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Preface

The 3rd GAMM Seminar on Continuum Biomechanics took place Novem-
ber 24 – 26, 2010, in Freudenstadt-Lauterbad, Germany. It was organised by
the Biomechanics Activity Group under the auspices of the International
Association of Applied Mathematics and Mechanics (GAMM), which pro-
motes scientific development in all areas of applied mathematics and me-
chanics. The Seminar venue was the Waldhotel Zollernblick in the climatic
spa Freudenstadt-Lauterbad located in the Black Forest region, Germany.
The GAMM Biomechanics Activity Group was formed on October 23, 2003,
in Stuttgart with the major objective to foster the interest in biomechanical
problems in the German-speaking area in order to keep pace with interna-
tional developments. After two previous GAMM Seminars on Continuum
Biomechanics in 2004 and 2006, the actual Seminar was the third major
initiative of the Activity Group providing a discussion forum on the recent
advances in theoretical, numerical, and experimental techniques in the broad
field of biomechanical engineering with special focus on soft and hard bio-
logical tissues. The informal nature of the Seminar offered the opportunity
to openly exchange scientific ideas, where the welcoming atmosphere of the
Waldhotel Zollernblick with an exceptional view on the Swabian Alb further-
more contributed to its overall success. In particular, exposed problems of
continuum and computational biomechanics as well as mechanobiology have
been presented in 19 oral presentations, out of which 7 extended contributions
are published in this Proceedings Volume. Since the organisers are confident
that such Seminars help to manifest and to enlarge the biomechanics commu-
nity in Germany, we aim at continuing the successful GAMM Seminar Series
on Continuum Biomechanics.
Finally, we would like to express our thanks to the sponsors of the Seminar,
namely LBBW-Stiftungen, Cluster of Excellence (EXC 310) on Simulation
Technology and GAMM. The financial support allowed us to schedule two
invited presentations of renown scientists, to publish this volume of Pro-
ceedings, and last but not least to keep the registration fee low, so that,
in particular, younger researchers had the possibility to participate. The or-
ganisation and execution of the Seminar as well as the preparation of the
Proceedings Volume was performed by the staff of the Institute of Applied
Mechanics (CE) of the University of Stuttgart. Also their extremely valuable
help is herewith most gratefully acknowledged.

Stuttgart, November 2012

Wolfgang Ehlers

Bernd Markert
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A Finite Element Approach for Modelling

Synovial Joint Contact

K. Fietz & U. Nackenhorst

Institut für Baumechanik und Numerische Mechanik,
Leibniz Universität Hannover, 30167 Hannover, Germany

Abstract. In this contribution a computational approach for modelling hip joint
contact is outlined. A contact element for describing the synovial fluid in interaction
with the cartilage layers is developed. The fluid description is based on the station-
ary Stokes flow equations. A discretisation with Taylor Hood elements is applied.
Geometrically the synovial gap is modelled as the midsurface between the cartilage
layers. The thickness of this liquid interface layer varies over the area. Due to the
curvature of the shell-like midsurface convective coordinates are introduced.
The fluid structure interaction is solved by a staggered contact algorithm. During
the iteration the solid displacements lead to changes of the thickness distribution of
the articular gap. Source terms are introduced into the fluid formulation in order to
handle these thickness changes. The joint capsule prevents the synovial fluid from
leaving the joint space. Therefore a fluid structure interaction problem with a fully
enclosed fluid has to be solved. An artificial compressibility method is applied for
this purpose.
The proposed algorithm and the liquid contact element are validated by suitable
numerical examples. An outlook on the application of these elements in a three
dimensional finite element model of the hip joint is given.

1 Introduction

In synovial joints the bone surfaces are covered with articular cartilage layers.
The joint is surrounded by the joint capsule which is filled with synovial fluid.
As the cartilage is not supplied with blood vessels the tissue is nourished by
the synovial fluid. The synovia can be imbibed into and pressed out of the
cartilage, thus establishing a fluid exchange between cartilage and synovial
gap. In the healthy joint the synovial fluid creates a thin fluid film between
the cartilage surfaces preventing them from direct contact and leading to a
very low friction contact ([5, 11]).
Osteoarthritis is one of the most frequently occurring joint diseases. Particu-
larly the hip joint is affected by this degeneration of cartilage and subchondral
bone. Due to the absence of nerves in the cartilage tissue the cartilage dete-
rioration can proceed widely without causing pain, so that many patients are
only diagnosed with the disease in an advanced stage. This is one of the rea-
sons why the origin and early progress of degeneration still remain unknown.
It is however a widely accepted theory that too high local cartilage stresses
lead to osteoarthritis ([10, 20]).
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An overview of previous numerical modelling approaches for the hip joint is
given in [17].
Finite element analyses have often been conducted for two dimensional ge-
ometries using plain strain assumptions ([4, 8, 21–23]). Geometric simplifi-
cations are also common in three dimensional analyses of the hip joint. In
several studies a rigid body spring model or discrete element analysis has
been applied with the argument that a finite element analysis would be too
complex ([9, 13, 24]). In these models the bone parts were considered to be
rigid and contact was modelled using a normal and a shear spring in each
element. In numerical investigations with different objectives it is however
state of the art to reconstruct very detailed geometries from CT-data ([1, 6])
and even to proceed towards physiological boundary conditions and subject
specific analysis ([18]). In numerical hip joint contact analysis only very few
authors have applied realistic three dimensional geometries. Even in these
more detailed three dimensional models for hip joint contact ([2], [16]) no
physiological contact conditions have been simulated. [2] used a linear elastic
material law for the cartilage layers, the synovial fluid and joint capsule have
not been taken into account. [16] only regarded the acetabular cartilage in
contact with a rigid body. A physiological hip joint contact model incorpo-
rating the hydrodynamic behaviour of the cartilage layers on both sides in
interaction with the synovial fluid in the articular gap does not yet exist.
Our research is focused on developing a hip joint contact model which in-
cludes the fluid flow within the articular gap as well as the fluid exchange
and nutrient transport between the synovial gap and the cartilage layers.
In this contribution an interface element for describing the contact condi-
tions in synovial joints is proposed. The development of a suitable element
is based on the stationary Stokes flow equations for incompressible viscous
flow. A staggered contact algorithm for solving the fluid structure interaction
problem is presented. The ability of the developed element to model the fluid
behaviour correctly is demonstrated by numerical examples.

2 Modelling Approach

2.1 The Overall Computational Framework

As described above the aim of this research is the analysis of the physiologi-
cal contact conditions in the human hip joint using a three dimensional finite
element model. The contact partners in the hip joint are the cartilage layers
and the synovial fluid. Apart from these contact partners the relevant osseous
structures are also included in the model. The bones involved in the hip joint
are the pelvic bone and the femur. The geometries of the femoral head and
the pelvic bone are reconstructed from CT-data. From the male dataset of
the Visible Human Project R©1 200 CT-images covering the proximal femur

1 http://www.nlm.nih.gov/research/visible/visible human.html
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Fig. 1. Three dimensional finite element modelling approach of the hip joint. left:
geometry reconstruction from CT-data, right: finite element model

and the pelvic bone with a pixel distance of 1mm and a slice thickness of
1mm were used. In each CT-image the silhouettes of the osseous structures
were identified. A three-dimensional geometry description is then obtained
from these two-dimensional outlines. This geometry reconstruction process is
illustrated in Figure 1. The bone geometries are discretised with linear tetra-
hedral elements (see Figure 1). The cartilage layers will be modelled as a fluid
saturated porous medium ([15]). The cartilage surfaces will be approximated
by quadratic shape functions.
The gap between the cartilage layers of the femoral head and the acetabulum
is filled with synovial fluid. For the contact model it is important to describe
the interaction between the synovial fluid in the articular gap and the car-
tilage layers. As the synovial fluid constitutes only a very thin fluid film a
shell-like midsurface representation is chosen to describe the fluid domain
geometrically. This midsurface description will also contribute to an efficient
treatment of the rotation of the femoral head. In order to account for the
incongruence of the femoral head and the acetabulum the thickness varies
over the midsurface area. Applying the stationary Stokes flow equations the
fluid flow in the articular gap is described as an incompressible viscous flow.
The synovial fluid is modelled as a Newtonian fluid.
A staggered contact algorithm is used to compute the fluid cartilage interac-
tion.

2.2 Finite Element Approach for the Liquid Interface Layer

Cartilage Contact

The synovial gap is represented by a midsurface between the cartilage layers.
In the following, different coordinate systems are used. These are presented in
Figure 2. Apart from the global Cartesian coordinate system ei, a convective
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e1

e2

e3

yl

a2
a1

n

xl

θ1

θ2
zl

Fig. 2. Coordinate systems

basis [a1 a2 n] is given. In this coordinate system ai are tangent vectors to
the curvilinear coordinates θi. The normal direction n is interpolated from
normal directions at the element nodes in order to ensure a C0-smooth nor-
mal field over the whole midsurface. The normal directions at the nodes are
determined in the construction process of the midsurface.
From this skew basis [a1 a2 n] a local orthogonal basis [xl yl zl] with coor-
dinates xl, yl, zl can be constructed as follows

zl = hn , (1)

yl =
n× a1

||n× a1||
, (2)

xl =
yl × n

||yl × n||
. (3)

In this local basis the normal direction n is scaled with the element thickness
h which is important in the following.
The midsurface is generated by executing an orthogonal projection of each
node, belonging to the acetabular cartilage surface, onto the femoral cartilage
surface. In the middle of the distance between the acetabular node and its
projection point a node of the midsurface is created. Element connectivity on
the midsurface is thus an image of the element connectivity of the acetabular
surface. The projection direction defines the normal direction n at each node
of the midsurface. Due to the projection process the thickness h is given at
each node of the element so that it can be interpolated quadratically

h = Nhĥ . (4)

This midsurface element with variable thickness is illustrated in Figure 3.
The volume V of the fluid domain is obtained by integrating the thickness h
over the midsurface area Γ

V =

∫

Ω

dV =

∫

Γ

h dΓ . (5)
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Fig. 3. 6-node-triangular midsurface element with variable thickness h

The fluid behaviour is described by the stationary Stokes equations for in-
compressible viscous flow,

div(σ) = 0 , (6)

div(v) = 0 . (7)

Equation (6) describes the balance of momentum with the Cauchy stress
tensor σ, where body forces have been neglected. Equation (7) describes the
mass balance with the spatial velocity field v. The stress tensor splits into a
volumetric part characterised by the hydrostatic pressure p and a deviatoric
part s defined by Stokes law,

σ = s− pI , (8)

s = 2µ gradsym(v) . (9)

The constitutive parameter µ is known as dynamic viscosity. A standard
Galerkin mixed formulation is used to derive the weak form of the Stokes
problem,

∫

Ω

grad(δv) : s dV −

∫

Ω

p div(δv) dV =

∫

∂Ω

δv · t dA , (10)

∫

Ω

δp div(v) dV = 0 . (11)

The Stokes problem has to be solved on the curved midsurface and therefore
it is formulated with respect to the local coordinates xi = xl, yl, zl.
In the above equations the gradient is evaluated as the covariant derivative

grad(v) =
d(vl)k

d(xl)i
+ (vl)jΓ k

ji . (12)

In Equation (12) vl denotes the components of v with respect to the convec-
tive orthogonal basis [xl yl zl]. Γ k

ji denote the Christoffel symbols which are
defined as

Γ k
ji =

1

2
gkn(gin,j + gjn,i − gji,n) (13)



6 K. Fietz & U. Nackenhorst

with the components of the contravariant metric gkn and the derivatives of
the covariant metric gin,j . The covariant metric is given by

gij =





xl · xl xl · yl xl · zl

yl · xl yl · yl yl · zl

zl · xl zl · yl zl · zl



 . (14)

As the basis is orthogonal and xl and yl are of unit length the metric is of
the following structure

g =





1 0 0
0 1 0
0 0 h2



 , (15)

so that only the Christoffel symbols Γ 1
33, Γ

2
33, Γ

3
13, Γ

3
23, Γ

3
31 and Γ 3

32 have
values which are not equal to zero.
A geometric interpretation for the scaling of the normal vector with the
thickness h can be given. The first term in Equation (12) can be interpreted
as in-plane gradient, while the second term can be expressed as

