describing the medium
behaviour for finite scale heterogeneities distributed in the microstructure.
The main features of the present modelling approach can be outlined as fol-
lows:

• locally periodic microstructure is defined as a lattice represented (locally)
by the reference periodic cell (RPC);

• micromodel is based on the Biot continuum describing mixture of incom-
pressible fluid diffusing in the incompressible solid skeleton;
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• constitutive parameters comprise stiffness and hydraulic permeability
tensors; they vary with the position in the RPC;

• the permeability coefficients are assumed to be strongly heterogeneous:
in a subdomain of the RPC, they depend on the scale parameter ε; this
indicates that there is an underlaying sub-microstructure;

• two-scale method of homogenisation is applied to upscale the micromodel;

• limit structure of the model involves global (macroscopic) equations and
local sub-problems for corrector functions which constitute the homogenised
(effective) parameters;

• in nonlinear situations (large deformation), the reference microscopic con-
figuration (geometry and internal parameters) must be updated locally
using the macroscopic fields; the parallel strategy was proposed in [8] and
further elaborated and discussed in detail in [5].

The aim of the present paper is to demonstrate the multi-scale computing
approach applied to blood perfusion in deforming tissue. Our model captures
parallel flow in two conducting sectors separated by an interface represent-
ing the lowest hierarchy of the vasculature (capillaries). Another application
based on the same machinery was developed to mimic large deformation of
smooth muscle tissues with microflow of interstitial fluids around the smooth
muscle cells; comprehensive studies can be found in recent references [5, 6].

Detailed description of the upscaled model of blood perfusion is beyond
the scope of the paper, it will be developed in the forthcoming paper [7].
We shall outline the model equations of the perfusion problem. In particular,
we introduce the micromodel, discuss the strong heterogeneity, the resulting
local and global equations and explain the meaning of the homogenised coeffi-
cients. Then, we illustrate the multi-scale computing tools: for pre-calculated
homogenised coefficients, we solve the global problem for the macroscopic dis-
placement and two pressure fields, consequently, at selected points, we can
compute the local (microscopic) stresses and strains.

2 Microstructure and Local Characteristic Responses

The heterogeneous medium is generated as the periodic lattice by the ref-
erence periodic cell (RPC) Y split into three non-overlapping sectors Yk,
k = 1, 2, 3, so that Y = Y1 ∪ Y2 ∪ Y3 with interfaces Γk = Yk ∩ Y3 for k = 1, 2,
see Figure 1. The homogenisation procedure is applied to the quasi-static
Biot model for incompressible materials (σij is the Cauchy stress, eij(u) is
the small strain of displacement field u, p is the bulk pressure, and w is the
perfusion/seepage velocity)

−divσε = f ,

div d
d tu

ε + divwε = 0 ,

σε
ij = −pε δij +Dε

ijkl ekl(u
ε) ,

wε
i = −Kε

ij ∂jp
ε .

(1)
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(a) (b)

Fig. 1. (a) The reference microstructural cell split into 2 high conductive sectors
Y1 and Y2 separated by an interface (matrix) sector Y3; Γk = Yk ∩ Y3, k = 1, 2. (b)
The periodic lattice structure of domain Ω.

Above the dependence on the scale of the heterogeneities is indicated by ε.
The relationship between the macro- and micro-scale described by coordi-
nates x and y, respectively, is established through x = ε y, see, e. g., [4]. The
constitutive parameters varying with position in the microstructure are Y -
periodic, cf. [2, 4] (note that D(y) = Dε(x) = D(x/ε) and the same holds for
K(y))

Elasticity: Dijkl(y) =

3∑

α=1

χα(y)Dα
ijkl ,

Permeability: Kij(y) =

2∑

α=1

χα(y)Kα
ij + ε2 χ3(y)K

3
ij ,

(2)

where χα(y) are the characteristic functions of the subdomains Yα extended
by Y -periodicity to whole R3. Here, the main concern of the homogenisation-
based modelling is related to the strong heterogeneity in the permeability
coefficients, introduced by virtue of the ε2-dependence in (2)2. This scaling is
natural, corresponding to lower order scales at which the permeability is ob-
tained by homogenisation of the Stokes flow. The homogenisation procedure
is described in detail for a similar model with a simpler type of microstruc-
tures in [3].

The effective material tensors involved in the homogenised model depend
on the corrector basis functions computed for a given RPC. We employ the
bilinear forms (where ∼

∫
Z

= |Y |−1
∫

Z
for Z ⊂ Y )

aY (u , v) =∼
∫

Y

Dijkl e
y
kl(u) ey

ij(v ) , cY3
(φ, ψ) =∼

∫

Y3

K3
ij ∂

y
j φ∂

y
i ψ ,

(φ, ψ)Y3
=∼
∫

Y3

φψ ,

(3)

and use the following spaces: by H1
#(Y ), we denote the restriction of the

Sobolev space H1(Y ) to the Y -periodic vectorial functions, whereby the anal-
ogous notation H1

#(Y ) is used for scalar functions; H1
#0(Y3) is the restriction

of H1
#(Y3) to functions which are zero on interfaces Γk = Γk,3, k = 1, 2.
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There are the steady and time-dependent correctors:

The steady state correctors (ω̄rs, π̄rs) and (ω∗,α, π̃α(0)) are solutions to the
following problems:

• Find ω̄rs ∈ H1
#(Y ) and π̄rs ∈ H1

#0(Y3), so that

aY (ω̄rs, v) = −aY (Πrs, v ) ∀v ∈ H1
#(Y ) ,

cY3
(π̄rs, ψ) = − (ψ, divyω̄rs + divyΠrs)Y3

∀ψ ∈ H1
#0(Y3) ,

(4)

where Πrs
i = δri ys, so that Πrs

i ex
rs is the displacement induced in Y by

locally uniform (macroscopic) strain ex
rs.

• Find ω∗,α ∈ H1
#(Y ) and π̃α(0) ∈ H1

#(Y3), such that

aY (ω∗,α, v) − (π̃α(0), divyv)Y3
=∼
∫

Γα

v · n [α] dS ∀v ∈ H1
#(Y ) ,

(ψ, divyω∗,α)Y3
= 0 ∀ψ ∈ H1

#0(Y3) ,

(5)

where π̃α(0) = δαβ on Γβ , β = 1, 2, and n
[α] is the unit normal outward

to Yα. It holds that ω∗,1 = −ω∗,2 and π̃1(0) = 1 − π̃2(0). Note that
π̃α(0) serves as the Lagrange multiplier of the incompressibility of ω∗,α

in Y3.

The time-variant correctors satisfy the following subproblems:

• Find (ω̃rs, π̃rs) ∈ H1
#(Y ) ×H1

#0(Y3), such that for t > 0

aY (ω̃rs(t), v) −
(

d

d t
π̃rs(t), divyv

)

Y3

= 0 ∀v ∈ H1
#(Y ) ,

(ψ, divyω̃rs(t))Y3
+ cY3

(π̃rs(t), ψ) = 0 ∀ψ ∈ H1
#0(Y3) ,

(6)

with the initial condition π̃rs(0) = −π̄rs.

• Find (ω̃α, π̃α) ∈ H1
#(Y ) ×H1

#(Y3), such that for t > 0

aY (ω̃α(t), v) −
(

d

d t
π̃α(t), divyv

)

Y3

= 0 ∀v ∈ H1
#(Y ) ,

(ψ, divyω̃α(t))Y3
+ cY3

(π̃α(t), ψ) = 0 ∀ψ ∈ H1
#0(Y3) ,

where π̃α = δαβ on Γβ , β = 1, 2 ,

(7)

with the initial condition π̃α(0) 6= 0 already computed in (5).
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3 Homogenised Parallel Diffusion in a Deforming

Medium

The macromodel involves the homogenised coefficients (presented in Sec-
tion 3.1) and is defined in terms of the macroscopic displacements, u(t) ∈
V ⊂ H1(Ω), and the two macroscopic pressures, p1(t), p2(t) ∈ H1

0 (Ω); these
satisfy the equilibrium equation

∫

Ω

[
Eijkl e

x
kl(u(t)) + B̄ijkl

d

d t
ex

kl(u(t))

+

∫ t

0

Hijkl(t− τ)
d

d τ
ex

kl(u(τ)) dτ

]
ex

ij(v)

−
∫

Ω

ex
ij(v)

∫ t

0

R̃1
ij(t− τ)[p1(τ) − p2(τ)] dτ

−
∑

α=1,2

∫

Ω

[ |Yα|
|Y | δij + P̄α

ij

]
pα(t) ex

ij(v ) = L(v) ∀v ∈ V0 ,

(8)

(where V0 is the space of the test displacements and L(·) is the load func-
tional) and the two balance-of-mass equations for α, β = 1, 2, β 6= α

∫

Ω

Cα
ij ∂

x
j pα(t) ∂x

i q +

∫

Ω

q G∗ d

d t
(pα(t) − pβ(t))

+

∫

Ω

q

∫ t

0

G̃+(t− τ)
d

d τ
(pα(τ) − pβ(τ)) dτ

+

∫

Ω

q

∫ t

0

d

d t
Q̃α

ij(t− τ)
d

d τ
ex

ij(u(τ)) dτ

+

∫

Ω

q

[ |Yα|
|Y | δij + Q̂α

ij(0+)

]
d

d t
ex

ij(u(t)) = 0 , ∀q ∈ H1
0 (Ω) ,

(9)

which govern the fluid flow in the two channels and its redistribution between
them.

Due to the relationship between homogenised coefficients (HCs) and the
structures of the corrector problems, we may better understand the mechan-
ical interpretation of the HCs – they represent integral figures of the micro-
scopic responses for special load regimes.

3.1 Homogenised Coefficients

We list the expressions for computing the HCs using the corrector solutions
defined in (4)–(7). The homogenised permeabilities Cα

ij are computed for each
compartment Yα independently using the standard homogenisation result, cf.
[3] or the general references [2, 4].
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Homogenised elasticity and viscoelasticity coefficients:

• Elasticity Eijkl = aY

(
Πkl + ω̄kl, Π ij + ω̄ij

)
,

• Viscosity, instantaneous effects B̄ijkl = 1
2 cY3

(π̄kl, π̄ij) ,

• Viscosity, fading memory effects Hijkl(t) = cY3

(
d
d t π̃

kl(t), π̄ij
)
.

Biot-type coefficients: stress induced by non-equilibrated pressure p1 − p2,
see (11),

instantaneous: P̄α
ij =

[
(π̃α(0), δij)Y3

− aY

(
ω∗,α, Πij

)]
,

fading memory: R̃α
ij(t) =

[(
d

d t
π̃α(t), δij

)

Y3

− aY

(
ω̃α(t), Π ij

)
]
, α = 1, 2 .

Biot-type coefficients: deformation induced volume change of channels by net
fluid exchange through (fixed) interface Γα (w̃ is the perfusion velocity)

Q̃α
ij(t) =∼

∫

Γα

(
ω̃ij(t) + w̃

ij(t)
)
· n [α] dS

and by “impermeable-like” interface Γα (interface distension mode)

Q̂α
ij(0+) =∼

∫

Γα

(ω̃ij(0+) + ω̄ij) · n [α] dS .

Barenblatt coefficients: related to the flow between the two channels and
induced by pα − pβ, β 6= α. They describe following phenomena: net fluid
exchange through rigid-fixed interface (w̃ is the perfusion velocity)

G̃(t) =∼
∫

Γ1

(
ω̃1(t) + w̃

1(t)
)
· n [1] dS

and effects of the incompressible interface sector, the change of proportion
between volumes of the channels Y1 and Y2 due to the compliant, incompress-
ible interface Y3

G∗ =∼
∫

Γ1

ω∗,1 · n [1] dS .

It is worth noting that there are symmetries between those terms in equa-
tions (8)–(9) which couple the diffusion and deformation effects. It holds

P̄α
ij = Q̂α

ij and R̃α
ij(t) =

d

d t
Q̃α

ij(t) , α = 1, 2 . (10)



Multiscale Modelling of Perfused Tissues 83

Furthermore, we have the following relationships between the corresponding
coefficients associated with Y1 and Y2:

P̄1
ij + P̄2

ij =
|Y3|
|Y | δij , Q̂1

ij + Q̂2
ij =

|Y3|
|Y | δij ,

R̃1
ij(t) + R̃2

ij(t) = 0 ,
d

d t
[Q̃1

ij(t) + Q̃2
ij(t)] = 0 .