(vl)jΓ k
ji =

1

h
v ⊗ grad(h) . (16)

This result is explained by considering the infinitesimal volume element il-
lustrated in Figure 4. The inflow at x has to equal the outflow at x+ dx

v(x)A(x) = v(x + dx)A(x + dx) (17)

leading to

dv

dx
= −

v(x)

h(x)

dh

dx
, (18)

which can be expressed by Equation (16) for the three dimensional case. The
scaling of the normal vector with the thickness therefore ensures fulfilling the
mass balance in elements with a variable thickness.
The equations are solved by the finite element method for which they are writ-
ten in terms of global Cartesian coordinates. A transformation from global

A(x)

dx

b

h(x+ dx)v(x)
h(x)

v(x+ dx)

A(x+ dx)

Fig. 4. Infinitesimal volume element
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velocity components to local velocity components is given by

vl =
[
xl yl n

]T

︸ ︷︷ ︸

T

vgl . (19)

Using Equation (19) the velocity gradient from Equation (12) can be written
as

grad(v) =
d (Tkm(vgl)m)

d(xl)i
+ Tmj(v

gl)jΓ k
mi . (20)

The velocity field v, its test function δv, the geometry x and the element
thickness h are approximated using quadratic shape functions Nv. The pres-
sure field p and its test function δp are approximated using linear shape
functions Np. This choice corresponds to the classical P2/P1-Taylor-Hood-
element ([3, 7, 12]). The discretised formulation reads

[
Kvv Kvp

Kpv 0

] [
v̂f

p̂f

]

=

[
0

0

]

(21)

with

Kvv =

∫

Ω

BT
v (2µI0)Bv dV , (22)

Kvp = −

∫

Ω

ST
v Np dV , (23)

Kpv = KT
vp . (24)

The diagonal matrix I0 ensures the correct treatment of symmetries in Voigt
notation.

2.3 Contact Algorithm

For solving the fluid solid interaction problem a staggered approach is chosen.
Starting with an initial solid geometry x0

s the initial midsurface x0
f is gener-

ated having an initial thickness information h0. In each iterative step, first
the fluid problem is solved for the velocity field vf and the pressure distribu-
tion pf . The fluid tangent matrix Kf and the force vector ff are functions
of the change in thickness ∆h which is a function of the solid displacements
us computed in the last iterative step

Kf (∆h(u
n
s ))u

n+1
f = ff (∆h(u

n
s )) (25)

with

uf =

[
vf

pf

]

. (26)
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For the solution of the solid domain contact forces fc are computed from the
fluid pressure pf

f̂c = −

∫

∂Ωs

NT
s pfns dAs . (27)

These contact forces are assumed to act in the negative direction of the nor-
mal vector ns on the cartilage surface As. For non matching meshes the
integration points are orthogonally projected onto the midsurface and pf is
determined in the projection point. The incremental change of solid defor-
mation ∆us is solved by

KT
n+1
s ∆un+1

s = fext + fn+1
c (pn+1

f )− fint , (28)

un+1
s = un

s +∆un+1
s . (29)

The iteration is stopped if ‖∆us‖ ≤ ǫ.
During this iteration the deformation of the solid domain leads to a change
of the thickness distribution in the synovial gap. Additional effort is spent
to ensure the balance of mass when the thickness is changed. The change of
mass can generally be expressed as

∆m = ∆

∫

Ω

ρdV =

∫

Ω

∆ρ+ ρdiv(v) dV +

∫

Ω

ρ ∆dV = 0 . (30)

For an incompressible fluid there is no change in density (∆ρ = 0). Assuming
that the area Γ does not change but only the thickness changes, a change in
volume can be expressed as

∫

Ω
∆dV =

∫

Γ
∆hdΓ leading to

∫

Ω

div(v)dV +

∫

Γ

∆hdΓ = 0 . (31)

This additional contribution to the mass balance can be interpreted as a
source term. The surface integral is transformed into a volume integral by
relation (5). The mass balance then reads

∫

Ω

div(v) dV = −

∫

Ω

∆h

h
dV . (32)

This modified formulation of the mass balance also has consequences for the
transport theorem. In its modified form this is now written as

d

dt

∫

Ω

ρψdV =

∫

Ω

(

ρ
dψ

dt
− ψρ

∆h

h

)

dV . (33)

The balance of momentum is changed accordingly and can now be rewritten
as

∫

Ω

vρ
∆h

h
dV +

∫

Ω

div(σ)dV = 0 . (34)
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From that, an additional contribution fp,∆V to the right hand side arises
from the mass balance and an additional contribution Kvv,∆V to the tangent
matrix results from the balance of momentum

[
Kvv +Kvv,∆V Kvp

Kpv 0

] [
v̂

p̂

]

=

[
0

fp,∆v

]

(35)

with

Kvv,∆V = −

∫

Ω

NT
v

(

ρ
∆h

h

)

Nv dV , (36)

fp,∆V =

∫

Ω

NT
p

(
∆h

h

)

dV . (37)

2.4 Artificial Compressibility

Due to the solid displacements not only the thickness distribution but also
the overall volume of the synovial gap is changed so that fluid would have
to flow out of the domain if the joint space is reduced. In the real joint the
synovial gap is enclosed by the joint capsule and its enforcing ligaments so
that the fluid cannot flow out of the joint. Therefore hip joint contact is a
fluid structure interaction problem with a fully enclosed fluid. This kind of
problem cannot be treated with the simple staggered scheme outlined above
because the solid deformations violate the fluid’s incompressibility condition.
This problem is described by [14] and [19] in detail. One possibility to solve
such problems with fully enclosed fluids is to introduce an artificial com-
pressibility which vanishes during the iteration. This procedure is described
in [19]. Applying this method the mass balance is modified as follows

∫

Ω

div(v) dV +

∫

Ω

cpn+1 dV = −

∫

Ω

∆h

h
dV +

∫

Ω

cpn dV , (38)

where c is the artificial compressibility parameter and n is the iteration step.
The discretised equations now have the form

[
Kvv +Kvv,∆V Kvp

Kpv Kpp,c

] [
v̂

p̂n+1

]

=

[
0

fp,∆V + fp,c

]

(39)

with

Kpp,c = −

∫

Ω

NT
p c Np dV , (40)

fp,c = −

∫

Ω

NT
p cpndV . (41)

It is iterated until pn+1 = pn so that the artificial compressibility has no
effect at the end of the iteration.
The described finite element approach for the contact in synovial joints has
been implemented into the in-house MatLab based finite element develop-
ment environment and was verified by various numerical tests, described be-
low.
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3 Numerical Examples

In the following, numerical examples are presented which verify the compu-
tational approach described above. The observation of the mass balance is
shown for curved elements with variable thickness. The functionality of the
source terms accounting for changes of the thickness distribution is demon-
strated and the effect of the artificial compressibility method is illustrated.

The constitutive parameters of the fluid are chosen as ρ = 10−9 Ns2

mm4 and

µ = 10−9 Ns
mm2 in the examples of this section. Results for velocity fields are

illustrated as vector plots. The arrows point in the direction of the flow and
the lengths of the arrows as well as the colour code indicate the magnitude
of the velocity vectors.
The first example is chosen in order to verify the conservation of mass in
curved elements with variable thickness (see section 2.2). A quarter of a
cylinder surface is analysed (see Figure 5). The thickness varies linearly from
0.1mm to 0.05mm in the circumferential direction (see Figure 5 a)). An in-
flow of 1mm/s is prescribed in the circumferential direction. This leads to an
outflow of 2mm/s which is shown in the velocity field in Figure 5 b). Com-
paring the inflow of 1mm/s over an area of 1mm× 0.1mm to the outflow of
2mm/s over an area of 1mm× 0.05mm this result proves that the developed
curved element satisfies the mass balance in the case of a varying thickness.
In a second example the source terms developed in section 2.3 are verified. A
hemispherical surface with a radius of 3mm and an initial thickness of 1mm
is considered (see Figure 6). The thickness is reduced to 0.5mm so that the

gap volume is reduced by 9πmm3

s
. The fluid is squeezed out over an area of

6πmm× 0.5mm. An outflow velocity of 3mm/s can be observed in Figure 6
so that the outflow corresponds to the displaced volume.
The artificial compressibility method is tested in the third example. Two
elastic blocks with a size of 1mm× 1mm× 0.5mm and a distance of 0.1mm
are considered. These blocks and the planar midsurface between them are
sketched in Figure 7 a). The discretisation of the midsurface is shown in Fig-
ure 7 b). The upper block is displaced downwards by 0.01mm so that the
change of midsurface thickness ∆h is 0.01mm (see Figure 7 c)). This is the
starting point for an iteration in which the fluid finds its initial volume again
by developing pressure and thus deforming the two elastic blocks. The sit-
uation at the end of this iteration is depicted in Figure 7 d). In this simple
linear example the pressure needed for obtaining the initial gap volume is
known in advance. For the two blocks Hooke’s law can be applied

p = E
∆t

t0
. (42)

With a Young’s modulus E = 15 N
mm2 an initial block thickness t0 = 0.5mm

and a block displacement ∆t = 1
2
∆h = 0.005mm the pressure is determined

as p = 0.15 N
mm2 . The artificial compressibility parameter can be chosen to
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a)

b)

|v|
[

mm

s

]

h [mm]

1mm

Fig. 5. Verification of mass conservation in curved elements with variable thickness.
a) thickness distribution; b) velocity field

solve the problem in one step in this example. Initially pn = 0 so that the
mass balance reads

∫

Ω

div(v) dV +

∫

Ω

cp1 dV = −

∫

Ω

∆h

h
dV . (43)

For obtaining the incompressible solution with
∫

Ω
div(v) dV = 0 the artificial

compressibility parameter c has to be chosen as

c =
2t0
Eh

. (44)

For the planned hip joint model with porous cartilage layers the artificial com-
pressibility parameter might not be determined so easily. In order to show
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|v|
[

mm

s

]

Fig. 6. Verification of source terms. Fluid velocity field

the convergence behaviour for a case in which the ideal value for c is not
known the problem described above is computed with an artificial compress-
ibility parameter which differs from the ideal value by 10% (c = 1.1 2t0

Eh
). The

development of the gap volume, the pressure and the stop criterion during
the iteration are depicted in Figure 8. The iteration was stopped when

max(|pn+1 − pn|) ≤ 10−7 N

mm2
. (45)

t0 −∆t

h0 +∆h

1mm 1m
m

0.5mm

0.1mm

0.5mm

t0 = 0.5mm

h0 = 0.09mm

t0 = 0.5mm

a) original state b) midsurface discretization

c) beginning of iteration d) end of iteration

t0 −∆t

Fig. 7. Application of the artificial compressibility method. a)two blocks with their
midsurface in the original state; b) discretisation of the midsurface; c) state at the
start of the iteration after the upper block has been displaced; d) state at the end
of the iteration where the gap has the same size as in the original state and the
blocks have deformed
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Fig. 8. Application of the artificial compressibility method. a) development of the
gap volume; b) development of the pressure; c) development of the criterion on
logarithmic scale

In Figure 8 it can be observed that the gap volume converges to its original
value of 0.1mm3 and that the pressure converges to the analytically deter-
mined value of 0.15 N

mm2 .

4 Conclusions and Outlook

In this paper a contact element developed for the contact analysis in synovial
joints is outlined. The midsurface between the cartilage layers is chosen to
geometrically represent the synovial gap and the synovial fluid. The thickness
of the synovial gap varies over this surface. The description of the synovial
fluid as an incompressible viscous fluid is based on the stationary Stokes flow
equations. As the problem is solved on a curved surface convective coordi-
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nates are introduced. The convective normal vector is scaled with the local
thickness. This scaling leads to the mass balance being fulfilled even if the
thickness varies over the domain.
The contact algorithm consists of a staggered iteration scheme for solving
the fluid structure interaction problem. Within this iteration the computed
solid displacements change the thickness distribution of the fluid domain. In
order to account for these thickness changes, source terms representing the
corresponding displaced volume are introduced.
The joint capsule prevents the fluid from flowing out of the synovial gap so
that a fluid structure interaction problem with a fully enclosed fluid has to
be solved. For this purpose an artificial compressibility is introduced which
vanishes during the iteration.
For the numerical simulation of hip joint contact a three-dimensional finite
element model of the involved osseous structures, namely the femoral head
and the pelvic bone was generated. The next step is to include the cartilage
layers into the model. The fluid exchange between the synovial gap and the
cartilage layers will also be taken into account. The cartilage will therefore
be modelled as a fluid saturated porous medium. A contact description incor-
porating fluid exchange then allows for investigations of nutrient transport
in the hip joint.
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Abstract. A convenient constitutive model of the complex brain-tissue aggre-
gate is presented in the framework of the well-established Theory of Porous Media
(TPM) which is suitable for various numerical simulations of medical relevance. The
continuum-mechanical model bases on an elastically deformable solid constituent,
which is provided by the nervous tissue cells and the blood vessel walls. This skele-
ton is completely permeated by two viscous, materially incompressible pore-liquid
constituents, the interstitial fluid and the blood plasma. The liquids are mobile
within the solid skeleton and exhibit a significant anisotropic perfusion behaviour
which has to be taken into account. Special attention is applied to the so-called
convection-enhanced drug delivery which is a modern clinical application in their
infancies, where an extra-vascular infusion of therapeutic agents for the effective
treatment of malignant brain tumours is carried out. Therefore, the interstitial fluid
is treated as a real mixture of a liquid solvent and a dissolved therapeutic solute.
Due to the strong coupling of the solid-liquid-transport problem, the resulting set
of coupled partial differential equations is spatially discretised using mixed finite
elements with an implicit Euler time-integration scheme to solve the considered
problem in a monolithic manner. The presented numerical accessibility enables the
possibility for un-bloody studies concerning the infusion process.

1 Introduction

Without doubt, the brain is one of the most important organs for humans.
Its key role as control centre for men is compromised by an amount of brain
diseases, such as strokes or cerebral tumours. The occurring irregularities
can appear suddenly and often result in life-threatening effects. Therefore, a
profound understanding of the complex human brain is of great scientific in-
terest. Due to the fact that the microscopic composition of the nervous brain
tissue consists of several different components, it is surprising that the first
serious approach to model human brain tissue in the sense of a multi-phase
material was only carried out in 2006 by the group of Holzapfel [12]. Therein,
the modelling approach of human brain tissue incorporates the compartments
of brain tissue and interstitial fluid but neglects the blood constituent. This
was sufficient for the considered in vitro studies. However, this somehow in-
complete approach is commonly used until today even for in vivo studies of
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human brain tissue. Therefore, an entire modelling approach including also
the blood constituent is presented in this contribution in order to describe in
vivo brain tissue properly. As far as we are aware, this is done here for the
first time.
The application of the presented model to an example of medical relevance is
motivated by the fact that brain cancer is probably the most serious disease.
The treatment of cancer improves, but there is still an urgent clinical need
for an advanced therapy of brain tumours such as malignant gliomas. The
blood-brain barrier (BBB) effectively separates the delicate brain tissue from
the intra-vascular space. Hence, drug delivery to malignant brain tumours
via the bloodstream is hindered. Therefore, modern clinical applications pro-
ceed from a direct infusion of a solution containing the therapeutic agents in
the extra-vascular space of the brain tissue using implanted catheters, which
are individually connected to medication pumps. This pioneering method is
called convection-enhanced drug delivery (CED) and was first proposed by
Bobo et al. [5]. In comparison with diffusion-based applications, convection-
enhanced technology distributes therapeutic agents to a significantly larger
tissue volume, resulting in a greater efficacy [5, 13, 14]. The CED models pre-
sented by Smith & Humphrey [20], Chen & Sarntinoranont [7] and Linninger
et al. [16] includes a lot of main processes during an infusion, but a proper
description of the coupling effects and the deformable porous tissue skele-
ton is missing. The possibility to simulate a simplified infusion process has
been provided in the meantime by a commercial surgical planning software
(iPlan R©Flow, Brainlab, Feldkirchen, Germany, http://www.brainlab.com).
Hence, the prediction of drug distribution in human brain tissue seems to be
achieved. Nevertheless, all investigations up to now have been insufficient to
predict the distribution profile of the applied therapeutics adequately. In our
opinion, the main reasons for this are the decoupled solution strategies as
well as the lack of a proper description of the deformable tissue. These short-
comings will be addressed here in order to build a sound basis for further
investigations.

2 Tissue Properties of Human Brain Matter

2.1 Anatomy of the Human Brain

From an anatomical point of view, the cerebrum of the human brain can be
macroscopically regarded as an assembly of several lobes. Under the cere-
brum, the cerebellum and the brain stem are placed, see Figure 1. In general,
the grey matter at the cerebral cortex of the brain encloses the white matter
in the inside of the brain. At the right side of Figure 1, one can recognise a
part of the inner cavity of the brain, the ventricles, which are filled with cere-
brospinal fluid (CSF). Additionally, there is the well branched blood vessel
system, which is responsible for an overall oxygen transport to the brain tis-
sue and provides the evacuation of pollutants out of the brain. A microscopic
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Fig. 1. Geometry of the human brain (left), adapted from Bear et al. [4], and frontal
cross section (right), adapted from Lippert [17]

view in Figure 2 points out that the cell bodies (nucleus) of the neurons are
located in the grey matter, whereas, in the white matter, the myelin sheath
of neurons (axons) are found. The permeability of white matter changes in
accordance with the directional alignment and density of fibres. Therefore,
white matter diffusion is anisotropic and white matter properties are hetero-
geneous. The permeability in grey matter is almost the same in all directions
and can be assumed to be isotropic.

cell bodys axone synapse

grey matter white matter

Fig. 2. White and grey matter, adapted from Schünke et al. [19]

2.2 General Physical Behaviour of Brain Tissue

Franceschini et al. [12] showed with in vitro experiments that human brain
tissue (samples from the parietal lobe) behaves like a porous fluid-saturated
medium. Therefore, a uni-axial strain machine with properly defined drain-
ing conditions (free drainage at the bottom and top surface; side surface
impermeable and rigid) was used, see Figure 3 (left). The tissue samples are
loaded by the stress q = 8.846kN/m2 (corresponding to an external force of
6N distributed over the top surface). By use of this device, it was possible
to distinguish between a viscous behaviour of a single-phase material and an
ongoing consolidation process of a multiphase material, see Figure 3 (right).
This experiment was recalculated [25] with a biphasic model (bloodless tissue



20 W. Ehlers & A. Wagner

q

permeable

impermeable co
n
so
li
d
a
ti
o
n
ra
ti
o

simulation

experiment

0.0

0.1

0.4

0.8

1 10 100 1000
t [min]

Fig. 3. Boundary conditions (left) and results (right) of the oedometric test

and interstitial fluid) using the finite element software 1Pandas in order to
survey the general physical behaviour. The vertical displacement u1 of the
top surface rises due to the ongoing consolidation process, see Figure 4 (left).
The external stress q causes at first a high effective pressure pIR of the in-
terstitial fluid and is transferred to the solid skeleton by an increase of the
solid extra stress T S

E 11 during the efflux of the interstitial fluid on the drained
surfaces, see Figure 4 (right).
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Fig. 4. Displacements on the top surface u1 (left) and evolution of the interstitial
fluid pressure pIR and the solid extra stress TS

E 11 (right)

3 A Biphasic Four-Component Modelling Approach

for Human Brain Tissue

3.1 Modelling Concept and Theoretical Fundamentals

Due to the complex and partially unknown local composition of the nervous
brain tissue, a continuum-mechanical modelling process based on the well-
founded TPM, e. g. Ehlers [9, 10], is absolutely meaningful to describe human
brain tissue in a sufficient way. For the issues under consideration, a biphasic
four-component model is proposed based on a note of Wagner & Ehlers [26],
cf. Figure 5. It consists of an elastically deformable solid skeleton ϕS pro-
vided by the tissue cells, which is perfused by two liquid phases, the blood
plasma ϕB and the interstitial fluid ϕI . In order to be able to describe the

1 Porous media Adaptive Nonlinear finite element solver based on Differential
Algebraic Systems (http://www.get-pandas.com)
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Fig. 5. Representative elementary volume (REV) with exemplary displayed micro-
structure of brain tissue and multi-phasic modelling approach

distribution process of the inserted therapeutic agent, the interstitial fluid
phase is furthermore treated as a real chemical mixture of two components.
This solution consists of a liquid solvent ϕL and the dissolved therapeutic
solute ϕD.

Immiscible Components and Volume Fractions The homogenisation of
the microscopic physical quantities over a representative elementary volume
(REV) leads to a model of superimposed and interacting constituents. In
order to account for the local compositions of the aggregate, scalar structure
parameters, nα = dvα/dv, are introduced according to the concept of volume
fractions. The volume fractions nα of the constituents are defined as the local
ratios of the partial volume elements dvα with respect to the volume element
dv of the overall aggregate. Assuming fully saturated conditions (no vacant
space within the domain) leads to the well-known saturation condition

∑
α nα = nS + nB + nI

︸ ︷︷ ︸
nF

= nS + nB + nL + nD

︸ ︷︷ ︸
nI

= 1 . (1)

Furthermore, saturation-like measures

s̄ξ =
nξ

nF
with ξ = {B, I} (2)

are introduced, describing the volumetric amount nξ of a single liquid in
comparison to the overall liquid volume fraction nF . Here, one has to mention
that the liquids are not situated in the same pore space, but in the common
extracellular space. Therefore, the measures s̄ξ are not saturations in the
classical meaning. In the context of the homogenisation process of porous
materials, there are two different densities to be introduced. The realistic
(material) density ραR = dmα/dvα is defined by the local mass element
dmα with respect to its partial volume element dvα, while the partial density
ρα = dmα/dv is defined by the local mass element dmα divided by the volume
element dv of the overall aggregate. This leads to the dependency

ρα = nαραR . (3)
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That means, the property of material incompressibility (ραR = const.) will
not necessarily lead to the property of bulk incompressibility of this con-
stituent, since the partial density functions ρα can still chance due to a vari-
ation in the volume fractions nα. Moreover, the sum of all partial densities
ρα yields the density ρ of the overall aggregate.

Miscible Components and Molar Concentrations The basic relations
and definitions for the overall interstitial fluid ϕI , which is a real mixture
(chemically spoken a solution) of the miscible constituents ϕβ (with β =
{L, D}) will be given here based on Ehlers [10]. In this solution, the con-
stituent with the largest amount is called the solvent ϕL, while the other
component is denoted as solute (i. e. the dissolved therapeutic molecules ϕD).
Proceeding from the fact that volume fractions cannot be measured in case
of this real mixture, the mixture components are considered by their partial
densities ρβI , defined with respect to the interstitial pore space (pore densi-
ties). Thus

ρβ =: nI ρβI , where ρβI = cβm Mβ
m and ρIR =

∑

β=L,D

ρβI . (4)

Therein, the molar concentration cβm = dnβ
m/dvI , the molar mass Mβ

m and
the local number of moles dnβ

m are included. Since Mβ
m is a constant of the

species ϕβ , the pore density ρβI and, thus, the effective pore-fluid density ρIR

can change through a variation in the molar concentration cβm.

Kinematics In order to guarantee independent motion functions, each con-
stituent follows its own individual motion x = χα(Xα, t) and has its own

velocity field
′

xα= dχα(Xα, t)/dt with respect to different reference positions
Xα. Based on the fundamental assumptions of the TPM, it is assumed that
any spatial point x of the current configuration is simultaneously occupied by
material points of all constituents. In porous media theories, it is generally
convenient to proceed from a Lagrangean description of the solid matrix via
the solid displacement uS = x −XS as the primary kinematic variable. In
contrast, the pore-fluid flow is better expressed in a modified Euler ian setting

via the seepage velocities wξ =
′

xξ −
′

xS describing the fluid velocities in rela-
tion to the velocity of the deforming solid skeleton. For the overall interstitial

fluid mixture, the pore diffusion velocity of ϕβ is given by dβI =
′

xβ −
′

xI .