(11)

3.2 Recovery of Pressure, Stress, and Deformation at the

Micro-Level

The two-scale modelling enables to interpret the macroscopic fields in terms
of the detailed local distributions of the microscopic fields. Having computed
the displacement and pressure distributions in Ω, the microscopic ones can be
recovered for a given x ∈ Ω using the “characteristic microscopic responses”.
For a given local strain ex

ij(u(x, t)), pressures pα(x, t) and their gradients
∂x

kpα at an arbitrary macroscopic point x and in time interval [0, tmax], we
can compute the following corrector microscopic fields:

u
corr(y, t) =

∑

ij

[
ω̄ijex

ij(u(t)) +

∫ t

0

ω̃ij(t− s)
d

d s
ex

ij(u(s)) ds

]

+
∑

α=1,2

[
ω∗,αpα(t) +

∫ t

0

ω̃α(t− s) pα(s) ds

]
, y ∈ Y ,

pcorr
3 (y, t) =

∑

ij

∫ t

0

d

d t
π̃ij(t− s)

d

d s
eij(u(s)) ds

+
∑

α=1,2

[
π̃α(0) pα(t) +

∫ t

0

d

d t
π̃α(t− s) pα(s) ds

]
, y ∈ Y3 .

(12)

Using (12) the relevant microscopic fields can be recovered:

• Displacement u
mic = (umic

i ): In the limit situation (ε→ 0), construction
(13) provides displacements relative to a fixed point:

umic
i (y, t) = ex

ij(u(t)) yj + ucorr
i (y, t) , y ∈ Y , (13)

• Pressure pmic: In the limit situation the pressure field is constant w. r. t.
y ∈ Yα, whereas it varies in Y3:

pmic(y, t) = pcorr
3 (y, t) , y ∈ Y3 ,

pmic(y, t) = pα(t) , y ∈ Yα , α = 1, 2 .
(14)

• Diffusion velocity w
mic = (wmic

i ): Denoting by P k
α the standard corrector

function which constitutes the homogenised permeability Cα
ij in (9), we

have

wmic
i (y, t) = K3

ij ∂
y
j p

corr
3 (y, t) , y ∈ Y3 ,

wmic
i (y, t) = Kα

ij ∂
y
j (P k

α (y) + yk)[∂x
kpα](t) , y ∈ Yα .

(15)



84 E. Rohan et al.

4 Numerical Example – 2D Structure

We report a numerical example of the two-scale blood perfusion simulation.
The upscaled problem (8)–(9) is defined in a square domain Ω. Pressures
p̄1(t), p̄2(t) are prescribed as varying in time on two opposite edges of Ω,
whereas the non-penetration condition is imposed on the other two edges.
The structure is loaded on the upper edge by tractions and fixed on its lower
edge. In Figure 2, we illustrate the distribution of p1, p2 and of p2 − p1 in Ω.
At a selected point X∈ Ω, the Nt time samples were recorded, see Figure 3,
comprising the following arrays:

record phys. meaning array dim.

{(e11(u(t)), e22(u(t)), 2e12(u(t))}t strain [3 ×Nt]

{p1(t), p2(t)}t pressure [2 ×Nt]

{∇p1(t),∇p2(t)}t pressure grad. [4 ×Nt]

(a) (b) (c)

Fig. 2. Pressures p1 (a), p2 (c) and difference p2 − p1 (b) at the last time step.

(a) (b)

Fig. 3. Macroscopic response at a selected point X∈ Ω: (a) strains eij(u(t)) and
(b) pressures p1(t), p2(t).
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The resulting microscopic response was post-processed using convolutions
(12) for a selected point ŷ ∈ Y . The effective stresses (i. e., σeff

ij = Dijklekl(u
mic)

without the volumetric part) and perfusion velocities are displayed in Fig-
ure 4. In Figure 5, we illustrate the pressure and the von Mises stress dis-
tributed in the domain Y at selected time levels.

(a) (b)

Fig. 4. Microscopic response at given ŷ ∈ Y : (a) stress and (b) diffusion velocity.

t=0.35 t=0.66 t=0.79 t=0.91 t=1.06 t=1.21

Fig. 5. Microscopic pressure and stress recovery. Above: pressure distribution in Y
at time levels 8/14/23/26/29/32; below: von Mises stress at respective time levels.

5 Conclusion

In summary, we have demonstrated some interesting features of the ho-
mogenisation and two-scale modelling that may contribute to the develop-
ment of advanced models of biological tissues. Starting with the Biot model,
the dual porosity (strong heterogeneity in the permeability coefficients) re-
lated to a convenient partitioning of the reference volume element, the RPC,
led to a new homogenised form of the constitutive laws, involving memory
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effects, different forms of permeabilities that govern parallel flows in two chan-
nels and the flux between them, which is the measure of the tissue perfusion.
The stress and strain recovery at the microscopic level from the macroscopic
response can be used as basis for modelling growth and damage. The model
can be extended to account for convected diffusion of dissolved species, e. g.,
oxygen.

The homogenised forms of the constitutive laws reported here have also
been adapted and employed for the ad hoc macroscopic modelling of large
deforming tissues in [1].
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Calculation of Muscle and Joint Forces

in the Masticatory System
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Englerstraße 2, 76128 Karlsruhe, Germany

Abstract. In ten healthy test persons, electromyographic (EMG) activities of the
essential masticatory muscles and the intraorally transferred, feedback-controlled
resultant bite force have been measured simultaneously for 19 motor tasks at differ-
ent magnitudes simulating clenching. Additionally, for all test persons 3d-models of
the musculature were reconstructed from magnetic resonance tomograms. The aim
of the study was to identify the associated activation patterns, the intrinsic muscle
strength and the muscle forces using a non-linear force law, and to calculate the
joint reaction forces. On the basis of this information, motor tasks leading to high
joint forces may possibly be identified. However, for the calculation of joint forces
the lines of action of the masticatory muscles and the magnitudes of the muscle
forces are needed. In this contribution the lines of action are determined by two
different schemes: In the first approach the lines of action are defined by the cen-
troids of the muscles’ origin and insertion areas, and the muscle force magnitudes
are computed based on the physiological cross-sectional areas. In a second approach
all quantities shall be computed with the help of specific finite elements which are
presently under development.

1 Introduction

The human masticatory system consists of twelve essential muscles connect-
ing the mandible with the maxilla. Each muscle can generate a force vector
with an a priori unknown magnitude, but along a line of action which can
approximately be constructed either from its geometry or with the help of a
finite element (FE) analysis. For the joint forces, however, the magnitudes as
well as the lines of action are unknown. If we assume the mandible to be a
rigid body there are 12 muscle forces + 6 joint force components in compar-
ison to 6 equilibrium equations. Therefore, the system is highly redundant,
i. e., without further information a specific resultant force can be generated
by an infinite variety of activation patterns. Thus, aside of certain optimiza-
tion methods using arbitrarily chosen target functions, only a simultaneous
measurement of all muscular EMG activities and the resultant bite force be-
tween the lower and upper jaw can reveal the actual situation.
It is obvious that the quality of the results depends essentially on the quality
of the estimation of the lines of action. Here, a FE analysis will certainly de-
liver better results than the geometric approach because the structure of each
muscle and a possible inhomogeneous activation can be taken into account.
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2 Materials and Methods

2.1 EMG- and Bite Force Measurement

To date, no measured data are available from experiments in which the activi-
ties of all masticatory muscles and the resultant bite force have been recorded
simultaneously. This complete knowledge is, however, indispensable to deter-
mine the direction and magnitude of the reaction forces transferred to the
condyles.
For that purpose, in ten healthy male subjects (average age: 29 ± 2.6 years)
the intraoral force transfer and the electromyographic activities of the mas-
seter, anterior and posterior temporal, medial and lateral pterygoid, and an-
terior digastric were simultaneously recorded in simulated clenching tasks
during the generation of various resultant bite force vectors Fres. A feed-
back system enabled the test persons to perform 19 specific clenching tasks
(circumferential angle ϕ = 0◦, 60◦, 90◦, 180◦, 270◦, 300◦; cranial angle θ
= 0◦, 20◦, 40◦, 60◦ with respect to the normal z’ on the occlusal plane;
cf. Figure 1 (a)) at different magnitudes of the resultant force. The centrally
transmitted resultant force was determined with an intraoral measuring ap-
pliance, consisting of a bearing pin device equipped with strain gauges and
fixed on custom-made metal splints (Figure 1 (b)).

(a) (b) (c)

Fig. 1. Coordinate system used for the force measurement device (x’,y’-plane cor-
responds to the occlusal plane) with angles ϕ and θ (a), Intraoral measuring device:
SG: strain gauge, P: pin, B: base plate, C: contact plate, MS: metal splint (b) and
Mandible with bite force and joint forces (c) (muscle forces are not displayed).

Bipolar surface electrodes were employed to measure bilaterally the electric
activities Ui of the masseter, anterior temporal, posterior temporal, and ante-
rior digastric, whereas bilateral bipolar wire electrodes, inserted by a needle,
recorded the electric muscle activity of the medial and lateral pterygoid mus-
cles. For special motor tasks also the maximum electric activities Umax,i of all
muscles were determined. The experimental details are described in [1]. The
study was approved by the Ethics Committee of the University of Freiburg,
Germany (No. 25/02). All participating subjects gave their written consent
to the experiments which were conducted in accordance with the Declaration
of Helsinki.
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2.2 Force Law

In addition, for each test person a 3d-model of the musculature was con-
structed using horizontal and frontal magnetic resonance tomograms (MRT)
which also served to identify the so-called Frankfurt horizontal plane (passing
through the lowest point in the margin of the orbit and the highest point in
the margin of the auditory meatus), the occlusal plane, and the position of
the bearing pin. From these models the so-called physiological cross-sectional
areas Ai = (1-pi)Vi/lf,i (Vi: total muscle volume, pi: portion of tendinous tis-
sue, lf,i: muscle fibre length) were calculated (cf. Figure 2 (a)). The values for
Vi and lf,i were taken from [2]. All described motor tasks were performed with
magnitudes Fres = 50 N and Fres = 150 N. The task with vertical resultant
force was additionally performed with Fres = 250 N and under maximum vol-
untary bite force of each test person. The results of this experimental study
were presented in detail in [5]. The correlation between the actual muscle
force and the actual electric activation is given by the force law:

Fi

Fmax,i
= f

(
Ui

Umax,i

)
= c1

Ui

Umax,i
+ c2

(
Ui

Umax,i

)2

. (1)

Using the measured data, the constants c1 and c2 were determined for each
test person separately via a least squares fit. A typical result for one test
person can be seen in Figure 2 (b). The muscle force is proportional to its
physiological cross-section (= sum of all muscle fibre cross-sections) and the
stress generated by the muscle fibres [7]. The maximium stress value a mus-
cle may generate is given by the so-called intrinsic muscle strength P. For
pennated muscles (angle αi between line of action and fibre direction) the
maximum muscle force is given by Fmax,i = P ·Ai · cosαi .

2.3 Rigid Body Model

The line of action of each muscle is defined as the connection between the
centroids of its origin and insertion area. In the following, the x,y-plane is
chosen parallel to the Frankfurt horizontal plane with the y-axis coinciding
with the axis connecting the centers of the condyles, and the x-axis directed
frontally in the midsaggital plane, cf. right of Figure 1. With the force law
relating the muscle forces Fi to the electric activities Ui, and the assumptions
that (1) each joint force intersects the center of the corresponding condyle and
(2) the component in direction of the condyle axis can only be transmitted
by compression, the intrinsic muscle strength P and the joint forces can be
determined using the balance of momentum. Once P is determined, all muscle
forces follow from the force law together with the measured data.

2.4 Finite Element Formulations

Most chewing muscles have a complex structure, i. e., they are pennated. The
muscle fibres attach to aponeuroses (cf. Figure 3) which collect the stress gen-
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erated by the contraction of the single fibres. Therefore, to perform a realistic
FE simulation, it is necessary to divide the complete muscle into contractile
(muscle fibres) and tendinous tissue (aponeuroses). Both tissues consist of
a soft but approximately incompressible matrix material to which fibres are
added. For both tissues the matrix is modelled as a Mooney-Rivlin material.
In the following, the additional contribution of the fibres is presented and
implemented.

(a)

Ai [cm2]
muscle right left
masseter 12.4 ± 2.1 12.4 ± 2.5
anterior temporal 12.4 ± 1.4 9.6 ± 1.2
posterior temporal 9.4 ± 1.8 7.0 ± 1.9
medial pterygoid 7.2 ± 1.2 7.2 ± 1.3
lateral pterygoid 3.9 ± 0.7 3.6 ± 0.7
anterior digastric 1.5 ± 0.5 1.4 ± 0.5

(b)

Fig. 2. Physiological cross-sections Ai averaged over the 10 test persons (a) and
force law, approximation with a second order polynomial (b).