3.2 Balance Relations and Constitutive Settings

The governing equations for the multi-phasic tissue bases on the metaphysical

principles given in Truesdell [21]. Postulating quasi-static processes (
′′

xα= 0)
at a common constant temperature (approximately 37◦C for living biological
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tissues) and exclude mass exchanges (such as phase transitions and chemical
reactions) leads to a purely mechanical model governed by the following mass
and momentum balances

0 = (ρα)′α + ρα div
′

xα ,

0 = divTα + ρα bα + p̂α

}
where





α = {S, B, L, D}

ϕI =
⋃

β=L,D

ϕβ . (5)

Therein, Tα denotes the partial Cauchy stresses, bα the body forces and
p̂α the direct momentum production terms. The formulation of the mass
balances given in Equation (5)1 is valid for healthy tissue. However, results
from clinical applications of CED by Voges et al. [23] indicates that uptake
of therapeutic agents into the blood vessel system can occur in the imme-
diate vicinity of a brain tumour. To include this leakage into the modelling
approach would require a density production term for the liquid constituents,
which is not carried out in this contribution.

Concentration Balances of the Interstitial Fluid Components The
local mass balances of the components ϕβ of the overall interstitial fluid can
be written according to Equation (5) as

(ρβ)′β + ρβ div
′

xβ = 0 . (6)

An insertion of appropriate relationships given in Section 3.1 leads to

(nIcβm)′S + div (nIcβm wβ) + nIcβm div (uS)
′

S = 0 . (7)

The concentration balance can be rearranged with the help of the time deriva-
tive of the saturation condition (1). It follows with the expression

(nI)′S = (nS + nB) div (uS)
′

S + div (nBwB) (8)

that the concentration balance of the therapeutic agent ϕD can also be writ-
ten in the alternative form

nI(cDm)′S + cDm div (uS)
′

S + div (nIcDm wD) + cDm div (nBwB) = 0 . (9)

Volume Balance of the Overall Interstitial Fluid The overall intersti-
tial fluid is composed by the components ϕβ . The mass balance of the overall
interstitial fluid ϕI can be obtained by a summation over the particular mass
balances of its components ϕβ yielding

(ρI)′I + ρI div
′

xI = 0 . (10)

The volume balance of the overall interstitial fluid is not derived from Equa-
tion (10) due to the fact that ρIR is not necessarily constant, cf. Section 3.1.
Therefore, we rather proceed from the mass balance of the liquid solvent ϕL
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with the assumptions that the volume fraction of the drug is negligible in com-
parison to the volume fraction of the liquid solvent (nD ≪ nL → nL ≈ nI)
and, moreover, the velocity of the liquid solvent is approximately the same

as from the interstitial fluid (
′

xL≈
′

xI), see Ehlers [10]. The resulting volume
balance reads

(nI)′S + div (nIwI) + nI div(uS)
′

S = 0 . (11)

Volume Balance of the Blood Plasma The local mass balance of the
blood plasma ϕB is rewritten in the time derivative of ϕB with respect to
the solid motion and yields by use of the divergence theorem

(ρB)′S + div (ρBwB) + ρB div (uS)
′

S = 0 . (12)

Since the material density ρBR of the blood phase is constant, a combination
of (3) and (12) leads to the volume balance of the blood phase, viz.:

(nB)′S + div (nBwB) + nB div(uS)
′

S = 0 . (13)

Momentum Balance of the Overall Aggregate The quasi-static balance
of momentum of the overall aggregate is derived by the sum of all particular
momentum balances of the constituents ϕα. A uniform body force b for
all constituents is assumed, and the summation over all direct momentum
production terms p̂α leads to zero. Thus,

0 = divT+ ρb , where

{
T = TS +TI +TB

ρ = nSρSR + nIρIR + nBρBR .
(14)

Therein, T denotes the overall Cauchy stress tensor, and ρ is the density of
the overall body.

Constitutive Settings In general, the above set of coupled partial-different-
ial equations incorporates several independent fields. To close the set of gov-
erning equations, constitutive relations are required for the partial Cauchy
stresses Tα, the direct momentum production terms p̂ξ of the pore-liquid
components and p̂D of the therapeutic agent component. In addition, there
is the need to formulate a further constitutive equation for a saturation func-
tion s̄B of the blood constituent in order to be able to determine the volume
fractions of all constituents.

The overall Cauchy stress T is derived within the concept of effective stress.
Osmotic effects are basically not considered. In the partial stress tensors
Tξ = T

ξ
E − nξpξR I of the pore liquids, the extra-stresses Tξ

E are neglected,
see Ehlers [9]. The friction of the liquids in the pore compartments is con-
sidered in an implicit manner within the Darcy permeabilities. The partial
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stress TS = TS
E − nS

P I of the solid skeleton is used with the relation

P = s̄B pBR + s̄I pIR for the summation of all particular stresses yielding

T = TS
E −

nB

(1− nS)︸ ︷︷ ︸
s̄B

pBR I−
nI

(1− nS)︸ ︷︷ ︸
s̄I

pIR I .
(15)

The description of the elastically deformable solid skeleton is carried out
using a linear elastic Hookean law

TS
E ≈ σS

E = 2µS εS + λS (εS · I) I , (16)

which describes the solid extra stress as a function of the solid displacement
vector uS concerning small strains

εS = 1

2
(graduS + gradTuS) . (17)

Of course, the material modelling of the solid tissue behaviour could be ex-
tended to finite strains with viscous effects, but until now, a proper agreement
concerning the elastic material parameters µS and λS is still missing. Hence,
the modelling benefit would not exceed due to the inaccuracy of the viscous
parameters.

Insertion of the postulated liquid extra momentum production terms

p̂
ξ
E = −nξ γξR(Kξ)−1 (nξ wξ) (18)

into the liquid momentum balances (5)2 yields the Darcy-like filter laws

nξ wξ = −
Kξ

γξR
(grad pξR − ρξR b) , (19)

where γξR is the effective fluid weight and Kξ = γξR KSξ/µξR is the Darcy

permeability. As already seen, two different intrinsic permeabilities KSξ are
introduced, one for the tissue perfusion by blood and one by the interstitial
fluid. Furthermore, one can also include anisotropic perfusion through the
specific choice of the coefficients of the permeability tensors, see Section 3.3.
The seepage velocity of the therapeutic agent wD = dDI +wI is additively
combined by the distribution of the drug via the interstitial fluid flow wI

and a concentration-driven pore diffusion velocity dDI . The distribution law
for the therapeutic agent constituents can be derived in analogy to (19), as
shown in Acartürk [1], with the neglect of non-existent electric potentials.
Insertion of a constitutively introduced extra production term

p̂D
E = −nIRΘ (DD)−1 (nIcDm dDI) (20)

of the therapeutic agent constituent into the therapeutic agent momentum
balance (5)2 leads to a Fick -like distribution law

nIcDm dDI = −DD grad cDm . (21)
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Therein, DD denotes the effective drug diffusion tensor which can be ob-
tained by diffusion-weighted magnetic resonance imaging, see Section 3.3.
It has been left out until now that, generally, also all volume fractions of
the constituents are basically unknown. The evolution of the volume fraction
nS = nS

0S (detFS)
−1 of the solid skeleton can be derived by a formal inte-

gration of the volume balance of the materially incompressible solid skeleton
and the knowledge of the initial solidity nS

0S . The volume fraction of the
therapeutic agent can be neglected (nD ≈ 0), but the volume fractions of
the pore liquids remain unknown. Therefore, only the saturation condition,
Equation (1), is available. Hence, one additional constitutive equation has to
be found in order to describe the division for the volume fractions of the liq-
uids during a deformation process. A simple but definitely meaningful choice
is a constant blood volume fraction, such as nB = nB

0S = 0.05. Herein, the
inherent stability of the blood-vessel system is taken into account, and a
change in solidity would only interact with the volume fraction of the inter-
stitial fluid. This allows the determination of the interstitial volume fraction
via nI = 1 − nS − nB

0S . Further possibilities appear by the development of
pressure-saturation relations, where the pressure difference∆p = pBR−pIR is
introduced. A proposal for a constitutive trigonometric saturation-like func-
tion reads

s̄B(∆p) = 1

π

(
arctan (∆p− 1)

)
+ 0.5 (22)

and is shown in Figure 6. This leads to a replacement of the interstitial fluid
if the pressure difference ∆p is positive and soft elastic blood vessel walls
are assumed. Therefore, the liquid with the lower pressure can be simpler
pushed away in the case of a deformation. This knowledge allows now for the
determination of the particular volume fractions

nB = s̄B nF → nI = (1− s̄B)nF = 1− nS − nB. (23)

s̄B [ – ]

∆p [kPa]105−5−10−15 0

0.2

0.4

0.6

0.8
s̄B(∆p)

Fig. 6. Trigonometric, pressure-saturation relation
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3.3 Investigation of Perfusion Parameters

Isotropic Representation For isotropic permeability properties, the per-
meability tensors for the liquid constituents simplify to Kξ = Kξ I. Herein,
Kξ = kξ / γξR denotes the specific permeability with kξ as hydraulic conduc-
tivity. That means, only scalar permeability material parameters are required.

Anisotropic Representation Actually, the tissue properties of white mat-
ter are strongly characterised by its heterogeneous and anisotropic nature.
In contrast to the isotropic properties which are valid for the grey matter,
the diffusion coefficient in white matter blows up to a second order tensor
describing anisotropic perfusion. The physical quantities, particularly the dif-
fusion tensor DD and the permeability KSI

0S of the interstitial fluid, can be
obtained by patient-specific diffusion-weighted magnetic resonance imaging
(DW-MRI). Basser et al. [3] proposed the first approach for the estimation
of permeability characteristics from spin-echo experiments. This outstanding
feature made it possible to obtain informations about the micro-structure of
human brain tissue. Until today, a wide range of new applications and im-
provements are developed, and DW-MRI is established as an essential tool
in modern medicine. To apply the previously presented model to a realistic
scenario, information about the white matter, where the therapeutic agent is
infused, is needed. Due to the fact that every human being is unique, patient-
specific parameters have to be found in vivo in order to include them in the
modelling approach. For a better illustration of the tissue anisotropy, one can
visualise the diffusion at each voxel as an ellipsoid in order to distinguish be-
tween white and grey matter areas and cerebrospinal fluid spaces due to the
shape and the size of the ellipsoids. Additionally, one can identify the white
matter fibres in order to detect the connectivity of brain areas. But we do
not focus here on the visualisation methods but on the diffusion parameters
which are used in the further calculations. The symmetric, positive definite
apparent water-diffusion tensor Dn

awd from raw diffusion tensor imaging can
be written at each voxel as

Dn
awd = Dn

ik ei ⊗ ek =



Dn

11 Dn
12 Dn

13

Dn
21 Dn

22 Dn
23

Dn
31 Dn

32 Dn
33


 ei ⊗ ek , (24)

where n denotes the voxel number. This tensor can be further fragmented
into eigenvectors and eigenvalues for each voxel and calibrated for the de-
termination of tissue properties, as proposed in Sarntinoranont et al. [18] or
Linninger et al. [16]. The basic assumption behind the calibration procedure
is that Dawd possesses the same eigenvectors as DD and KSI

0S , as proposed
by Tuch et al. [22]. This is a reasonable assumption in brain tissue, but
one should have in mind that the water molecules detected in DW-MRI can
diffuse through the tissue cells, whereas the infused macro-molecules of the
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therapeutic agent cannot, see Vorisek & Sykova [24]. This can probably cause
a small inaccuracy in the distribution modelling. The calibration approach
proceeds from the decomposition of the diffusion tensor at each voxel into
eigenvalues γn

i,awd and eigenvectors vn
i , leading to the representation

Dn
awd =



γn
1,awd 0 0

0 γn
2,awd 0

0 0 γn
3,awd


vn

i ⊗ vn
i , (25)

with the mean of the eigenvalues

γ̄n
awd = (γn

1,awd + γn
2,awd + γn

3,awd)/3 . (26)

Reference values from the literature for the permeability of the therapeutic
agent D̄D and the permeability for the interstitial fluid K̄I are used to scale
the eigenvalues of Dn

awd via

γn
i,DD,n = D̄D

γn
i,awd

γ̄n
awd

and γn
i,KI,n = K̄I

γn
i,awd

γ̄n
awd

. (27)

This procedure provides the effective drug diffusion tensor DD,n and the
anisotropic permeability tensor KSI,n

0S for each evaluated voxel:

DD,n =

3∑

i=1

γn
i,DD,n (vi ⊗ vi) and K

SI,n
0S =

3∑

i=1

γn
i,KI,n (vi ⊗ vi) . (28)

Herein, DD,n accounts for both, the molecular properties of the therapeutic
agent and the tissue anisotropy. The permeability is obviously higher in the
direction of the white-matter fibre tracts. Since the eigenvalues correspond
in their physical meaning to the transport magnitudes in the directions per-
pendicular and parallel to the aligned fibre directions, this will lead to a
coincidence of two eigenvalues, see Kim et al. [15]. Due to the irregular dis-
tribution of the anisotropic perfusion parameters, it is impossible to define
a closed analytical form for the perfusion parameters. A short overview of
the implementation algorithm of the anisotropic permeabilities is shown in
Figure 7 (left). It is not that easy to find freely available datasets of DW-
MRI. Normally, they are belonging to the patients and are rarely carried out
for healthy people. The data set used here was obtained from the internet
(http://www.sci.utah.edu/∼gk/DTI-data/) in order to demonstrate the
feasibility of the implementation. The dataset consists of a human-readable
Ascii header file (.nhdr), which provides the information about the corre-
sponding binary file (.raw), where the voxel data is stored. A custom Matlab
code reads the binary data, provides the possibility for data visualisation and
converts it into a plain Ascii file. Some data cosmetics have to be derived
in between, such as all datasets with negative eigenvalues are shifted out
(because the tensor is not positive definite). Thus, the dataset is thinned out
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in vivo measurements

diffusion tensor imaging (DTI)

→ raw binary voxel data

preparation of data

custom Matlab code

→ data cosmetics

numerical simulation
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→ preceding computation
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Fig. 7. Sketch of the implementation algorithm (left), area of interest for anisotropic
permeabilities (middle) and visualisation of diffusion tensor ellipsoids (right)

until the area of interest remains in order to save calculation time. This “look-
up table” is independent from the finite-element mesh. Here, the data points
shown in Figure 7 (right) are considered. In this case, the special focus lies in
description of the infusion process. Hence, only data sufficiently close to the
infusion site have a ruling influence. The corresponding diffusion-tensor data
with constant coefficients in the manner of a “look-up table” is then loaded
in a preceding calculation step in the FE software tool Pandas and allocated
at each Gauss point for the numerical simulation, afterwards.

4 Numerical Implementation

Recapitulating Chapter 3, human brain tissue is fully described by the pre-
sented multiphasic modelling approach and can be solved numerically. The
primary variables of an initial-boundary-value problem (IVBP) are the solid
displacements uS (associated to the momentum balance (14) of the overall
aggregate), the effective pore pressures pξR (corresponding to the volume bal-
ances (11), (13) of the liquids), and the concentration cDm (belonging to the
concentration balance (7) of the therapeutic agent).

4.1 Weak Formulation

In order to solve the system of strongly coupled differential equations numer-
ically, the local (strong) forms of the governing balance equations have to be
transferred into weak formulations. Ongoing from weighting the quasi-static
formulation of the balance of momentum (14) by the corresponding vectorial
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test function δuS , an integration over the spatial domain Ω leads to the weak
formulation

GuS
≡

∫

Ω

T · grad δuS dv −

∫

Ω

ρb · δuS dv −

∫

Γt

t · δuS da = 0 . (29)

Herein, t = Tn denotes the stress vector acting on the boundary of the
overall aggregate, and n is the outward-oriented unit normal. That allows an
explicit consideration of Neumann boundary conditions for initial-boundary-
value problems. The liquid balance equations (11) and (13) are analogously
multiplied with an independent scalar test function δpξR, an integration over
the spatial domain Ω leads to weak formulation of the liquid volume balances

Gpξ ≡

∫

Ω

δpξR [(nξ)′S + nξ div(uS)
′

S ] dv−

−

∫

Ω

nξwξ · gradδp
ξR dv +

∫

Γ
vξ

δpξR v̄ξ da = 0 ,

(30)

where v̄ξ = nξwξ · n is the volume efflux out of the domain. The resulting
weak formulation for the concentration balance of the therapeutic agents GcDm
is derived analogously from Equation (7) and reads

GcDm
≡

∫

Ω

δcDm [(nIcDm)′S + nIcDm div (uS)
′

S ] dv−

−

∫

Ω

nIcDmwD · grad δcDm dv +

∫

Γ
̄D

δcDm ̄D da = 0 ,
(31)

where ̄D = nIcDm wD · n is the molecule efflux of the therapeutic agent.

4.2 Spatial Discretisation and Mixed Finite Elements

The spatial discretisation of coupled problems within the framework of the
finite element method requires mixed finite element formulations, see e. g.
Ellsiepen [11]. This is particularly necessary for the strongly coupled bipha-
sic four-component model of human brain tissue. Therefore, in addition to the
primary variable solid displacement uS , all other primary variables, namely,
the interstitial fluid pressure pIR, the blood pressure pBR and the molar
concentration cDm of the therapeutic agent have to be approximated simulta-
neously. By doing so, the spatial domain occupied by the overall aggregate is
subdivided into finite elements yielding an approximation of the continuous
domain by the discrete domain. This discretisation yields a finite-element
mesh with nodes for the geometry approximation, on which the following
discrete test and field functions are defined:
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uS(x, t) ≈ uh
S(x, t) = ūh

S(x, t) +

NuS∑

j=1

φj
uS

(x)uj
S(t) ,

pξ(x, t) ≈ pξh(x, t) = p̄ξh(x, t) +

N
pξ∑

j=1

φj

pξ (x) p
ξj(t) ,

cDm(x, t) ≈ cDh
m (x, t) = c̄Dh

m (x, t) +

N
cDm∑

j=1

φj

cDm
(x) cDj

m (t) .

(32)

A standard Galerkin method is applied using the same ansatz functions for
the test and the field functions. The main difficulty in using such a mixed
formulation lies behind the choice of the proper shape (ansatz) functions.
The chosen shape functions are not arbitrary but have to fulfil the so-called
inf-sup condition for the stability of the numerical solution as discussed in
the work of Brezzi & Fortin [6]. In the present study, a possible choice for a
stable numerical solution is made, namely, quadratic shape functions for the
approximation of the solid displacement uS and linear shape functions for the
pore-liquid pressures pIR, pBR and the molar concentration cDm. Therefore,
the previously mentioned stability condition is fulfilled. This type of mixed
finite elements is known as extended Taylor-Hood elements (Figure 8).

Fig. 8. Extended Taylor-Hood Elements: • displacement uh
S ; ⊙ displacement uh

S,
pressures pξh and concentration cDh

m

4.3 Coupled Solution Procedure

The weak formulations of the governing balance equations are given in an
integral representation. For the numerical treatment of such integrals, the
Gauss quadrature is appropriate, see Zienkiewicz & Taylor [27]. The benefit
is the possibility to transform a continuous integral to a numerically accessible
summation. Within this contribution, the hexahedral Taylor-Hood elements
are fully integrated with 27 Gauss points. Since the continuous weak forms
are now spatially discretised, the semi-discrete system will be written in an
abstract formulation following Ammann [2]. For this, all degrees of freedom
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(DOF) of the system, these are the Nn nodal unknowns of each primary
variable, are gathered in a vector u such that

u = [(u1
S , p

IR,1, pBR,1, cD,1
m ), ... , (uNn

S , pIR,Nn , pBR,Nn , cD,Nn
m )]T . (33)

The vectorial quantity uS has three elements, one for each spatial direction.
Following this and expressing the only appearing material time derivative
with respect to the deforming solid skeleton ( · )′S via ( · )′, the so-called semi-
discrete system can be written in an abstract description as

F (t,u,u′) = [M u′ + k(u)− f ]
!
= 0 , (34)

where u(t0) = u0 . Therein, M is the generalised mass matrix, k the gen-
eralised stiffness vector and f the generalised force vector consisting of the
Neumann boundary conditions. For a more detailed discussion on the topic
solving the above equation, the interested reader is referred to the works of
Diebels et al. [8] or Ellsiepen [11]. The above derived semi-discrete system
still needs to be discretised in the time domain. For this purpose, the implicit
(backward) Euler method defined by the backward Taylor series evaluated at
the current time step tn+1 will be used:

un = un+1 − u′

n+1(tn+1 − tn) −→ u′

n+1 =
un+1 − un

tn+1 − tn
. (35)

Therein, n denotes the old time step. Since this scheme is unconditionally
stable, this is the time-integration strategy, which is applied to the set of
differential-algebraic equations (34) introduced above.

5 Numerical Examples

Initial-boundary-value problems (IBVP) can now be numerically evaluated
in order to show the applicability of the modelling approach. We focus in this
proposal on the numerical simulation of the distribution process of therapeu-
tic agents, which are inserted into the brain tissue to treat malignant brain
tumours. One prefix numerical example introduces the governing effects dur-
ing an insertion of therapeutic agents. Afterwards, the main application is
carried out in the numerical simulation of CED. Gravity forces are further-
more neglected in all numerical examples.

5.1 Extra-Vascular Insertion of Therapeutic Agents

Of course, a therapeutic agent could be applied intravenous, that means, it is
allocated by the blood circulation. After reaching the target area, the widely
diluted therapeutic agent has to pass in addition the BBB to enter the tis-
sue. Unfortunately, this passing is not possible for the macro-molecules of
the commonly used therapeutic agents. Therefore, the problem is addressed
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from the other side by an insertion of the therapeutic agent directly into the
extra-vascular space in order to bypass the BBB. Here, two different basic ap-
proaches can be distinguished. On the one hand, the implantation of so-called
release systems can be realised (this guarantees at a certain spatial point a
constant concentration). The disadvantage using release systems is that parti-
cles are distributed solely by diffusion and the resulting concentrations in the
tissue reach therapeutically effective levels only within small tissue compart-
ments. This comes from the fact that this distribution is mainly dependent on
the concentration gradient and the molecular size of the inserted therapeutic
agents. Hence, the effective diffusivity decreases in general with an increasing
molecular weight. On the other hand, a long-lasting infusion can be realised
by an influx of a solution containing the dissolved therapeutic agent. The
transport of the infused molecules is then additionally driven by the present
liquid flow of the solution. A comparison of these two methods in Figure 9
shows, that the distribution of a therapeutic agent is more efficient if the
particles are transported within the interstitial fluid flow. One can clearly
see that an infusion reaches larger target areas and supplies them with the
administered drugs.
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Fig. 9. Geometry (top) and comparison of the methods (bottom)

5.2 Simulation of Convection-Enhanced Delivery of Therapeutics

As was seen in Section 5.1, the application of an infusion of a solution con-
taining the dissolved therapeutic agent is attractive for an effective treatment
of malignant brain tumours, where a sufficient distribution is needed. This
leads to modern clinical applications, such as the CED, with which we want
to deal in detail in this numerical example. As already mentioned, the treat-
ment of tumours with therapeutic agents administered through the vascular
system is not effective in the human brain due to the BBB which protects the
brain tissue against pollutants, as which the therapeutic agent is also seen.



34 W. Ehlers & A. Wagner

pIR = 0

catheter position

v̄I , cDm

parameter value unit

µS = 3.571 [kN/m2]

λS = 14.286 [kN/m2]

nS
0S = 0.75 [-]

nB
0S = 0.05 [-]

nI
0S = 0.20 [-]

µIR = 0.89 · 10−3 [Ns/m2]

Fig. 10. Geometry of a horizontal brain section and the catheter position with the
corresponding boundary conditions for the CED (left); material parameters (right)

Therefore, the practising surgeon drills small holes into the skull and place up
to three catheter directly into the brain parenchyma. The therapeutic agents
are then directly infused into the extra-vascular space within a solution. The
pressure gradient generated by external medical pumps initiates an intersti-
tial fluid flow and, therefore, the distribution of the therapeutic agents. This
distribution process will now be numerically examined at a realistic geom-
etry, a horizontal section of the human brain. For the spatial discretisation
of the domain, approximately 2100 extended hexahedral 3-d Taylor-Hood el-
ements are used, as described in Section 4.2. One has to mention that all
formulations are derived in a 3-d geometry, even if a quasi 2-d geometry
(one element in the thickness direction) is chosen to study the infusion pro-
cess. As is shown in Figure 10, the catheter is virtually placed in the brain
tissue, and over the surface, the corresponding boundary conditions for an
infusion of a solution containing the dissolved therapeutic agent are applied.
To be more precise, an influx of the interstitial fluid volume v̄I containing
the therapeutic agent with an inlet concentration cDm. The chosen values in
Table 1 correspond to an usual application dose. On the outside of the brain
(cortex) and the inner ventricles, the interstitial fluid pressure is set to zero,
and an efflux of interstitial fluid and therapeutic agents over these surfaces
is possible. The horizontal brain section is isostatically bedded in the inside,
whereas the outer surface is allowed to deform. In Figure 10, the key material
parameters for the computation are given. Therein, the material parameters
for the elastic solid skeleton are chosen accordingly to publications of Chen
& Sarntinoranont [7]. But one has to mention, that these in vivo elastic pa-

Table 1. Application dose of convection-enhanced drug delivery

load case influx of liquid v̄I inlet concentration cDm

infusion 3.33 · 10−7 [m3/m2s] 3.7 · 10−6 [mol/l]

(CED) (=̂ Q = 2.5 [µl/min])
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rameters vary with several orders of magnitude in literature and are still not
well determined. This might influence the distribution process of therapeutic
agents only a little, but the influence for the stress states during an infusion
process is crucial. Due to the fact that the local pressure should not exceed
dangerous values, there are recently efforts to obtain the elastic properties
from elastography, a MRI technique based on functional MRI. In contrast,
the initial volume fractions of the constituents are generally accepted. The
blood phase has around five volume per cent. The values for the interstitial
fluid vary between 15-20% and the remaining part results in the solidity.
One has to mention that the human brain consists approximately of 80% of
water, but the dominant part of the water is bounded in the cells, this leads
to a smaller porosity as probably suspected. The anisotropic parameters for
the diffusion tensor DD of the therapeutic agent and the permeability KSI

0S

for the interstitial fluid are location-dependent and determined as shown in
Section 3.3. This leads to the full anisotropic information at every Gauss

point. During the simulation, an adaptive time increment ∆tn is used for the
Euler time-integration scheme. In total, a time frame of about three days
was investigated. Figure 11 shows the anisotropic spread of the therapeutic
agent represented by the colour coding of the concentration of the therapeutic
agent at different time steps. Here, only the region of interest close to the in-
fusion point is depicted. One can see that the therapeutic agent is distributed
as expected in an irregular manner due to the anisotropic permeability pa-
rameters. So the propagation front is not smooth. During the distribution
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Fig. 11. Anisotropic distribution of the therapeutic agent during CED
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max pIR

min pIR

max nI

min nI

Fig. 12. Interstitial fluid pressure pIR (left) and volume fraction nI of the intersti-
tial fluid (right) during the infusion process

process, preferred flow directions can be observed. But the channels with less
concentration are closed due to the concentration gradients. In Figure 12,
the pressure distribution of the interstitial fluid is presented, which naturally
maximises at the infusion site of the catheter. The infusion pressure depends
strongly on the rate of infusion, the stiffness of the solid skeleton and the
permeabilities. The largest value of the interstitial fluid volume fraction in
Figure 12 is also found at the infusion site of the catheter, since the solid
constituent is displaced as a result of the infused solution.

6 Conclusions

An appropriate constitutive model based on the TPM was presented, which
is able to describe human brain tissue in a meaningful way and is also suitable
to map the process of infusion of therapeutic agents. This proposed model
was implemented in the software package Pandas making the numerical sim-
ulation of IBVP possible. As application under consideration, the convection-
enhanced delivery method for the treatment of brain tumours was discussed.
An important step was done in the meaningful consideration of anisotropies
and heterogeneities of the white matter tracts, as this influences the observed
irregular distribution of the infused therapeutic agents. Interesting topics on
which the authors currently work are influences of the penetrated catheter,
such as back-flow along the catheter shaft. The investigated model is able to
describe the physical effects in a qualitative correct manner but it is still nec-
essary to obtain correct material parameters in order to be able to predict the
realistic distribution of the therapeutic agent and to support the surgeons.
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Abstract. The construction of artificial muscles, nowadays, is one of the most chal-
lenging developments in biomedical science. The application of artificial muscles is
focussed both on the construction of orthotics and prosthetics for rehabilitation
and prevention purposes and on building humanoid walking machines for robotics
research. Research in biomechanics, a vital and broad field for over 80 years now
(A.V. Hill 1922: Nobel prize in physiology for his discoveries related to the pro-
duction of heat in the muscle), explains the function and design of real biological
muscles and therefore lays the fundament for the development of functional artifi-
cial muscles. Recently, the hyperbolic Hill-type force-velocity relation was derived
from simple mechanical components. It was shown that a contractile element (CE)
consisting of a mechanical energy source (active element, AE), a parallel damper
element (PDE), and a serial element (SE) exhibits operating points with hyperbolic
force-velocity dependency. In this contribution, the macroscopic ansatz to derive the
Hill relation is revisited and based on these ideas a technical proof of this concept
is presented. Therein, AE and PDE were implemented as electric motors, SE as a
mechanical spring. The force-velocity relation of this artificial CE was determined
in quick release experiments. This artificial CE exhibited hyperbolic force-velocity
dependency. Therefore, this proof of concept can be seen as a well-founded starting
point for the development of Hill-type artificial muscles. Moreover, we show how
the use of an antagonistic muscle actuator can help in stabilising a single inverted
pendulum model in favour of a control approach using a linear torque generator.

1 Introduction

Human and animal movement is driven by muscle, a biological elastic ac-
tuator. A glance at the complexity and variety of the generated movements
shows that muscle is a versatile, powerful, and flexible actuator [3, 12, 26, 30].
This is achieved because muscle can operate in different modes depending on
the contraction dynamics and the structural implementation [21, 25]. From
a robotics and prosthetics point of view, it would be desirable to have an
artificial actuator with similar capabilities [11]. The construction of artificial
muscles, nowadays, is one of the most challenging developments in biomedi-
cal science [1, 19]. The application of artificial muscles is focused both on the
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construction of orthotics and prosthetics for rehabilitation and prevention
purposes and on building humanoid walking machines for robotics research
[5, 20].
Research in biomechanics, a vital and broad field for over 80 years now (A.V.
Hill 1922: Nobel prize in physiology and medicine for his discovery relating
to the production of heat in the muscle), explains the function and design of
real biological muscles and therefore lays the fundament for the development
of functional artificial muscles. Nevertheless, structure and functioning of
biological muscles are not (yet) fully understood.
In biology, microscopic muscle models are able to predict muscle characteris-
tics and functioning of biological muscles quite well [16, 17, 22, 23, 27, 29, 32,
33]. Unfortunately and as a trade-off, they require a large number of param-
eters. In a bionics approach it is an enormous challenge to realise all these
properties of biological muscle in one artificial muscle at once [1].
Macroscopic muscle models are commonly based on phenomenology. Macro-
scopic muscle models are indeed of (limited) predictive character but do not
incorporate any structural knowledge. Recently, the non-linear (hyperbolic-
like) Hill-type force-velocity relation was derived from simple mechanical
components [9]. It was shown that a contractile element (CE) consisting of
a mechanical energy source (active element AE), a parallel damper element
(PDE), and a serial element (SE) exhibits operating points with non-linear
(hyperbola-like) force-velocity dependency. In this concept, the force-velocity
relation is no longer a phenomenological outcome of a black box (i. e. the CE)
but rather a physical outcome of the interaction of the three elements AE,
PDE, and SE. Based on this concept, it is now possible to describe in detail
which structural arrangement is necessary to get a biology-like force-velocity
relation on a macroscopic level. Therefore, this concept can be interpreted
as a basic engineering design for the CE of a Hill-type artificial actuator.
In this manuscript, the meaning of the structural arrangement of the simple
mechanical components already published, will be revisited. Furthermore, it
will be shown by one first example of a technical embodiment, how this con-
cept can help to construct more biologically-motivated artificial muscles. A
first demonstration of how an artificial muscle could help in the stabilisation
of a technical machine is theoretically shown by an antagonistic pair of our
muscle. The control of an inverted pendulum can be improved by the use of
a muscle-like drive in favour of a linear torque generator.

2 Material and Methods

Derivation of the Hill Parameters In a recent paper [9] it was demon-
strated that the phenomenologically found [14] hyperbolic force-velocity re-
lation of a concentrically contracting assembly of activated muscle fibres can
be derived from the simple mechanical arrangement (Figure 1A) of an ar-
bitrary force generating (active) element (AE) to which a damper (PDE) is
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connected in parallel and a serial element (SE) in series fulfilling the force
eqilibrium

FM = FSE = FAE + FPDE , (1)

where the symbol “F” denotes a force produced by the element denoted by
a corresponding index, and the kinematic relation for the lengths (symbols
“l”) of the elements AE, PDE, and SE

lAE = lPDE = lM − lSE (2)

with lM representing the muscle length. Note that a dot symbol “ l̇ ” denotes
the first time derivative of a length l, i. e. an element’s contraction velocity.
In order to end up with a hyperbolic relation, two further assumptions had
to be made. First, the force of the PDE was assumed to be

FPDE = dPDE · l̇PDE = dPDE · l̇AE = dPDE · (l̇M − l̇SE) , (3)

where the damping coefficient of the PDE depends linearly on the current
muscle force FM = FSE :

dPDE(FM ) = DPDE,max ·

(

(1−RPDE) ·
FM

FAE,max

+RPDE

)

. (4)

DPDE,max is the maximum (at FM = FAE,max) and RPDE the normalised (to
DPDE,max) minimum (force independent) value of dPDE(FM ). Second, the
gearing ratio

κv =
l̇SE

l̇M
(5)

between internal (SE) and external (muscle) velocities was represented by an
arbitrary parameter value κv.
The characteristics of the SE did not have to be specified. The AE is the
source of mechanical energy. It may depend on length and on the macro-
scopic chemical state of the muscle, i. e. the relative number of actively
force-producing crossbridges quantified by the normalised muscle activation
0 ≤ q ≤ 1.
In order to meet the conditions of our artificial muscle experiments presented
in this paper, we had to modify the just reviewed model [9] with respect
to only one feature. In contrast to Equation (6) in [9], which related the
isometric force FM (l̇M = 0) = FM,0 (see Equation (1) for l̇M = 0) as a linear

function of contraction velocity l̇M to the AE force FAE , we now assume the
identity

FM,0 = FAE . (6)
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Equation (6) is as consistent to the set of model equations (1,2,3,4,5) as is
equation 6 in [9] to this very set.
Substituting Equation (3), the explicit dependency of dPDE(FM ) on force FM

and model parameters (Equation (4)), and Equation (5) into Equation (1)
makes the latter force equilibrium Equation (1) to constitute a hyperbola

(FM +A) · l̇M = −B · (FM,0 − FM ) (7)

with the Hill parameters A,B and the isometric force FM,0 being positive and

l̇M consistently being negative in the shortening (concentric) case. The Hill
parameters are

A =
RPDE

1−RPDE

· FAE,max , (8)

B =
1

1−RPDE

·
1

1− κv

·
FAE,max

DPDE,max

=
RPDE

1−RPDE

·
FAE,max

FAE

· l̇M,max (9)

with the corresponding maximum shortening velocity

l̇M,max =
B

A
· FM,0 =

B

Arel

=
1

RPDE

·
1

1− κv

·
FAE

DPDE,max

. (10)

The unloaded muscle (FM = 0) would contract concentrically with l̇M =
−l̇M,max.

Arel =
A

FM,0

=
FAE,max

FAE

·
RPDE

1−RPDE

(11)

is defined as the Hill parameter A normalised to the current isometric force
FM,0 = FAE . Note that, for given FM,0 = FAE , a concurrent parameter

variation fulfilling B/A = constmeets the constraint l̇M,max = const, whereat
solely the curvature is changed. In our model, this is equivalent to (1− κv) ·
DPDE,max · RPDE = const.