(a)

(b)

Fig. 3. Morphology of pt. med. and masseter (a) [6] and Muscle physiology (b).

Fig. 4. Modelling and characteristics of the aponeuroses (tendinous tissue).
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Fig. 5. Modelling and characteristics of muscle fibre contraction.

Finite Tendon Element: For a correct numerical implementation it is nec-
essary to perform the well-known volumetric split of the deformation gradient
which results in

F = (J1/3 I) F̄ with J = detF ,

C = FTF = J2/3 F̄TF̄ = J2/3 C̄ .
(2)

with

{
F̄ : modified deformation gradient
C̄ : mod. right Cauchy-Green tensor

The free energy function for the tendinous tissue is divided into a penalty
part for the dilatation and parts due to the isochoric deformation (C̄) of
the matrix and fibres. Whereas the matrix material behaves isotropic, the
behaviour of the fibre depends additionally on a structure tensor A which
takes into account the fibre distribution.

penalty part matrix material additional part for
for dilatation (Mooney-Rivlin) collagen fibres

Ψ(C,A) = U(J) + Ψ̄m(C̄) + Ψ̄f(C̄,A)
S = Svol + Sm + Sf

C = Cvol + Cm + Cf

Differentiation of the free-energy function with respect to the right Cauchy-
Green tensor yields the 2.Piola-Kirchhoff stress tensor and the material ten-
sor. In the following, we concentrate solely on the new contributions origi-
nating from the fibres. For the 2.Piola-Kirchhoff stresses this part is given
by S̄f = 2∂Ψ̄f/∂C .
Using the fourth order projection tensor P the differentiation with respect
to the right Cauchy-Green tensor can be replaced by the differentiation with
respect to the modified right Cauchy-Green tensor [3]

S̄f = J−2/3 P : (2∂Ψ̄f/∂C̄) = J−2/3 P : S̄f,iso

with P = I − 1
3
C−1 ⊗ C and I = δIK δJL + δIL δJK

2

(3)
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For the further procedure it is essential that no energy function for the fibres
is introduced explicitely, but rather the contribution S̄f,iso of the fibres to the
2.Piola-Kirchhoff stress tensor due to an isometric deformation is derived.
Looking at the deformed configuration, the Cauchy stress of each fibre de-
pends on the fibre stretch λ̄ and is, of course, oriented in the direction a of
the fibre (cf. Figure 4). The 2.Piola-Kirchhoff stress tensor is then gained by
a pull-back operation

σ̄f = σ(λ̄) a ⊗ a ,

S̄f =
1

λ̄2
σ(λ̄) a0 ⊗ a0 with λ2 = |F̄ a0|2 = C̄ij a

i
0 aj

0 .
(4)

As suggested by Gasser et al. [3], a density function ρ(ϕ, θ) is introduced to
take into account the spatial distribution of the collagen fibres. The stress
tensor is now gained by the summation of the stress tensors for all directions
(unit sphere) weighed with the density function

S̄f,iso =
1

4π

∫ 2π

ϕ=0

∫ π

θ=0

ρ
1

λ̄2
σ(λ̄) e⊗ e sin θ dθdϕ ,

where e =




sin θ cosϕ
sin θ sinϕ

cos θ


 .

(5)

The integral of the density function over the unit sphere has to be zero, i. e.,
the following normalization condition has to be fulfilled

1

4π

∫ 2π

ϕ=0

∫ π

θ=0

ρ(ϕ, θ) sin θ dθdϕ = 1 . (6)

As can be seen in the scheme given in Figure 4, the muscle fibres (pennation
angle α) are attached to the aponeurosis by collagen fibres. Therefore, it
is assumed that all fibres lie in the interval π

2
−α ≤ θ ≤ π

2
+α and are

distributed uniformly with repect to θ. The in-plane fibre distribution ρ(ϕ)
of the aponeurosis has to be a π-periodic function. Therefore, the density
function (N follows from the normalization equation) is chosen as

ρ(ϕ, θ) =





ρ(ϕ) =
A0

N
+

n∑

i=1

Ai

N
cos2mi(ϕ − ϕ0,i) for θ ∈ [π

2
−α, π

2
+α] ,

0 else ,
(7)

with





N = sin α


A0 +

n∑

i=1

Ai

mi∏

j=1

2(mi − j) + 1

2j


 ,

mi ∈ {1, 2, 3, . . .} .

Collagen fibres show a quickly increasing stiffness upon elongation. At first,
the curled fibres will be stretched and oriented in load direction with a small
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force. At the end, the fibres are straight and in parallel, and nearly no further
elongation can be achieved even by high forces. This behavior can be well
approximated by an exponential function. Here, because a polynomial is of
advantage later on, the first two elements of a series expansion are used

σ(λ̄) = k1 λ̄2 (ε + k2 ε3) = k1 λ̄2
[

1
2
(λ̄2 − 1) + k2

(
1
2
(λ̄2 − 1)

)3 ]

= λ̄2 k1

[
k2 λ̄6 − 3 k2λ̄

4(3 k2 + 4)λ̄2 − (k2 + 4)
]
/ 8

with

{
λ̄2 = C̄KL eK eL, λ̄4 = C̄KL C̄MN eK eL eM eN ,

λ̄6 = C̄KL C̄MN C̄OP eK eL eM eN eO eP .

(8)

A typical stress-strain-curve is depicted in Figure 4.
Like in [3] the material tensor for the isochoric contribution is defined as

C̄f = P : C̄f,iso : PT + 2
3

J−2/3 tr[S̄f,iso]P̄− 2
3
(C−1 ⊗ S̄f + S̄f ⊗ C−1)

with

{
P̄ = Ic−1 − 1

3
C−1 ⊗ C−1 ,

[Ic−1 ]IJKL = 1
2
(C−1

IK C−1
JL + C−1

IL C−1
JK) .

(9)

To take into account that fibre support exists only for fibre elongation, a
function h(λ̄) is introduced which is 1 for fibre elongation and 0 for fibre
shortening. Therefore, the range of values for ϕ and θ (due to symmetry only
half of the unit sphere has to be evaluated) is divided in t1 and t2 parts,
respectively.

h
(
λ̄
(

ϕr+ϕr+1

2
, θs+θs+1

2

))
=





1 for λ̄
(

ϕr+ϕr+1

2
, θs+θs+1

2

)
≥ 1 ,

0 for λ̄
(

ϕr+ϕr+1

2
, θs+θs+1

2

)
< 1 ,

(10)

with

{
ϕr = 2π

t1
(r − 1) , r = 1, 2, . . . , t1 ,

θs = π
2
− α + α

t2
(s − 1) , s = 1, 2, . . . , t2 .

Finally, for C̄f,iso the expression given below is gained. The integrals depend
only on the structure, and primitives can be found and implemented in an
FE code.

[C̄f,iso]IJKL = 2
∂ [Sf,iso]IJ

∂ C̄KL

= (11)

=
k1

8π

t1∑

r=1

t2∑

s=1

h
(
λ̄
)
·
{

(3k2 + 4)

∫ ϕr+1

ϕ=ϕr

∫ θs+1

θ=θs

ρ(ϕ) eI eJ eK eL sin θ dθdϕ−

− 3k2 C̄MN

∫ ϕr+1

ϕ=ϕr

∫ θs+1

θ=θs

ρ(ϕ) eI eJ eK eL eM eN sin θ dθdϕ +

+ k2 C̄MN C̄OP

∫ ϕr+1

ϕ=ϕr

∫ θs+1

θ=θs

ρ(ϕ) eI eJ eK eL eM eN eO eP sin θ dθdϕ

}
.



94 S. Rues et al.

Finite Muscle Element for Quasi-Static Contraction: As mentioned
above, a Mooney-Rivlin material formulation is chosen to describe the ma-
trix, i. e., besides the penalty part for dilatation U(J) all other parts depend
on isochoric deformation measures (λ̄f , F̄, C̄).
As can be seen in Figure 3, a muscle fibre consists of layers of sarcomeres,
which are the force generating elements of a muscle. Due to this series con-
nection, during quasi-static loading each sarcomere layer has to generate the
same force, i. e., the same mean stress value. There exists an optimal fi-
bre stretch value λ̄f,opt for which the highest number of cross-links between
myosin and actin filaments is given and therefore the highest stress value
can be achieved. The peak of this stress-stretch-curve has the value σmax,0 =
P·f(Urel) where f(Urel) = F/Fmax = σf0/σf0,max is the force law presented
in chapter 2.2. The influence of the fibre stretch λ̄f is taken into account by
the function g(λ̄f). For quasi-static contraction the stress generated in the
fibre and the stress acting externally on the fibre have to be equal. The ex-
ternal stress is set to the stress value according to the actual fibre stretch
and electric activation: σf0,ext = P·f(Urel)·g(λ̄f). This stress value refers to
the physiological cross-section in the undeformed state. The corresponding
Cauchy stress is then σf,ext = σf0,ext· dA/da = λ̄fσf0,ext . The internal stress
value depends on the elastic deformation of the fibre (elastic deformation of
the filaments) which is very small in comparison with the ”plastic” deforma-
tion which is given by the relative movement of actin and myosin filaments
(cf. Figure 5). In contrast to the tendinous tissue, the muscle fibres of the
contractile tissue are locally oriented in parallel, i. e., there exists only one
fibre direction. As long as passive behavior is of no interest and therefore not
modelled (muscle fibres are surrounded by thin layers of tendinous tissue,
which impede a elongation of the fibres), the active fibre stresses are added
to the right hand side and no additional entries due to the fibres occur in the
stiffness matrix. Using the plastic fibre deformation at each Gauss-point as
history variable, the muscle deformation corresponding to the actual electric
activation can be found.

3 Results and Dicussion

The following results arise from the rigid body analysis based on a purely
geometrical estimation of the lines of action.
For the intrinsic muscle strength a mean value P = 0.32 ± 0.12 N/mm2 was
found. The results for the muscle and joint forces under a resultant bite force
magnitude of 150 N are shown in Figure 6. Here, corresponding muscle and
joint forces of the right and left side have been averaged. The right muscles
and the right condyle perform the same task for ϕ = 0◦, 60◦, 90◦,180◦, 270◦,
300◦ as the left muscles and the left condyle for ϕ = 0◦, 300◦, 270◦,180◦,
90◦, 60◦, respectively. The values for the muscle volumes calculated from the
MRTs and the correlating physiological cross-sectional areas correspond well



Calculation of Muscle and Joint Forces 95

Fig. 6. Muscle and joint forces of the “right” side (values of right and left side are
averaged for corresponding tasks) under a resultant bite force of Fres = 150 N.

with those found in literature [7, 4]. This holds especially for test persons of
about the same age quoted in [4].
The estimation of the lines of action based on the geometry delivers reli-
able results if the individual muscle is activated homogeneously. However,
especially for laterally and medially oriented tasks, measurements show a
heterogeneous activation of the musculature as also described in [1]. This
muscle behavior might essentially influence the lines of action. Therefore, the
presented results for the intrinsic muscle strength P are presumably less ac-
curate for these tasks than for the protrusive or vertical (symmetric) tasks.
Nevertheless, the mean value for all calculated intrinsic muscle strengths cor-
responds well with values given in literature. For example, Weijs and Hillen
[7] found P = 0.37 N/mm2.
With the exception of the anterior temporal, the individual muscles developed
the highest force values in clenching directions which corresponded roughly
to their line of action. This supports the assumption that the motor control
selects the activation state of the masticatory muscles with regard to their
directional effectiveness. The relatively high force generation of the anterior
temporal during lateral and posterior force development, however, might be
essential for stabilizing the ipsilateral jaw joint during these tasks.
The joint force magnitude ranges from about 60% to 100% of the magni-
tude of the resultant bite force. It is known from measurements that chewing
forces lie between 50 and 250 N, i. e., Fres = 150 N corresponds to a moderate
chewing force. However, maximum forces with magnitudes over 800 N can be
generated.

4 Conclusions and Outlook

A reliable calculation of the intrinsic muscle strength P requires an individ-
ual adjustment of the force law. The presented force and EMG measurements
clearly show a non-linear dependence of the muscle force on the electric ac-
tivity. Motor control seems to favor a directional effectiveness of the muscles
when selecting the task-dependent intermuscular activation patterns. When
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large bite forces are developed, the joint force magnitudes are about 60% of
the magnitude of the resultant bite force. This might predispose an overload-
ing of the jaw joint tissues.
With the developed finite elements for tendinous and contractile tissue, ad-
ditionally the contraction of the muscles under inhomogeneous electric acti-
vation can be taken into account, and the lines of action can be computed
for every motor task. This will yield more reliable results for the intrinsic
muscle strength P and the muscle forces. Furthermore, the FE analysis will
give detailed information about the stresses in the joint region, i. e., in the
articular disc and fossa mandibulae.
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Abstract. Biological soft tissues appearing in arterial walls are characterized by
a nearly incompressible, anisotropic, hyperelastic material behavior in the physio-
logical range of deformations. For the representation of such materials we apply a
polyconvex strain energy function in order to ensure the existence of minimizers
and in order to satisfy the Legendre-Hadamard condition automatically.
The 3D discretization results in a large system of equations, therefore a paral-
lel algorithm is applied to solve the equilibrium problem. Domain decomposition
methods like the FETI-DP (Dual-Primal Finite Element Tearing and Interconnect-
ing) method are designed to solve large linear equation systems that arise from the
discretization of partial differential equations on parallel computers. Their numer-
ical and parallel scalability, as well as their robustness, also in the incompressible
limit, has been shown theoretically and in numerical simulations. We are using a
dual-primal FETI method to solve elasticity problems for three dimensional models
of arterial walls and present some preliminary numerical results.

1 Introduction

In recent years cardiovascular disease has become one of the most frequent
causes of death. Therefore, development in the field of modelling and simu-
lation of biological tissues has become more important. In many cases accu-
mulations of plaques, evolved from atherosclerotic degeneration of the blood
vessels, increase the risk of arterial occlusion. The balloon-angioplasty, the
nidation of stents, and the combination of these two techniques are estab-
lished methods of treatment.

The understanding of the anatomy and composition of arterial walls is an
essential topic for the of their mechanical behavior. Because of the interest in
large deformations, we focus our interest on the modelling of elastic arteries.
An example of a healthy elastic artery is shown in Figure 1. The classification
into three layers is a common abstraction of an arterial wall. These layers are
named intima (tunica intima), media (tunica media), and adventitia (tunica
externa).

The FE-simulation of an arterial wall, especially of a diseased one, rep-
resents a challenging task with view to the large number of degrees of free-
dom. Robust, parallel solvers are essential for the solution of the resulting
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Adventitia

 Intima
Media

Membrana
elastica interna

Endothel

Fig. 1. Histology of a healthy artery [7].

large linear systems of equations. FETI-DP domain decomposition methods,
originally introduced in [5], have been shown to be numerical and parallel
scalable and robust for a huge class of problems in structural mechanics, see
also [8, 9, 11].

2 Continuum Mechanical Preliminaries

The body of interest in the reference configuration is denoted by B ⊂ IR3,
parametrized in X and the current configuration by S ⊂ IR3, parametrized
in x. The non-linear deformation map ϕt : B → S at time t ∈ IR+ maps
points X ∈ B onto points x ∈ S. The deformation gradient F is defined by

F (X) := ∇ϕt(X) (1)

with the Jacobian J(X) := detF (X) > 0. An important strain measure, the
right Cauchy-Green tensor, is defined by

C := F TF . (2)

We consider hyperelastic materials, which postulate the existence of a so-
called strain energy function ψ(C) = W (F ), assumed to be defined per unit
reference volume. Now we focus on energy functions of the typeW = Ŵ (F , •).
The argument (•) denotes additional tensor arguments, which characterize
the anisotropy of the material. We consider perfect elastic materials, which
means that the internal dissipation Dint is zero for every admissible process.
The constitutive equations for the stresses are obtained by evaluation of the
Clausius-Duhem inequality, neglecting thermal effects, in the form

Dint = P : Ḟ − Ẇ = (P − ∂FW ) : Ḟ ≥ 0 → P = ∂FW . (3)

The first Piola-Kirchhoff stress tensor is denoted by P and Ḟ denotes the
material time derivative of the deformation gradient. Furthermore, ∂F(•) is
the abbreviation for ∂(•)/∂F .

In the case of anisotropy we introduce a material symmetry group Gk with
respect to a local reference configuration, which characterizes the anisotropy
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class of the material. The elements of Gk are denoted by the orthogonal ten-
sors iQ|i = 1, . . . , n. The concept of material symmetry requires the constitu-
tive law to be invariant under transformations with elements of the symmetry
group, i. e.,

Ŵ (FQ) = Ŵ (F ) ⇔ P̂ (FQ) = P̂ (F )Q ∀Q ∈ Gk, ∀F . (4)

We say that the function W or P in (4) are Gk-invariant functions. With-
out any restrictions we set Gk ⊂ SO(3), where SO(3) denotes the special
orthogonal group.

Thus, it is clear that material symmetries impose several restrictions on
the form of the constitutive functions for an anisotropic material. In order
to work out the explicit restrictions for the individual symmetry groups, i. e.,
to point out general forms of the functions satisfying these restrictions, the
use of representation theorems for anisotropic tensor functions represents a
reasonable approach.

The basic idea is the extension of Gk-invariant functions such that they
become invariant for a larger group, here the special orthogonal group. This
implies that it is in principle possible to transform an anisotropic constitutive
function to an isotropic one by introducing some tensors, the so-called struc-
tural tensors, which reflect the symmetry group of the considered material.
This theorem was originally introduced by Boehler in 1979, see [4]. Here, we
use the structural tensor M , which is given by

M := a ⊗ a , (5)

where a is the unit vector in the preferred direction. Taking advantage of the
material frame indifference, we obtain a reduced constitutive equation,

ψ = ψ̂(C,M ) = ψ̂(QTCQ, QTMQ) ∀Q ∈ SO(3) , (6)

which is the definition of an isotropic, scalar-valued tensor function in the
arguments (C,M).

For the construction of specific constitutive equations the invariants of the
deformation tensor C and the additional structural tensor M are necessary.
The explicit expressions for the principle invariants of C are

I1 := tr C, I2 := tr[cofC], I3 := detC . (7)

Let M be of rank-one and let us assume the normalization condition ||M || = 1,
then the additional invariants, the so-called mixed invariants, are

J4 := tr[CM ], J5 := tr[C2M ] , (8)

see, e. g., [14] and the references therein.
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3 Material Modelling of Biological Soft Tissues

Generally, from the mechanical point of view, soft biological tissues may be
characterized as an isotropic, non-collageneous matrix, the so-called ground
substance, in which collagen fibers are embedded. In arterial walls the fibers
are arranged in two directions which are crosswire helically wound along the
artery and symmetrically disposed with respect to the longitudinal direction.
The material behavior in fiber direction can be represented by the superpo-
sition of two transversely isotropic models, see [6], and we obtain the strain
energies to be of the form

ψmedia = ψiso
media +

2∑

a=1

ψ
ti,(a)
media , ψadv = ψiso

adv +

2∑

a=1

ψ
ti,(a)
adv , (9)

where the superscript a is associated to the two fiber directions a1 and a2.
Herein, ψmedia and ψadv denote the energies for the media and the adventitia,
respectively.

In order to guarantee the existence of minimizers polyconvex functions in
the sense of [1] for the strain energy are considered. Polyconvex strain energy
functions automatically satisfy the quasiconvexity, the rank-one convexity,
and the Legendre-Hadamard condition. In the context of anisotropic poly-
convexity see e.g. [3, 12, 13].

Polyconvexity: F → W (F ) is polyconvex if and only if there exists a
function P : IR3×3 × IR3×3 × IR → IR (in general non-unique) such that

W (F ) = P (F , Adj[F ], det[F ])

and the function IR19 → IR, (F , Adj[F ], det[F ]) → P (F , Adj[F ], det[F ]) is
convex for all points X ∈ IR3.

Here and in the following, we omit the X-dependence of the individual func-
tions if there is no danger of confusion. The adjoint of F is defined by
Adj[F ] = det[F ]F−1 for all invertible F .

Since we assume the ground substance in soft tissues to behave in an
isotropic manner, we consider isotropic functions for its description. The first
terms on the right hand sides in (9) are both given as

ψiso = c1

(
I1

I
1/3
3

− 3

)
+ ε1

(
Iε2

3 +
1

Iε2

3

− 2

)
, (10)

with c1 > 0 , ε1 > 0 , ε2 > 1, which satisfies the condition of a stress-free
reference configuration a priori. This polyconvex function is similar to the
one used in [6].

Soft biological tissues are characterized by an exponential-type stress-
strain behavior in the fiber direction. A polyconvex model for the description
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of these materials, which also satisfies the natural state condition, is proposed
in [2] and given by

ψti,(a) =

{
α1

(
K

(a)
3 − 2

)α2

forK
(a)
3 ≥ 2

0 forK
(a)
3 < 2

}
with α1 ≥ 0, α2 > 1 . (11)

Here,K
(a)
3 = I1J

(a)
4 −J (a)

5 is a fundamental polyconvex function for transverse

isotropy, with the invariants J
(a)
4 = tr[CM (a)] and J

(a)
5 = tr[C2M (a)] using

M (a) := a(a) ⊗ a(a), cf. [12]. In order to obtain smooth tangent moduli
close to the reference configuration we introduce the slightly more restrictive
condition α2 > 2.

4 Variational Formulation and FE-Discretization

In the following, we give a brief summary of our material description, i. e., the
corresponding boundary value problem and the finite element formulation.
Let B be the reference body of interest which is bounded by the surface ∂B.
The surface is partitioned into two disjoint parts ∂B = ∂Bu

⋃
∂Bt. The bal-

ance of linear momentum for the static case, neglecting body forces, is given
by

Div[P ] = 0 with P = ∂Fψ = 2 F∂Cψ = FS , (12)

where S denotes the second Piola-Kirchhoff stress tensor. The Dirichlet and
the Neumann boundary conditions are given by u = u on∂Bu and t = t =
PN on ∂Bt. Here, N represents the unit normal on the boundary surface ∂Bt.
Applying standard arguments of variational calculus, we obtain the weak form

G(u, δu) =

∫

B

δF : P dV +Gext , where Gext := −
∫

∂Bt

δu · tdA , (13)

and δF := Grad δu characterizes the virtual deformation gradient. The prin-
ciple of virtual work for a static equilibrium state of the considered body
requires G = 0. For the solution of this non-linear equation we apply a stan-
dard Newton iteration scheme, which requires the consistent linearization
of (13) in order to guarantee quadratic convergence in the neighborhood of
the solution. The linearization of G(u, δu) is given by

LinG = G(u, δu) +∆G(u, δu, ∆u) , (14)

with the linear increment

∆G(u, δu, ∆u) =

∫

B

δF : A : ∆F dV , (15)

and the incremental deformation gradient ∆F := Grad∆u. The nominal
tangent moduli A can be computed via

A = ∂F (FS) = I ⊠ S + F · C :
1

2
∂F C , (16)



102 J. Schröder et al.

with the material moduli C := 2∂CS, using the definition of the Kronecker
product of second order tensors (A ⊠ B) : (a ⊗ b) = Aa ⊗ Bb. The spatial
discretization of B by

⋃nele

e=1 Be using nele finite elements Be, with the approx-
imations u =

∑nele

I=1N
IdI , δu =

∑nele

I=1N
IδdI and ∆u =

∑nele

I=1N
I∆dI for

the actual, virtual, and incremental displacement fields, respectively, leads to
a set of algebraic equations. The discrete counterpart of equation (13) reads

Gh =

nele∑

e=1

δdT

{∫

B

IBTP h dV −
∫

Bt

NT t dA

}
=

nele∑

e=1

δdeT

re (17)

and the linear increment for a typical element is given by

∆Ge,int = δdeT

∫

Be

IBTAhIB dV ∆de = δdeT

ke∆de . (18)

The superscript h in the latter equations represents a suitable contracted
matrix notation of the associated quantities. Thus we obtain from LinGh = 0
the linear system of equations

nele∑

e=1

δdeT

(ke∆de − re) = δDT (K∆D − f) = 0 , (19)

with the global incremental displacement field ∆D, virtual displacement δD,
right hand side f and the global stiffness matrix K. The algebraic system
K∆D = f is solved iteratively until ||f || < tol is reached. For the following
analysis it is convenient to introduce the (incremental) bilinear form of the
linearized weak form

au(∆u, δu) :=

∫

B

δF : A : ∆F dV (20)

and the associated right hand side

f(δu) :=

∫

∂Bt

δu · tdA . (21)

Here, au(δu, ∆u) := a(∆u, δu; u) denotes the evaluation of the linear incre-
ment at the previous solution.