Technical Embodiment The hardware implementation (Figure 1B) was
done analogously. Both AE and PDE were realised each with an electric
motor (Maxon ECmax40) [13]. The motor torque (TMotor) was controlled
by Maxon digital EC-motor control units (DEC 70/10). Both motors were
mounted from opposite sides to the same disc with radius rdisk = 0.05m. The
disc was used to coil up a steel rope and exert a force

FAE + FPDE = rdisk · (TMotorAE + TMotorPDE) (12)

on the rope. The force characteristics of the PDE and AE (Eqs. 3 and 6)
were implemented in Matlab Simulink through Real Time Workshop and
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A B

Fig. 1. A) Theoretical construct of the CE [9]. The CE consists of three elements:
active element AE, parallel damping element PDE, and serial element SE. y0 = 0
is the origin of the CE, y1 represents the length of the AE/PDE and y2 the length
of the whole CE. By choosing κv = 0.0 in theory, we can turn the SE off in order
to represent a contractile element without any compliance. B) Hardware design.
AE and PDE were realised with electric motors, SE with a mechanical spring. A
variable weight was used for the external loading of the CE.

Real Time Windows Target. In this way, the motors could exert the specified
force on the steel rope as required by the theoretical construct. For the SE
a spring (kSE = 2401Nm−1) was tied to a steel rope. Another motor could
exert a defined external force on the CE construct. As sensor signals, the
motor shaft positions ϕMotor were recorded by optical encoders (Scancon
2RMHF 5000 pulses/revolution), representing the internal degree of freedom
y1 and the total CE length y2. A load cell (Transducer Techniques MLP 25
with amplifier TM0-1-24) was used to calibrate motor torques and exerted
forces. All sensor data was recorded with Matlab Simulink via a Sensoray
626 AD I/O at 1 kHz.

To investigate the force-velocity characteristics of the artificial CE two types
of experiments had to be performed. The first experiment was an isometric
contraction (contraction with constant CE length: y2 − y0 = const.). Hereto,
the CE end was fixed with the electromagnet guaranteeing a constant CE
length. Then the AE activation was set to AAE = 1 (maximum activation)
and the shortening of the AE (rotation of the motors) was recorded. The time
from the beginning of the activation until the end of AE shortening tisom and
the maximum isometric force FCE(tisom) = FCE,max were evaluated.

Isotonic quick release experiments were performed to guarantee a defined
κv = 0. Each isotonic quick release contraction experiment started like an iso-
metric contraction. Only that the CE was released at tQR > tisom (tQR = 3 s)
by releasing the electro magnet. CE contraction velocity and force were eval-
uated shortly after tQR at teval = 3.5 s. The values vCE(teval) and FCE(teval)
were extracted. The experiment was performed with different external forces,
ten repetitions each. The curve FCE(teval) vs. vCE(teval) for all external forces
represents the force-velocity characteristics of the artificial CE (Figure 3A,
crosses).
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Table 1. Muscle parameters (A, B, Fmax, lCE,opt) determined in experiments
(see reference) and muscle model parameters (RPDE, (1 − κv)DPDE) respectively
calculated (see methods section).

muscle A [N] B [m/s] Fmax [N] lCE,opt [m] RPDE (1−κv)DPDE Ref.

piglet gastrocnemius 3.0 0.015 30.0 0.015 0.003 2200 [10]
cat soleus 4.8 0.042 21.0 0.033 0.011 620 [4]
cat tenuissimus 0.05 0.057 0.18 0.032 0.600 4 [20]
rat gastrocnemius 2.68 0.042 13.4 0.013 0.167 386 [34]
rat tibialis anterior 4.3 0.053 4.3 0.027 0.076 162 [20]
frog sartorius 0.18 0.012 0.67 0.031 0.287 72 [20]

Representing the Variety of Biological Muscles In a further evalua-
tion of our theoretical approach we scaled the model parameters to represent
various biological muscles of different animals (Figure 3B). The model pa-
rameters RPDE and (1− κv)DPDE were calculated (Eqs. 8, 9) from A and B
values determined in experiments for different biological muscles (Table 1).

Control of the Inverted Pendulum A model of an inverted pendulum
was used to investigate the effects that muscle-like actuator characteristics
could have on the control of robotic stance. For quiet stance, the task was to
keep an upright posture, while deflecting the ground to which the pendulum
was suspended with a hinge joint. The model consisted of two rigid segments
connected with a hinge joint (Figure 2). S1 had a mass of m = 50 kg, an

S1

S2

COG

0
.9
5
m

0
.4
2
m

0.1m

A B

α

β

Fig. 2. Model of the inverted pendulum. S1 represents the leg-trunk segment, S2
the foot. COG indicates the centre of gravity location of S1. α is the angle of the
foot (perturbation) and β the deviation from the upright position of S2. A) the
joint is actuated by a direct torque generator with linear characteristics. B) model
actuated by two antagonistic muscles.
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Table 2. The parameters for the muscle model were based on Tibialis Anterior
muscle [8]. The muscle model used for the study was described in detail elsewhere
[10].

LCE,opt Fmax ∆W νCE Arel,0 Brel,0 lSEE,0 ∆USEE,nll ∆USEE,l ∆FSEE,0 DSE RSE

0.1m 10000N 0.57 4.0 0.25 2.25s−1 0.23m 0.1825 0.073 10000N 0.3 0.01

inertia of J = 45 kgm2, the centre of gravity is at hCOG = 0.95m. The initial
orientation of the leg/trunk segment S1 was vertical and horizontal for the
foot segment S2. The pendulum could be perturbed by rotating S2 about the
joint by the angle α. Two perturbations were considered: (a) a linear ramp
increase of α = 1t ≤ 1◦ (for 0 ≤ t ≥ 1, where t is the time) and α = 1◦

(elsewhere), (b) a sinusoidal oscillation α = 1◦ sin(2πt), and (c) a sinusoidal
oscillation α = 1◦ sin(0.2πt).
The hinge joint could be actuated either by a direct torque generator or by
an antagonistic pair of muscles (Figure 2). The muscles were represented
by two macroscopic muscle models. These muscle models incorporate the
contraction dynamics described earlier, as well as a serial and a parallel elastic
element representing the tendon and the passive elastic properties of soft
muscle tissue. The muscle model was described in detail elsewhere [9]. The
parameters used for the muscle models are listed in Table 2. Both muscles
were connected to a simple geometry as depicted in Figure 2.
Muscles and direct torque generator were controlled based on a feedback
signal measuring the deviation of segment S1 from the vertical orientation. A
physiological delay of ∆t = 0.1 s was considered. Three different controllers
were applied: (1) no feedback is provided, (2) a simple proportional feedback
(P-controller), and (3) a PID-controller. Matlab Simulink embedded ODE5
(Dormand-Prince) solver with 1ms step size was used to solve the differential
equations.

3 Results

The relation between muscle output force and its contraction velocity is the
common criterion for comparison of macroscopic muscle models. Therefore
and firstly, we calculated the F-v curve (Figure 3A). The F-v curve of our
functional artificial muscle shows a very good match with both the prediction
from theory and biological experiments.
By comparing our artificial muscle prototype’s force-velocity relation as shown
above, we consider our approach as quite successful. The functional artificial
muscle prototype exhibits contraction dynamics similar to Hill’s model char-
acteristics (Figure 3A).
In a model of the inverted pendulum, muscle-like non-linear actuator charac-
teristics were compared against a direct torque generator (linear character-
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Fig. 3. A) Ten F(t) and v(t) plots for quick-release contraction experiments using
19 different external forces were recorded. Based on those F(t) and v(t) plots the
force-velocity curve (crosses) was calculated. In direct comparison with the biolog-
ical experiments and the predictions from theory, the artificial muscle data shows
a good match for both, with κv = 0. A hyperbola fit of the artificial muscle data
results in R2 = 0.97. B) The strength of the approach presented here is shown by
a comparison of F(v) curves calculated for different biological muscle parameters.
The respective F-v curve can be plotted just by taking A and B values from exper-
iments and using those A’s and B’s the parameters RPDE and (1− κv)DPDE which
are necessary to build a technical muscle of that type can be calculated.

istics). The muscle-driven model did not topple, not even without feedback
(first row, Figure 4). Also in case of the simple P controller (middle row)
the muscle-driven model performed better during all perturbations and was
able to cope better with the feedback delay of ∆t = 0.1 s. Only for the PID
controller solutions were found, where the direct torque controller performed
better (bottom row, Figure 4). Here shown is a solution with high gain for
the integral part of the PID controller. Therefore, slow perturbations could
be compensated very effectively.

4 Discussion

Element Representation For the active element (AE) which was formu-
lated in theory [9] a brushless dc electric drive was used. The trade-offs of
these actuators are the power-to-weight ratio and the necessity of a power
supply, either over cable or by battery. Madden [24] gives an overview of cur-
rent state-of-the-art of technical artificial muscles, their potential and their
trade-offs. For our concept as of today, we are planning to use translational
drives, which directly couple the driving forces to the movement direction, in
favour of using rotational drives which translate rotational to translational
movement over a drive disc. Translational drives are commercially available.
However, for all electric drives one challenge remains: the storage of energy.
Fortunately (or unfortunately), this is also a big issue in the automotive in-
dustry for the construction of electric vehicles. Therefore, we think that it is
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Fig. 4. Model reactions to perturbations in foot orientation α. Control target is the
upright posture (β = 0◦). Left column shows the reaction to a ramp perturbation,
middle column to a 1Hz, and right column to a 0.1Hz sinusoidal perturbation.
Top row is without feedback, middle row with a simple P controller (direct torque
controller gain: P 500; muscle controller gain: P 1), and bottom row with a PID
controller (direct torque controller gains: P 500, I 50, D 500; muscle controller gains:
P 1, I 0.3, D 0.3). The feedback signal is delayed by ∆t = 0.1 s.

likely to see great improvement in the storage technology in the near future.
That would also help the use of electric drives as active element in functional
artificial muscles.

The passive damping element (PDE) develops forces during the contraction,
even over a very short period of time, which exceeds the output forces exerted
by multiple times. The question is, are there comparable forces internal to
the artificial muscle in other technical embodiments? Unfortunately, this is
commonly not reported in literature. In our approach we use an electric drive
to produce the damping forces which is in fact a non-passive damper. Are
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there any materials or other approaches possible instead of the here presented
approach by using an electric drive?

The serial element (SE), fortunately, seems to be the simplest challenge
for a technical representation. This element should imply non-linear force-
displacement characteristics. Even a steel rod would show the dynamic char-
acteristics similar to that of the serial element predicted in theory. However,
as must-have, this element needs to incorporate damping characteristics, yet
very small [10]. It is to see how the artificial muscle prototype behaves when
including a serial element like observed in biology and postulate in theory
[9].

What is Gained Using this Approach? Understanding biological mus-
cle characteristics and design is of great interest in biological science. Muscle
models in general help in mathematically formulating muscle characteristics.
The model structure is in essence purely mechanical and therefore can serve as
a functional starting point of bionic muscle design. Phenomenological models
based on biological experiments were the first to define muscle characteristics,
e. g. [14]. Constantly improving lab techniques observed muscle phenomena
even in great detail, e. g. [23]. Microscopic muscle models deduced from ba-
sic assumptions of muscle structure and/or functional relationships of single
variables come into play shortly after, e. g. [15]. However, the benchmark of
muscle dynamics used for those microscopic models is still the phenomeno-
logical Hill relation [14]. One approach just recently succeeded in defining the
macroscopic muscle characteristics without the need of any phenomenological
information. In contrast, this approach was validated against the well known
experiments instead of being based on it [9]. Here, we used those findings to
build a technical muscle and succeeded in the reproduction of crucial char-
acteristics of biological muscle. With this approach, now, the macroscopic
model can be iteratively improved accompanied with the technical muscle.
In that, technical models can partly replace biological experiments.

Hill-Type Models for Control Hill-type muscle models, as an alternative
to joint torque generators, have been implemented in (multi-body) computer
models in order to generate movement. In this regard different control the-
ories, i. e. physiologically motivated ones, e. g. equilibrium point hypothesis
[2, 7], virtual model control [28], and others, e. g. as described above, come
into operation. Hence, multi-body models with Hill-type muscles as actuators
allow for using control theories to generate movement, thereby quantitatively
testing control approaches [6, 31] and determining relevant control parameters
[18] as well as comparing existing and/or newly developed control theories.