In the following section we will describe the dual-primal version of the
FETI method which we apply to solve our linearized systems. For a general
overview on FETI methods see [10].

5 FETI Domain Decomposition Method

We decompose our reference body B into N nonoverlapping subbodies Bi of
diameter H , which we also call subdomains. Each subdomain is the union
of finite elements with matching finite element nodes on the boundaries of
neighbouring subdomains across the interface Γ :=

⋃
i6=j ∂Bi ∩ ∂Bj. Here,
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∂Bi, ∂Bj are the boundaries of Bi,Bj, respectively. Typically, a graph parti-
tioning tool is used to define the decomposition of the body into subdomains,
see, e. g., [9, ?].

For each subdomain Bi, i = 1, . . . , N , we assemble the local stiffness
matrices K(i) and load vectors f (i) using (20) and (21). We denote the dis-

placement increment on subdomain Bi by ∆D(i).
We then partition the displacement increment∆D(i) into primal variables

∆D
(i)
Π and nonprimal variables ∆D

(i)
B . In FETI-DP algorithms, we enforce

the continuity of the solution in the primal displacement increments ∆D
(i)
Π

by global subassembly of the subdomain stiffness matrices K(i). For all other

interface variables ∆D
(i)
∆ we will introduce Lagrange multipliers to enforce

continuity.
First, we partition the stiffness matrices and right hand sides according

to the different sets of unknowns,

K(i) =

[
K

(i)
BB K

(i) T
ΠB

K
(i)
ΠB K

(i)
ΠΠ

]
, f (i) =

[
f

(i)
B

f
(i)
Π

]
,

and

K
(i)
BB =

[
K

(i)
II K

(i) T
∆I

K
(i)
∆I K

(i)
∆∆

]
, f

(i)
B =

[
f

(i)
I

f
(i)
∆

]
.

We then gather these matrices and vectors in block matrix form,

KBB := diag N
i=1(K

(i)
BB) ,

KΠB := diag N
i=1(K

(i)
ΠB) ,

KΠΠ := diag N
i=1(K

(i)
ΠΠ) ,

and in block right hand sides

fT
B := [f

(1) T
B , . . . ,f

(N) T
B ] , fT

Π := [f
(1) T
Π , . . . ,f

(N) T
Π ] .

By assembly of the local subdomain matrices in the primal variables using

the assembly operator RT
Π = [R

(1) T
Π , . . . ,R

(N) T
Π ] with entries 0 or 1, we

obtain the partially assembled, global stiffness matrix

K̃ :=

[
KBB K̃

T

ΠB

K̃ΠB K̃ΠΠ

]
=

[
IB 0

0 RT
Π

] [
KBB KT

ΠB

KΠB KΠΠ

] [
IB 0
0 RΠ

]

and the corresponding right hand side

f̃ :=

[
fB

f̃Π

]
=

[
IB 0

0 RT
Π

] [
fB

fΠ

]
.

In our algorithm, for every pair of subdomains with Bi ∩ Bj, i 6= j, a sufficient

number of primal variables ∆D
(i)
Π is chosen and we obtain a symmetric,
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positive definite matrix K̃. This matrix is only coupled in the primal variables
and its structure is still suitable for efficient parallelization.

To enforce the continuity in the remaining interface variables ∆D
(i)
∆ , we

introduce a jump operator BB with entries 0, −1 or 1 and the corresponding
Lagrange multipliers λ.

We can now formulate the FETI-DP saddle-point problem



KBB K̃
T

ΠB BT
B

K̃ΠB K̃ΠΠ 0
BB 0 0






∆DB

∆D̃Π

λ


 =




fB

f̃Π

0


 . (22)

By eliminating ∆DB and ∆D̃Π from the system (22) we obtain an equation
system

F FETIλ = d .

In order to define the preconditioner for the method, we define

KII := diag N
i=1(K

(i)
II ), K∆I := diag N

i=1(K
(i)
∆I), K∆∆ := diag N

i=1(K
(i)
∆∆) .

The Dirichlet preconditioner MFETI is then defined by

MFETI
−1 := BB,D(RB

∆)T (K∆∆ − K∆IK
−1
II KT

∆I)R
B
∆BT

B,D ,

where RB
∆ = diag N

i=1(R
B (i)
∆ ). The matrices R

B (i)
∆ are restriction matrices

with entries 0 or 1 which restrict the nonprimal degrees of freedom ∆D
(i)
B of

a subdomain to the dual part ∆D
(i)
∆ . The matrices BB,D are scaled variants

of the jump operator BB, where the contribution from and to each interface
node is scaled by the inverse of the multiplicity of the node. The multiplicity of
a node is defined as the number of subdomains it belongs to. It is well known
that for heterogeneous problems a more elaborate scaling is necessary; see,
e. g., [8]. The scaled jump operator BB,D can be written as

BB,D = [B
(1)
B,D, . . . ,B

(N)
B,D] = [D(1)B

(1)
B , . . . ,D(N)B

(N)
B ] .

In the heterogeneous case, the matrices B
(i)
B,D, i = 1, . . . , N, are defined as

follows: Each row of B
(i)
B with a nonzero entry corresponds to a Lagrange

multiplier λ connecting the subdomain Bi with a neighboring subdomain
Bj . Let us write the entry on the main diagonal of the subdomain stiffness

matrix K(i) which is related to the Lagrange multiplier λ as k(i)(x). Here,
the notation symbolizes that the local degree of freedom originates from a
global degree of freedom x. Accordingly, the corresponding entry on the main
diagonal of the subdomain stiffness matrix K(j) is denoted by k(j)(x). The

scaled matrix B
(i)
B,D is now obtained by multiplying each such element of

B
(i)
B by

[k(j)(x)]γ∑
l∈Nx

[k(l)(x)]γ
, γ ∈ [1/2,∞), where Nx is the set of indices of the
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subdomains where local degrees of freedom correspond to x. If all k(l)(x), l ∈
Nx are the same and if γ = 1, this scaling reduces to the multiplicity scaling
mentioned before for homogeneous problems.

We now solve the system F FETIλ = d with the preconditioner MFETI
−1

using a suitable Krylov subspace method, e. g., the method of generalized
minimal residuals GMRES.

6 A First Simulation using the Anisotropic Material

Model

As a first test problem, we consider a uniaxial tension test for a quasi-incomp-
ressible cubic body up to a strain of 30 percent of the side length. The ori-
entation of the fibres in our material model is chosen such that it coincides
with the axis of the strain test. We thus have a hardening of the material
and an increasing influence of the anisotropy during the simulation. We use
a parallel FETI-DP implementation to solve the linearized equation systems
using restarted GMRES(100) as a Krylov subspace accelerator. The FETI-
DP iteration for the linearized systems is stopped once a relative residual
reduction of 10−12 is reached. The nonlinear iteration uses an absolute toler-
ance of 10−7. Thus, we solve the linearized systems to a much higher accuracy
than the Newton iteration. To study the influence of the anisotropy which is
present in our material model on the convergence of the method, we repeat
the simulation using the same material model but omitting the anisotropic
part. The cubic body, see Figure 2, is discretized using 26, 982 second order
tetrahedral elements which results in 116, 973 degrees of freedom.

Anisotropic Isotropic
Newton Step 1 2 3 4 5 6 1 2 3 4

Load Step 1 198 328 197 197 – – 198 328 197 197
Load Step 2 197 281 197 196 – – 197 281 197 196
Load Step 3 196 262 196 196 – – 196 264 197 197
Load Step 4 196 198 188 188 – – 197 261 196 196
Load Step 5 188 257 183 185 186 186 196 256 197 197
Load Step 6 186 352 223 221 220 220 197 252 197 197
Load Step 7 220 252 252 252 – – 197 249 198 198
Load Step 8 252 295 272 272 272 – 198 246 198 198
Load Step 9 272 363 289 288 288 – 198 245 199 199
Load Step 10 288 395 302 301 301 – 199 244 200 200

Table 1. Uniaxial strain test. Number of FETI-DP iterations for each Newton step.
Relative tolerance for the linear solver: 10−12. Absolute tolerance for the Newton
iteration: 10−7.

From the results in Table 1 we see that, in the isotropic case, the number of
Newton steps remains constant during the simulation. Likewise, the number
of FETI-DP iterations only varies slightly throughout the simulation. On the
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other hand, in the anisotropic case, the number of Newton steps as well as the
number of FETI-DP iterations grows by a factor of up to 1.5 as the influence
of the anisotropy grows during the simulation. The total number of GMRES
steps in the simulation thus is slightly higher in the anisotropic case (11, 444
it.) than in the isotropic case (8, 551 it.).

Fig. 2. Decomposition of the cubic body in the FETI-DP algorithm.

Our results show that our method is robust with respect to the quasi-
incompressibility and in the presence of the anisotropies built into our ma-
terial model. Furthermore, the FETI-DP method is indeed reliably able to
reduce the residual of the linearized systems by 12 orders of magnitude.
Thus, the method seems suitable for the simulation of arterial walls using
our anisotropic, polyconvex material model, cf. Figure 3.

Fig. 3. Decomposition of an arterial segment in the FETI-DP algorithm.
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Wave Propagation in Cancellous Bones
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Abstract. Wave propagation in fluid-saturated cancellous bone is studied on the
basis of the thermodynamically consistent Theory of Porous Media (TPM). In com-
parison with Gassmann’s relation, Wyllie’s relation and Biot’s equations, it is shown
that a simple, so-called hybrid biphasic model based on the Theory of Porous Media
is able to capture the main acoustical effects in cancellous bones. Furthermore, an
extension towards high-frequency wave propagation is discussed on the basis of the
constitutive relation of the momentum exchange between the fluid and the solid
phase.

1 Introduction

In the present contribution, we discuss the acoustical properties of cancellous
bone saturated with bovine marrow or water. Due to the increasing impor-
tance of ultrasound techniques as non-invasive techniques for the detection
of osteoporosis, advanced modelling techniques have to be developed in order
to explain the measured experimental velocities and attenuation effects in a
qualitative and quantitative way. Then, the ultimate goal of such a quantita-
tive model is the prediction of the porosity in order to detect osteoporosis. In
this context, Biot’s theory for wave propagation in fluid-saturated porous me-
dia, cf. [1–3], is discussed extensively. Besides the existence of one transversal
and two longitudinal waves, the fast or P1 wave and the the so-called slow, P2
or Biot’s wave, Biot’s equations predict a frequency-dependent attenuation
effect. The present paper focuses on the phase velocities of monochromatic
waves in cancellous bones. As we do not take into account higher order cou-
pling effects between the fluid and the solid phase, attenuation effects caused
by so-called inertia coupling are not investigated in the present contribution.
Obviously, these effects become dominating in the high frequency, i. e., ultra-
sonic, regime. Furthermore, we do not introduce a modification of the concept
of permeability1. Within the first part of the paper a summary of the basic
modelling aspects is given in combination with some additional remarks. In
the second part, we apply the hybrid biphasic model to wave propagation

1 In Biot’s original contribution discussing the high frequency range, cf. [2] and
many following papers, the permeability was replaced by a frequency-dependent
permeability function. As pointed out clearly by Wilmański [19] such a frequency-
dependent complex permeability is inappropriate from a mathematical point of
view. Therefore, it should be avoided.
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phenomena in bones. We compare the phase velocities of a simple, so-called
hybrid biphasic model based on the thermodynamically consistent Theory
of Porous Media (TPM) with the results obtained by the Biot-Gassmann
relations in the low-frequency range, cf. [8, 17], as a function of porosity.

2 Modelling Concepts – The Hybrid Mixture Model

In contrast to Biot’s equations, the mixture theory is based on the princi-
ples of rational continuum-thermodynamics of superimposed continua. Con-
sequently, the basic kinematical relations and balance equations are inher-
ently non-linear. Obviously, linear models can be obtained a posteriori by a
formal linearization step.

In the present context, we apply the framework of the Theory of Porous
Media, cf. [5, 7], which extends the classical mixture theory by the concept
of volume fractions. Thus, the superimposed continuum on the macroscale
has lost all microscopical information except for the volumetrical decomposi-
tion of a Representative Volume Element (RVE). Thus, the volume fraction
of the constituent ϕα is introduced as nα = dvα/dv where dvα is the part
of the RVE with the volume dv, which is occupied by the constituent ϕα.
Furthermore, the partial density is introduced as dmα/dv using the mass of
the single constituent ϕα. If the mass dmα is related to its volume dvα we
obtain the definition of the effective or true density ραR := dmα/dvα. The
volume fraction relates the partial and the effective density ρα = nα ραR.
Furthermore, an algebraic constraint is introduced, the so-called saturation
condition

∑
α n

α = 1. Note that most of the models based on the TPM deal
with quasi-static phenomena within geotechnical applications like consolida-
tion problems or slope instabilities of landslides, cf. [5] or [7]. In the field
of such applications it is often assumed that both, the solid and the liquid
constituent, behave material incompressible, i. e., ραR = const. Nevertheless,
such models are not suitable for wave propagation investigations. They lead
to unphysical results as there can not occur any in-phase movement of the
solid and the liquid constituent. Thus, the first or fast longitudinal wave
(P1-wave) has an infinite velocity.

2.1 Kinematical Assumptions

Within fluid-saturated porous materials, the balance of mass of the con-
stituent ϕα can be expressed as

ρα
0 = Jα ρ

α, with Jα = detFα 6= 0 . (1)

The deformation gradient of the individual constituent is given as Fα =
∂x/∂Xα, with the position vector Xα of the constituent ϕα in the reference
configuration and the mixture’s position x in the current configuration. In
the following, the index (•)0 refers to quantities in the initial configuration.
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For a material incompressible constituent, (1) is reduced to the mapping of
the volume fractions

nα
0 = Jα n

α. (2)

As we restrict ourselves to small amplitudes, i. e., small deformations, the
deformation gradient is further linearized

lin(detFα) = lin(Jα) = div uα + 1 = tr εα + 1 . (3)

We have introduced the displacements uα = x−Xα and the linearized strain
tensor εα = 1/2 (graduα + gradT uα). If we apply (2) and (3) to a hybrid
biphasic mixture, i. e., a materially incompressible solid skeleton (ρsR = ρsR

0 )
with an inherent compressible pore fluid (ρfR 6= const), we obtain the follow-
ing kinematical conditions for the fluid

ρf
0 = (1 + div uf) ρ

f =: (1 + ε)ρf, (4)

and the solid constituent

ns
0 = (1 + div us)n

s =: (1 + e)ns. (5)

Note that in the context of the compressible Biot’s equations such a hybrid
model is often denoted as the so-called rigid grain limit. Now, it is necessary
to point out the modelling consequences of these kinematical conditions. In a
hybrid biphasic mixture with a known motion function, the system of equa-
tions for the six unknowns

{
ns, nf, ρs, ρf, ρsR, ρfR

}
is closed with the balances

of mass, (4) and (5), the algebraic relations between the partial and effec-
tive densities, the saturation condition and the incompressibility constraint,
cf. Table 1. Obviously, this is not the case for the fully compressible case
(ρsR 6= const. and ρfR 6= const.), where further constitutive assumptions
on the basis of evolution equations are needed, cf. [4, 6]. Alternatively, a
further balance relation for the porosity can be introduced as proposed by
Wilmański [18], cf. the comments in Kirchner [15]. In the opposite case, i. e.,
for the fully incompressible model (ρsR = const. and ρfR = const.), the sys-
tem of equations is over-determined. Thus, a further constraint has to be
taken into account, which can be every single equation of Table 1 (left) or a
combination of them.

Obviously, within the hybrid model, the system of equations can be solved
directly and we obtain an explicit expression for the evolution of the porosity
depending only on the volumetric deformation of the solid skeleton

nf = φ = φ0 + (1 − φ0) e . (6)

Thus, the porosity φ(x, t) is a dependent field variable which is evolving
during the process. Note that a comparable relation of the porosity can also
be found for the fully compressible model of Biot, as pointed out in a recent
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contribution [19]. Wilmański’s porosity balance for the linear compressible
model can be also discussed for the rigid grain limit

lim
Ks→∞

φ = φ

(
1 − δ e+

Φ

φ0
(e− ε)

)
= φ0 + (1 − φ0) e , (7)

which is identical to the direct derivation within the hybrid model. Applying
similar arguments, we obtain a relation for the effective density of the pore
fluid in the case of the hybrid biphasic mixture model

ρfR = ρfR
0 (1 − ε− 1 − φ0

φ0
e) , (8)

which states that the effective density ρfR of the pore fluid depends on the
volumetrical deformation of the fluid and the solid constituent, respectively.

incompressible model hybrid model compressible model

I. ρs = ns ρsR ρs = ns ρsR ρs = ns ρsR

II. ρf = nf ρfR ρf = nf ρfR ρf = nf ρfR

III. ns = J−1

s ns
0 ns = J−1

s ns
0 ρs = J−1

s ρs
0

IV. nf = J−1

f nf
0

ρf = J−1

f ρf
0

ρf = J−1

f ρf
0

V. ρsR = const. ρsR = const. —

VI. ρfR = const. — —

VII. ns + nf = 1 ns + nf = 1 ns + nf = 1

7 − 6 = +1 6 − 6 = 0 5 − 6 = −1

Table 1. Kinematical behaviour of biphasic models and consequences.

2.2 Balance Relations

The governing balances of the hybrid two-phase model are the balance of
momentum of the solid and fluid constituent

ρs üs − div σs = −p̂f, and ρf üf − div σf = p̂f. (9)

It has to be remarked, that within a linear model, we do not have to distin-
guish between the partial and the material time derivatives. Thus ∂t(uα) =
u̇α. Furthermore, we have neglected body forces. The term of the right hand
side of (9) is the direct momentum interaction, which takes the interacting
equilibrium and non-equilibrium forces between the solid and the pore-fluid
into account, e. g., the viscous drag forces in the most simple case.
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2.3 Constitutive Assumptions

The model, cf. the balance equations (9), is closed with the kinematical
conditions, cf. Table 1, and a set of appropriate constitutive equations for
the set of response functions R = {σs

E , p, p̂
f}. We have evaluated the effec-

tive stress principle for the partial stresses σα = σα
E − nα p I. Furthermore,

an order-of-magnitude analysis [11] shows that the extra stress T
f
E of the

fluid is of higher order. Thus, it is convenient for most applications in porous
media that the viscous shear stresses of the pore fluid are assumed to be zero
resulting in σ

f
E = 0.

Pressure: The constitutive equation of the pore pressure p(x, t) in the case
of a barotropic fluid reads p = f(ρfR). It can be shown from the entropy
balance that the simplest thermodynamically consistent relation between the
effective density of the compressible fluid and the pore pressure is a linear
relation, well-known as the ideal gas or Boyle-Mariotte’s law, respectively.

p ∝ ρfR =⇒ p = p0 + κ ρfR. (10)

Resorting the terms and disregarding the mixed non-linear contribution yields
a simple constitutive expression for the pore pressure p(x, t) depending on
material parameters, which are given with respect to the initial configuration
B0, i. e., (ρfR

0 , ns
0, n

f
0), and the volumetrical deformation of the fluid and the

solid constituent (ε, e)

p = p0 − κ ρfR
0 ε− κ

ns
0

nf
0

ρfR
0 e = p0 −Kf ε− ns

0

nf
0

Kf e . (11)

Furthermore, the compressibility of the pore fluid is characterized by Kf.

Effective Stress of the Solid Skeleton: The effective stress of the solid
skeleton is given by Hooke’s law

σs
E = 2µ εs + λ e I , (12)

with the Lamé parameters µ and λ of the empty porous skeleton. Therefore,
we can calculate the bulk modulus of the empty skeleton K = λ+ 2

3 µ.

Momentum Interaction: The interaction part of the balances of momen-
tum is split into an equilibrium part denoted by p̂f

eq and a part which vanishes

at thermodynamical equilibrium denoted by p̂f
neq . Evaluating the balance of

entropy we obtain

p̂f = p̂f
eq + p̂f

neq = p gradnf + p̂f
neq . (13)

Generally speaking, the non-equilibrium part of the momentum interaction
depends on the complete set of non-equilibrium process variables and yields
a non-linear constitutive equation, which can be formulated using further
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concepts of the theory of materials, i. e., isotropic vector-valued functions.
To complete the linear model, we assume, that p̂f

neq is proportional to the
seepage velocities which yields the well-known Darcy law

p̂f
neq = − (nf)2 γfR

kf
(u̇f − u̇s) =: −π (u̇f − u̇s) . (14)

Here, we have introduced the generalized conductivity π which can be related
to the Darcy permeability kf. Furthermore, the effective weight of the fluid is
introduced as γfR. Discussing (13), we find that in a linear model the equilib-
rium part only remains if the initial porosity distribution is inhomogeneous.

2.4 Field Equations

Assuming homogeneous initial porosity distributions, we formulate the result-
ing field equations by inserting the constitutive assumptions into the balances
of momentum

ρs
0 üs − (λ+ µ+

(ns
0)

2

nf
0

Kf) grad div us −

− ns
0K

f grad div uf − µ div gradus − π (u̇f − u̇s) = 0 ,

ρf
0 üf − nf

0K
f grad div uf −

− ns
0K

f graddiv us + π (u̇f − u̇s) = 0 .

(15)

The standard ansatz uα(x, t) = Uα exp[i(k · x−ω t)] is used in combination
with the longitudinal direction of the wave vector k‖ and the transversal part
k⊥ to obtain the dispersion relations. For the transversal mode we obtain

(ρs
0 ω

2 − µk2 + i π ω)(ρf
0 ω

2 + i π ω) − (i π ω)2 = 0 , (16)

and for the longitudinal mode we get

(ρs
0 ω

2 − (λ+ 2µ+
(ns

0)
2

nf
0

Kf) k2 + i π ω) (ρf
0 ω

2 − nf
0K

f k2 + i π ω) −

− (ns
0K

f k2 + i π ω)2 = 0 .

(17)

Equations (16) and (17) can be solved leading to three solutions of the wave
vector: The real parts of the solution correspond to the phase velocities of the
shear wave and to the fast and the slow longitudinal wave. The imaginary
part of the wave vector is equivalent to the attenuation of the amplitude of
the waves.

3 Results and Discussion

Next, we apply the hybrid biphasic model to cancellous bones saturated either
with water or with bovine marrow. In the first investigation, we compare the
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results obtained by well-established low-frequency models. Note that these
models are usually applied to reservoir rocks [17] and used to predict seismic
waves. As a matter of fact, the material properties of reservoir rocks and
cancellous bones disagree completely in the range of the material parame-
ters. Furthermore, the results of this comparison are not useful for the direct
interpretation of ultrasonic experiments but they can be used to discuss the
sensitivity of the models with respect to the material parameters of cancellous
bones. The results of the phase velocities in longitudinal direction obtained
by the TPM-model, cf. (17), are compared with the Biot-Gassmann results
[1, 3, 8, 17] and the empirical quantities of Wyllie [20] in the low-frequency
range (ω < 100 Hz). The elastic parameters of the empty porous skeleton
depend on the porosity and the fabric of the bone matrix. According to the
work of Gibson [9] and Gibson & Ashby [10] these quantities are estimated
as

K =
Es (1 − φ0)

n

3(1 − 2 νs)
, and µ =

Es (1 − φ0)
n

2(1 + νs)
. (18)

Young’s modulus and Poisson’s ratio of the solid bone are introduced as
Es and νs, respectively. Note that these quantities are well documented in
the literature, cf. [12, 16]. Gassmann’s low-frequency relation relates the bulk
modulus of the saturated bone Ksat to the bulk moduli of the empty skeleton
K, the single trabeculae Ks and the bone fluid Kf. Note that Gassmann’s
relations and Biot’s equations lead to the same phase velocity of the fast
longitudinal wave in the low frequency range.

Ksat = K +
(1 − K

Ks )2

φ0

Kf + 1−φ0

K − K
(Ks)2

and µsat = µ . (19)

Then, Gassmann’s phase velocity cp is calculated as

c2p =
Ksat + 4

3 µsat

ρ
. (20)

Furthermore, the phase velocities can be compared with the heuristic time
average expression proposed by Wyllie [20]. Note that Wyllie’s equation is
based on experimental data without theoretical basis

1

cp
=
φ0

cfp
+

1 − φ0

csp
. (21)

Herein, cfp(K
f) is the phase velocity of the bone fluid while csp(K

s, µs) is the
velocity of the solid bone. In Figure 1 we plot the phase velocity of the fast lon-
gitudinal wave vs. porosity in the low-frequency range. The gray-shaded area
marks the porosity range of a human cancellous bone. There, it is observed
that the amount of compressibility of the solid skeletonK dominates the wave
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Fig. 1. Low-frequency phase velocity of cancellous bone saturated with water. Com-
parison of phase velocities calculated with Wyllie’s model and Gassmann’s relations
for the Biot case and the hybrid two-phase model. Bulk modulus of the skeleton
Ks is calculated according to Gibson’s equation with varying exponents n, cf. (18).
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Fig. 2. Phase velocities of the fast and the slow longitudinal wave as functions of
frequency for a normal bone and an osteoporetic bone. Bulk modulus of the skeleton
Ks is calculated according to Gibson’s equation with an exponents n = 1.0, cf. (18).

speed, while the differences between the compressible Biot’s model and the
more simpler hybrid TPM model are of lower order. Even Wyllie’s empirical
relation (21) delivers practical results which are comparable to the models of
Biot and the TPM approach. Furthermore, as shown in Figure 1, the quality
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Material parameter

bulk modulus of single trabecula Ks 20.37 GPa

Poisson’s ratio of single trabecula νs 0.32

initial porosity (normal bone) φ0 0.72
(osteoporetic bone) 0.95

effective density solid ρsR 1960.0 kG/m3

bulk modulus of fluid Kf 2.0 GPa

effective density bovine marrow ρfR
0

930.0 kG/m3

intrinsic permeability (normal bone) ks 5.0e-9 m2

(osteoporetic bone) 5.0e-7 m2

effective dynamic viscosity bone marrow (20◦ C) ηfR 0.15 Pas
(37◦ C) 0.05 Pas

pore radius (normal bone) r 285 µm
(osteoporetic bone) 455 µm

phase velocity bone marrow cf
p 1467 m/s

phase velocity solid bone cs
p 4008 m/s

Table 2. Material parameters of fluid-saturated cancellous bone.

of Gibson’s relation (18) strongly depends on the exponent n. Therefore, it
seems to be important to investigate the elastic behaviour of the bone fabric
in more detail, either by numerical homogenization techniques or by more-
detailed micro-mechanical investigations based on µCT-data. Note that the
small differences between Biot’s equations and the hybrid TPM model can
also be observed in the frequency range, cf. Figure 2. In the diagram of Figure
2 (a) we plot the phase velocity of the fast and the slow longitudinal wave
vs. the frequency for a normal bone, while in the right diagram, cf. Figure
2 (b), analogous results are shown for an osteoporetic bone. Note that the
out-of-phase velocities of the slow longitudinal wave coincide more or less for
both models.

As a conclusion, it could be noted that both models, the TPM-based
hybrid biphasic model and Biot’s model, predict the phase velocities quite
well for realistic porosities and bulk moduli. Experimental data obtained by
ultrasound techniques, cf. [12], are also comparable to these theoretically
calculated results. Nevertheless, the whole picture is only closed if we also
compare the dissipative effects of the experiment with the attenuation pre-
dicted by the model, i. e., the imaginary part of the wave number. As clinical
ultrasound techniques operate in a bandwidth of 200-600 kHz we have to
take effects in the high frequency range into account, cf. [13]. As remarked
earlier in this contribution, this could only be achieved by a more realistic
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physically-based ansatz for the non-equilibrium momentum interaction (iner-
tia coupling), cf. (13) and the remarks in the recent work of Wilmański [19].
In the low frequency range viscous coupling locks the bone matrix and the
bone marrow and prevents a travelling slow wave. Unlike the low frequency
range a travelling wave can be observed in the high frequency range. There-
fore, the high-frequency range is also much more interesting from a parameter
identification point of view. The strong frequency-dependent phase velocity,
cf. Figure 2, and attenuation effect of the slow wave could be used as addi-
tional information to identify material parameters of the bone, e. g., porosity,
permeability, etc. Furthermore, the high frequency range is characterized by
the so-called critical frequency ωcrit, cf. [1, 2, 13]. If the microstructure of the
bone fabric is known, for instance by µCT imaging techniques, the critical
frequency ωcrit is met, if the viscous skin depth df equals the pore radius r.
Thus, ωcrit itself can be calculated from

ωcrit =
2 ηfR

ρfR
0 r2

=
2 ηfR

ρfR
0 d2

f

. (22)

For realistic bone properties, cf. [14], the viscous skin depth df vs. the critical
frequency ωcrit is plotted in Figure 3 for various bone fluids. The gray-shaded
region is denoted to realistic bone microstructures in the normal and the
osteoporetic range. From the simple microscopical calculations of the crit-
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ical frequency (22) it could be stated that standard ultrasonic techniques,
like the Broadband Ultrasonic Attenuation technique (BUA), cf. [13], are in
the high frequency range. Therefore, it seems to be very promising for the
inverse identification of inherent bone properties like porosity, bulk moduli,
permeability etc, to use both, the (frequency-dependent) phase velocities of
the fast and the slow wave and the (frequency-dependent) attenuation effect
of the slow wave.

Even if it was demonstrated that a simple TPM-based hybrid biphasic
model is able to capture phase velocities in cancellous bones quite well, it
seems to be important to include more physically-based high-frequency effects
into the model. Especially, non-standard momentum interaction terms and
added mass effects seem to play a significant role in the ultrasonic, i. e., high
frequency range. In contrast to the approach of Biot, such contributions can
be included into a mixture theory-based model in a rational way.
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9. Gibson, L. J.: The mechanical behaviour of cancellous bone. Journal of Biome-
chanics 18 (1985), 317–328.

10. Gibson, L. J. & Ashby, M. F.: Cellular solids. Structure and Properties. Cam-
bridge University Press, Cambridge, 1997.



120 H. Steeb

11. Hassanizadeh, S. M. & Gray, W. G.: High flow velocity in porous media. Trans-
port in Porous Media 2 (1987), 521–531.

12. Hosokawa, A.; Otani, T.; Suzaki, T.; Kubo, Y. & Sakai, S.: Influences of tra-
becular structure on ultrasonic wave propagatin in bovine cancellous bone.
Japanese Journal of Applied Physics 36 (1997), 3233–3237.

13. Hughes, E. R.; Leighton, T. G.; Petley, G. W. & White, P. R.: Ultrasonic
propagation in cancellous bone: A new stratified model. Ultrasound in Medicine
and Biology 5 (1999), 811–821.

14. Hughes, E. R.; Leighton, T. G.; Petley, G. W.; White, P. R. & Chivers, R. C.:
Estimation of critical and viscous frequencies for Biot theory in cancellous bone.
Ultrasonics 41 (2003), 365–368.

15. Kirchner, N.: Thermodynamically consistent modelling of abrasive granular ma-
terials. I. Non equilibrium-theory. Proceedings of the Royal Society of London.
Series A 458 (2002), 2153–2176.

16. Lee, K. I. & Yoon, S. W.: Comparison of acoustic characteristics predicted by
Biot’s theory and the modified Biot-Attenborough model in cancellous bone.
Journal of Biomechanics 39 (2006), 364–368.

17. Mavko, G.; Mukerji, T. & Dvorkin, J.: The Rock Physics Handbook. Tools for
Seismic Analysis in Porous Media. Cambridge University Press, Cambridge,
2003.
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Integrated Motion Measurement

in Biomechanics

J. F. Wagner

Institute of Statics and Dynamics of Aerospace Structures,
Universität Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany

Abstract. Integrated navigation systems like a combination of a GPS receiver with
accelerometers and gyros are powerful motion measurement devices. They are well
established in vehicle guidance and allow a versatile determination of the vehicle
position and angular attitude including the respective velocities with high sampling
rates and good accuracies. Whereas in former times such systems were large, heavy,
and expensive, modern microelectronics technology has led to increasingly small and
light devices with a good price-performance ratio. Therefore, modern navigation
technology recommends itself for new, unconventional applications. One of these
additional possibilities is motion analysis in Biomechanics.

All navigation sensors like gyros or radar units are basically tools that detect
mainly single motion components. To obtain a more complete, descriptive determi-
nation of the motion considered, an appropriate fusion of several sensor signals of
complementary physical meaning is required. This forms the basic idea of integrated
navigation or integrated motion measurement respectively. Besides, suitable sensor
combinations can simultaneously provide a good long-term accuracy and a high
resolution with respect to time. Finally, it is not necessary to restrict integrated
motion measurement to a single rigid body or vehicle like in classical navigation.

In fact, some approaches of applying integrated motion measurement to Biome-
chanics exist already and show a promising potential for tasks like rehabilitation
documentation or analysing motor learning. For this, the paper outlines the theo-
retical basics for integrated motion measurement and discusses existing examples.

1 Usage of Integrated Navigation Systems

The satellite navigation system GPS stands for drastic changes in naviga-
tion technology during the last years: Its accuracy, versatility, and operation
ease have reached a favourable level that was never intended during the sys-
tem design 30 years ago. Similar statements apply to other navigation tools
like sensors (gyroscopes, accelerometers, compasses, radar units) as well as
microchips for data logging and processing sensor signals.

GPS receivers and the (other) navigation sensors mentioned are in prin-
ciple devices that detect single motion components of the respective vehicle
considered for navigation. These are for example components of the accelera-
tion or the angular rate vector, distances to explicit reference points, etc. To
obtain a more complete, descriptive determination of the vehicle motion, a
suitable combination of several sensor signals of complementary mechanical



122 J. F. Wagner

meaning has to be employed. This is the basic idea of integrated navigation
systems, which are therefore more precisely integrated motion measurement
devices. If these systems are appropriately designed and if the assumption of
a rigid vehicle structure is acceptable, a recording of the entire vehicle motion
is possible. Simultaneously, a good long-term accuracy and a high resolution
with respect to time can be provided [4].

In vehicle guidance and navigation, the use of such integrated systems is
well established. However, it is also traditionally associated with high equip-
ment weight, volume, costs, and power consumption [7]. On the other hand,
the technological progress as mentioned, changes this unfavourable situation
at present because modern microelectronics technology leads increasingly to
small and light navigation devices with a good price-performance ratio.

The utilisation of integrated motion measurement systems in Biomechan-
ics [11] becomes therefore more and more interesting. Indeed, some basic
approaches already exist and show a promising potential for applications like
motion analysis in sport, orthopaedics, and neurology, like quality manage-
ment of rehabilitation processes, like sports competition diagnosis, or like
medical engineering. Assessing some realised examples, the paper illustrates
this situation in Section 3. Section 2 contains beforehand the necessary out-
line of the methodological basis for integrated motion measurement systems.

2 Principle of Integrated Motion Measurement

Position finding is a very old, essential part of navigation. It provides the
location of the respective vehicle for the necessary route planning. Modern
vehicle guidance tasks additionally require other kinematical vehicle charac-
teristics like velocity, acceleration, angular rate, and (angular) attitude. This
requires a more or less complete determination of the vehicle motion.

Historically, the associated kind of navigation technology is based on mea-
suring simple geometric values like directions or distances and deducing then
numerically the information required. For this, optical and acoustical bear-
ings form old, classical measurement procedures, whereas during the 19th and
20th century numerous other sensor principles especially from gyro and radio
technology appeared. Sequel to this, modern navigation technology has, as
mentioned, sophisticated motion measurement systems as its disposal, which
combine several sensors detecting different geometrical and kinematical pa-
rameters by various physical principles.

Besides choosing suitable sensor types, the measurement system design
requires also a kinematical vehicle modelling to settle on the motion compo-
nents considered to be necessary and to describe the mechanical meaning of
the measurements employed. Furthermore, a mathematical procedure is re-
quired to generate the desired motion information by an appropriate fusion of
all sensor signals. Details about the kinematical modelling, the sensor types,
and the mathematical fusion procedure form the following subsections.
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2.1 Kinematical Modelling

In navigation, a single rigid body with two, three, or six mechanical degrees
of freedom traditionally idealises the vehicle considered. The latter case forms
the most general one and combines the pure, complete body translation and
the pure, complete body rotation with three degrees of freedom each. A rare
but typical example of directly using this fact in analysing specific balance
skills in sport is depicted in Figure 1 (being taken from [15]), where all mo-
tion components have a clear physical meaning and a body fixed Cartesian
coordinate system is used to separate the degrees of freedom.
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Fig. 1. All motion components of a rowing boat reflecting human balance skills.

In this classical case, when a rigid body reflects the whole motion of
interest, it is not only in navigation but also in Biomechanics convenient
to simply describe the body location by a single position vector r and the
body attitude, e. g., by three (time varying) Euler angles or a quaternion q

(all values with respect to a suitable coordinate system). A more detailed
analysis should also include the velocity vector v and acceleration vector a

as well as the angular rate vector ω and the angular acceleration vector α

of the body. Furthermore, the equations v = ṙ and a = r̈ as well as similar
relations for the attitude hold.

To describe the rigid body motion more compactly, a motion state vector
x = [rT vT qT]T can be introduced. This is typical for inertial navigation,
which is based on signals from gyros and accelerometers (“inertial sensors”).
In this case, also the relation

ẋ = f(x,u) (1)

has to be used, which establishes the relation between position, velocity, and
attitude on one side and the acceleration and the angular rate on the other
side. The latter two vectors are measured by the accelerometers and gyros.
They form the vector u = [aTωT]T, whereas the vector function f reflects
simply all the relations like a = r̈. Therefore, f describes the interesting body
kinematics using a set of ordinary differential equations.
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To determine the position, velocity and attitude from u, equation (1) has
to be solved numerically. (Mathematically, this is an initial value problem
with a typically nonlinear function vector f .) However, this procedure causes
errors growing with time. To limit this inaccuracies, additional ‘aiding’ signals
are necessary. The latter ones originate from, e. g., a Doppler radar, a GPS
receiver, a camera, etc., and their outputs (altogether forming the aiding
vector y) have to be modelled by a set of algebraic equations (for a GPS
receiver the equations contain, e. g., the formulation of the geometric range
between the receiver antenna and the GPS satellites [4]):

y = h(x,u) . (2)

Together with all sensors, equations (1) and (2) form the kernel of integrated
navigation or rather integrated motion measurement systems. For the clas-
sical case of a rigid body, f and h are well known and proven (albeit their
derivation is by no means trivial). For a short time, extended theories for
modelling flexible vehicles and multibody systems exist as well [13, 14] (with
the latter case being especially interesting for Biomechanics). Such structures
show additional degrees of freedom and, therefore, require supplemental sen-
sors, which have now to be distributed over all moving parts.

2.2 Common Navigation Sensors for Motion Measurement

During the last decades, various navigation sensor types became more and
more attractive for Biomechanics: their size, weight, and power consumption
decreased steadily to a degree enabling a nearly imperceptible, reactionless
sensor attachment to test persons, sports equipment, and medical devices.
Some sensor types resemble meanwhile small electronic chips [10] and can
even be used for micro air vehicles [19]. Table 1 contains especially interesting
devices together with the mechanical meaning of their output [4, 6, 8]. The
sensors in the first three lines are especially important for u; the other sensors
(including also the odometer) are typically aiding signal sources.

From this list, the accelerometer has gained already a broad acceptance
in Biomechanics as a single instrument. However, its use is very critical. The
sensor principle is based on measuring the inertial forces on a seismic mass,
which is also subjected to gravity. Therefore, the sensor signal is a mixture
between the real acceleration and the component of the negative gravity
vector along the sensor input axis. The latter part has to be compensated
mathematically, and this requires to know or to measure additionally the
attitude (relative to the local vertical) of the body carrying the accelerome-
ter. According to this and in anticipation to the extended theory of Wagner
[14], Wu and Ladin [20] combined signals of gyros and accelerometers being
distributed over a complete human body. However, they used only a reduced
set of aiding sensors and could therefore not evaluate the measurements to
the full extent as described in the next section.
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sensor type mechanical meaning of signal

accelerometer component of acceleration a minus gravity g

gyro component of angular rate ω

odometer velocity of a wheel

GPS receiver range and range rate to certain navigation satellites

electronic compass orientation relative to the local magnetic flux lines

short range radar range or range rate to a certain surface or point

camera photogrammetric position of markers

Table 1. Typical navigation sensors being usable for Biomechanics.

2.3 Sensor Signal Fusion and System Integration

As mentioned, integrated motion measurement systems fuse sensor signals
with different mechanical meaning. Traditionally, this task is realised by the
observer principle, a well-known subject of control theory. Figure 2 illustrates
this approach being explained by the popular combination of inertial sensors
and GPS: The upper left block stands for the rigid body (with six degrees
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 Fig. 2. Observer principle as used for integrated motion measurement.

of freedom) being subject to input u (comprising a and ω as explained for
equation (1)) causing the vehicle movement. This motion is described by x

containing r, v, and q (as also mentioned). Based on x and u, the upper right
block (being here a GPS receiver) provides a first set of data, the aiding mea-
surements. Representing u, a second set of data is gained through an inertial
measurement unit (IMU) consisting of three accelerometers and three gyros
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(each set with orthogonal measurement axes). Based on these six signals, the
block “motion model”, containing the numerical solution of equation (1), cal-
culates an estimate x̂ for the (strictly speaking) unknown state x. Using the
set of (normally nonlinear) algebraic equations (2) with the vector function
h, the block marked with “aiding model” derives estimates ŷ of y. At last, a
“compensation” block has the task to minimise the deviations between x and
x̂ using the difference y− ŷ. The design of the “compensation” block follows
mostly the theory for the “Extended Kalman Filter” [4]. Unlikely values of
y − ŷ allow furthermore to identify and to miss out measurement outliers.

3 Assessment of Already Realised Examples

The design and implementation of integrated motion measurement systems
is not trivial because appropriate sensors have to be selected, the handling of
the functions f and h requires a sufficient insight in kinematics, and real-time
requirements have to be met [4, 14]. A reliable and reactionless installation
of the sensors and of the data processing equipment is costly and not quite
simple, too. Therefore, it is explainable that up to now in Biomechanics
such systems are mostly realised only in parts. The majority of the already
existing examples come from sport, where motor skills and motor learning
form a determining scientific area.

In the following, a selection of available examples is presented in order to
give an impression about the specific state of the art and about typical diffi-
culties in applying integrated motion measurement systems to Biomechanics.
The cases listed now are partitioned with respect to sports disciplines:

• Rowing:
To measure specific forces, the use of accelerometers onboard of rowing
boats has already a certain tradition (see, e. g., [5]). However, in the
beginning it was not combined with the necessary attitude determination.
Therefore, the significance of the data evaluation was very limited.
Based initially on military gyros, a first attitude measurement system
arose at about the year 1990 and was used for studies on specific rowing
balance ([15], Figure 1). These devices permitted only short-term analyses
because at that time suitable aiding equipment was not available and an
unaided numerical long-term integration of equation (1) is normally not
feasible.
Another method to determine the yaw and pitch motion (Figure 1) of
the boat is the differential position measurement with two GPS antennas,
one fixed to the bow and one to the stern [17]. As GPS receivers have a
limited resolution with time, this technique has, however, problems with
analysing single strokes and can rather lead to statistical statements.
Here, a combination with gyros and accelerometers suggests itself and
would lead to an integrated system as outlined above. A realisation is no
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longer a technical problem and could allow a detailed insight in balance
abilities; nevertheless, an implementation does not yet exist (probably
due to financing and manpower).

• Javelin:

A few years ago, a very small and light acceleration measurement unit was
developed and incorporated into a javelin [18]. The value of benefit of the
device is, regrettably, limited because the compensation of the gravity
influence is still incomplete and the intended long-term calculation of
the velocity requires an aiding. Therefore, further system development
concerning three gyros and a GPS receiver is necessary. However, this
could cause weight and volume problems.

• Swimming:

A few years ago, a complete inertial measurement unit (consisting of three
gyros and three accelerometers) was developed and attached to the lower
back of several athletes for swimming [2]. The intended long-term calcula-
tion of the velocity and position requires still an additional aiding, which
could possibly be realised by underwater photogrammetry. Unfortunately,
this approach does not allow the projected real-time performance assess-
ment and causes a high technical complexity. Furthermore, the value of
insight in the swimming motion is limited because the human body is
not rigid (as assumed for the design of the inertial measurement unit).

• Ski jumping:

Based on a special helmet being equipped with a GPS receiver, on a
light-grille barrier at the jump-off platform, and on a geodetic GPS data
processing procedure, a high accurate measurement system with a pre-
cision of about 1 cm was recently developed and successfully tested to
monitor the translational motion of the athlete’s head [1]. Nevertheless,
the critical phases of the jump-off and the landing should still be recorded
with a higher sample rate (because, as mentioned, pure GPS data have
a limited resolution with time). This requires additional, inertial sensors
leading to an integrated system as explained with Figure 2. Furthermore,
the gyros would then facilitate a supplemental analysis of the head rota-
tion being especially interesting because of the vestibular organ.

• Inline and ice skating, cross-country skiing:

To assess the specific balance of skaters and skiers, an ankle exercise board
(wobble board) was equipped with three gyros and three accelerometers.
The board is basically a hemisphere rolling on the floor with its curved
side down and bearing a platform on its flat, upper side. It shows primar-
ily a pure rotational motion. Therefore, the gyros measure the angular
rate vector forming u, whereas the accelerometers are operated as incli-
nometers to provide aiding measurements y for the board tilt (pitch and
roll corresponding to Figure 1). With this, a complete integrated system
could be realised which is tailored to the specific kinematics of the board
and which estimates the rotational motion according to Figure 2 [16].
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Medical rehabilitation (especially with respect to neurology and orthopaedics)
is another scientific field, where motor skills and motor learning play an im-
portant role. For example, the ankle exercise board is an important rehabil-
itation device after injuries of the leg and the outlined measurement system
can be used to monitor the rehabilitation process [16]. A further possibility
is to use the extended measurement system of the ski jumping helmet for
recording the complete head motion during diseases of the vestibular organ.

A fairly new development is the use of a classical attitude and heading
reference system (AHRS) for measuring the angular attitude of limbs or of a
part of the vertebral column [9]. In an AHRS, three gyros measure u, whereas
for y a set of accelerometers and an electronic compass detect the direction
of the local gravity and of the local lines of magnetic flux respectively. With
this, an AHRS is a complete integrated measurement system for the attitude
only and has three Euler angles or a quaternion as motion state x [12].

Nevertheless, all the examples mentioned here are designed as if all the
sensors are attached to a rigid body. It is realistic to assume this (at least
as a first approach) for a rowing boat, a javelin, an ankle exercise board,
or a helmet. The same is true locally for parts of the human body like the
head, the pelvis, or a Humerus. To measure the motion of a larger region
or of the whole human body, a direct, simple approach is to assume that
the skeleton consists of several rigid bodies moving independently of each
other. Delleman, den Dekker, and Tan have presented such a measurement
system, which consists of a tight-fitting suit with several AHRS sewed in [3, 9].
However, this method does not incorporate kinematical constraints, which
limit the relative body motions considerably. In this regard, the approach of
Wu and Ladin [20] was already more advanced, but did not include aiding
measurements. Combining the sensor equipment of Delleman et al. [3] as well
as of Wu and Ladin [20] and designing f and h as described by Wagner [14]
would lead to a very sophisticated integrated measurement system. Yet, a
realisation requires some manpower and is still lacking.

4 Conclusions

Modern navigation technology enables the design of small, light, and incon-
spicuous motion measurement systems, which can be tailored to the charac-
teristic kinematics of specific human motions. If a high resolution with time,
a good long-term accuracy, and high reliability is required simultaneously,
the employment of an integrated system according to Figure 2 is advisable.
With this, integrated motion measurement systems offer an interesting pos-
sibility for research and education in medicine and sport as they can provide
motion data in a surpassing quality.

Referring to Figure 2, the system input u provides normally the high res-
olution with time and reliability. Predominantly, it is measured with inertial
sensors. The aiding sensors effect the long-term accuracy, and their signals
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can easily be checked for measurement disturbances. The adaption to the
particular human motion considered is carried out by the design of f and h

in close relationship with a suitable sensor arrangement. This is a standard
but demanding engineering task which requires experience as well as a cer-
tain development effort. Technical mature sports systems are therefore still
rare. On the other hand, it represents an appealing challenge for engineering
in Biomechanics.

Correspondingly, it seems highly desirable to design and to realize such an
integrated system for at least one popular sports discipline. If, e. g., a system
for rowing exists, the transfer to sailing, canoeing, cycling, ski jumping, alpine
skiing, hang gliding, etc. is simple; inline skating systems are alike usable for
ice skating and cross country skiing.

A final remark, which is of central importance, concerns the appropriate
analysis of the data generated. This is an additional, vital task, which needs
sophisticated methods of sports science, neurology, and orthopaedics. The
design of such data evaluation procedures has to be addressed for the future,
too. With this, a better insight in balance control and motor learning (e. g.,
for fitness assessment of children for road traffic) as well as in malpositions
and skeletal loads is possible. Other applications are athletes’ performance
analysis, sports competition analysis, or training and rehabilitation documen-
tation.
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