In this study different control approaches, i. e. no feedback, P-controller and
PID-controller (see method section), were implemented and compared in two
different inverted pendulums models, i. e. one with muscles and the other one
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with direct torque generators. From this comparison of controls and actua-
tors, it can be concluded, that the implementation of muscle-like characteris-
tics changes the model’s inherent stability and, thus, leads to a modification
of successful control strategies to generate a similar movement. Furthermore,
the presented arrangement of technical elements for the CE also allows for
the investigation of structural changes in biological muscle used for movement
control.
For further and more detailed conclusion, the presented approach will be im-
plemented as muscle-like actuators in more complex (human) models to in-
vestigate (physiological motivated) control strategies and structural changes
of muscle.
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Abstract. The paper describes the homogenisation approach to the cortical bone
modelling featured by multi-level treatment. The homogenisation of the Biot con-
tinuum with double porosity provides upscaling from the osteon level to the macro-
scopic scale, where some memory effects are the consequences of the microflow in
the dual porosity. To obtain the material properties of the osteon matrix, the hi-
erarchical two-level homogenisation is proposed to upscale in two steps: from the
scale of canaliculi to an intermediate scale of individually distinguishable lacunae,
then to the level of the osteon matrix considered as the dual porosity which sepa-
rates the Haverse/Volkmann vascular channels. The mathematical structure of the
model is presented and some preliminary numerical illustrations are included.

1 Introduction

This paper concerns the homogenisation based modelling of the mechanical
behaviour of fluid-saturated cortical bone tissue. The purpose of developing
the multiscale model reported here is to provide an efficient computational
tool which can be used firstly to study influence of the bone structure on the
mechanical properties, namely on the stiffness and the overall strength, sec-
ondly to study the mechano-transduction: how the macroscopic loading deter-
mines local deformation and microflows in the hierarchical porous structure.
The latter phenomenon is tightly related to evolutionary processes which on
a longer time scale lead to tissue remodelling and growth.
There are two types of bone tissues: cortical and trabecular ones. Cortical
bone is a compact tissue constituting bone envelope. The investigation of
cortical bone is important since it accounts for about 80% of the skeleton,
supports most of the load of the body, and is mainly involved in osteoporotic
fractures of many kinds. The fluid in cortical bone plays a role in carrying
nutrients and wastes from the bone cells (osteocytes) buried in the bony
matrix.
Cortical bone tissue presents a structure composed of mineralised cylinders
called osteons. These osteons, which are a few hundred micrometers in diam-
eter and can be 12 mm long, are centred on Haversian canals whose diameters
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are on the order of 40−100 µm [5]. Osteons run primarily in the longitudinal
axis of the bone. Volkmann canals are similar to Haversian canals except that
they run between osteons, and thus, essentially along the transverse direction
of bone. These macrochannels contain the vasculature, the nerves and inter-
stitial fluid. Alternatively, the function of Haversian canals might be to serve
as either pathways for nutrient transport or as drainage canals, regulated by
the vasomotor function of the sphincter at the arterial end. As a result, the
interstitial fluid may flow at different speeds depending on the location [5].
Moreover, there are other extravascular pores in the solid matrix of the bone.
For instance, lacunæ are occupied by osteocyte cells. They can be seen as
ellipsoidal cavities with diameters of 10 − 30 µm. The canaliculi are small
cylindrical channels whose diameters are on the order of 0.1 µm. They form
a network connecting lacunæ and the Haversian/Volkmann vascular canals.
Cytoplasmic osteocyte cell process occupies the central zone of each canalicu-
lus so that the interstitial fluid pathway corresponds to an annular geometry.
The canaliculus scale will be referred to as the mesoscale hereafter. Classical
mechanical descriptions of cortical bone use the poroelasticity theory [7, 11],
cf. [10]. To take into account explicitly the bone multi-scale morphology [16],
combination of several modelling techniques appropriate for different hierar-
chies were considered in [8]
The purpose of this paper is to summarise recent contributions of the authors
to the biomechanical application of the homogenisation theory to modelling
fluid-saturated porous media. In particular, we propose to use the hierarchi-
cal homogenisation framework, see [14], to describe cortical bone properties.
Multi-level poroelastic models seem to be an appropriate way to treat fluid
movement and bone fluid pressures at the different scales. The previous con-
siderations suggest the use of a double-porosity poroelastic model.
In Section 2 we consider upscaling the bone properties from the mesoscale
associated with osteons, whereby the lacuno-canalicular system is respected
by the dual porosity with anisotropic properties featuring the Biot model. In
Section 3 we propose an upscaling procedure involving three levels: the sub-
microscale of the canalicular network, the osteon matrix porosity (microscale)
including the lacunae and, finally, the “mesoscale” of the whole osteon.

1.1 Double Porosity and the Darcy Law

The double porous media are frequent in nature. Besides various examples
in geomechanics, there are many instances of such media in biology and
biomechanics. Models based on the double porosity were used in perfusion
biomechanics [12]. The dual porosity is presented also by the canalicular
network of the so-called matrix constituting the structure of cortical bone
tissue, see Figure 2, [15].
In general, the double porous media [1, 2] are formed by two different porosi-
ties, which are qualitatively different; the primary porosity is featured by
pores which are substantially larger than those of the dual porosity. In the
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context of the bone microstructures, the two porosities are associated with
the osteon level and with the canalicular level of the structure with charac-
teristic lengths of ℓµ1 = 100µm and ℓµ2 = 10µm, respectively.

The flow in the dual porosity can be treated using the Darcy law with the
high contrast permeability, cf. [9]. In the context of the homogenisation pro-
cedure, the permeability coefficients depend on the characteristic scale of the
representative volume. Canaliculi form a system of parallel cylindrical canals
in the solid structure (see Figure 1, left). Assuming the Poiseuille flow in
these canals, the mean velocity v̄ of the parabolic profile with the pressure
gradient ∂p/∂x in the canal direction x is given by

v̄ = −
πR2

8ν

∂p

∂x
= −KR

ν

∂p

∂x
with KR

ν =
πR2

8ν
, (1)

where R is the canal radius, ν is the kinematic viscosity and the scalar KR
ν

represents the permeability of the single canal.
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Fig. 1. Left: schematic illustration of the osteon double porous structure. Right: a
scheme explaining the permeability δ2-dependence due to the velocity profile in an
array of canals. The total perfused area S is perforated by canals with total cross-
section Tδ (bottom), each canal has the cross-section πρ2δ2; the square periodic cell
is shown (middle) as well as the velocity profile in one canal. (top).

The relationship (1) reveals why in the dual porosity, the permeability coeffi-
cient is proportional to ε2, where ε is the dimensionless scale parameter, see
[15]. The osteon diameter ℓµ1 = εL and the canaliculus size ℓµ2 = δεL make
the dual porosity associated with the relative scale δ. Moreover, for the bone
porosities it holds that δ ∼ ε.

Therefore, we can use a relationship of the type Kε
ν = ε2Kρ

ν , which associates
the porous ultrastructure characterised by the scale invariant permeability,
Kρ

ν , introduced in the spirit of (1) for ρ ≈ R, with the dual porosity repre-
sented by Kε

ν , which is characterised by scale ε.
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1.2 The Biot Model of the Fluid-Saturated Porous Media

We shall recall the structure of the Biot model introduced in the frame-
work of the phenomenological theory (only quasi-static loading assumed).
It involves three essential constitutive laws: 1) the relationship between the
drained solid skeleton “macroscopic” deformation e(u(t, x)) of the displace-
ment field u(t, x), the fluid pressure in pores p(t, x) and the total stress
σ(t, x), 2) the relationship between the variation of the fluid content, skele-
ton deformation (mesoscopic level in our case), and the fluid pressure, 3) the
Darcy law relating the seepage velocity, w(t, x), with fluid pressure p(t, x).
In the quasi-static case, two-field formulation is introduced in terms of (u , p)
which must satisfy the stress equilibrium a mass conservation equations,

−∇ · (IDe(u)) +∇ · (αp) = f ,

α : e(u̇)−∇ ·K∇p+
1

µ
ṗ = 0 ,

(2)

where ID = (Dijkl), i, j, k, l = 1, ..., 3 is the fourth-order tensor which is
the drained anisotropic elasticity tensor of the porous matrix, α = (αij) is
the symmetric second-order tensor called the Biot effective stress coefficient
tensor, µ is called the Biot’s modulus and K = (Kij), i, j = 1, ..., 3 is the
anisotropic permeability tensor which is disproportional to the fluid dynamic
viscosity. (Obviously, the symbol “·” will denote the scalar product and the
symbol “:” between tensors of any orders denotes their double contraction.)
In Section 3 we show how these coefficients can be computed for a given
micro- and mesostructure using the repeated (hierarchical) homogenisation.

2 Homogenisation of Fluid-Saturated Porous Media
(FSPM)

The FSPM are treated usually in the framework of the theory of porous
media (TPM), see e. g. [6], evolving from the models of soil consolidation
(pioneered by K. von Terzaghi, enhanced by M. Biot) which is based on the
phenomenological approach. The microstructure is respected just by local
volume fractions of the different phases, thus disregarding a more specific
information about topology and geometry of the microstructure.
The poroelasticity remains an interesting area still open to further research,
since the universal concepts of the effective stresses, bulk pressures, the in-
compressibility and seepage phenomena need to be related to lower-level pro-
cesses undergoing in a specific microstructural arrangement. In spite of in-
creasing power of scientific computation, it is and will be still desirable to
reduce computational requirements of “direct modeling” using model reduc-
tion techniques associated with upscaling and a multiscale decomposition.
Among variety of such approaches, the homogenisation of periodically het-
erogeneous material seems to be an efficient tool.
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The phenomenon of the pore structural arrangement is quite important fea-
ture of the fluid transport in porous structures. The two-scale homogenisation
method allows describing the microstructure geometry which is then reflected
in all effective parameters. In the model presented below we consider the Biot
model to describe the bone behaviour at the osteon level, whereby existence of
the lower level of porosity – the canaliculæ– is respected by the dual-porosity
scaling.

2.1 Two Compartment Topology of the Microstructure

For modelling bone tissue formed by the Haversian–Volkmann channels and
the canalicular matrix, the assumption of a two compartment topology of
the microstructure appears to be convenient. In this section we summarise
the homogenisation result which was obtained by asymptotic analysis of the
problem of coupled diffusion and deformation in a dual porous medium fea-
tured by oscillating material coefficients. The medium is characterised by
elasticity Dε

ijkl, Biot coefficients αε
ij , permeability Kε

ij and the Biot modulus
µε, where ε is a small parameter corresponding to the scale of the underly-
ing microstructure. In [15] we considered the following problem imposed in
an open bounded domain Ω: find displacement uε(t, ·) ∈ V and pressure
pε(t, ·) ∈ H1(Ω) for almost all t ∈]0, T [ such that:

∫

Ω

Dε
ijklekl(u

ε)eij(v)−

∫

Ω

pε αε
ijeij(v ) =

∫

∂σΩ

gi vi, dΓ , ∀v ∈ V 0 ,

∫

Ω

q αε
ijeij(

d

d t
uε) +

∫

Ω

Kε
ij∂jp

ε ∂iq +

∫

Ω

1

µε

d

d t
pε q = 0 , ∀q ∈ H1(Ω) ,

(3)

where the initial conditions are satisfied: u(0, x) = 0 and p(0, x) = 0 for
almost all x ∈ Ω. The boundary conditions employed in (3) correspond to
impermeable surface of Ω, i. e. zero seepage through ∂Ω, and traction forces
prescribed on ∂σΩ ⊂ ∂Ω. The body is clamped on ∂Ω \ ∂σΩ, which is re-
spected in a particular definition of sets V and V 0; for the sake of simplicity
we may consider V = V 0 = {v ∈ H1(Ω)| v = 0 on ∂Ω \ ∂σΩ}.
For finite scale ε > 0 domain Ω is decomposed into two principal non-
overlapping parts, the channels Ωε

c and the matrix Ωε
m

Ω = Ωε
m ∪Ωε

c ∪ Γ
ε
mc, with Ωε

m ∩Ωε
c = ∅ , Γ ε

mc = Ωε
m ∩Ωε

c , (4)

where Ω is the closure of Ω.

Domain Ω is generated as a periodic lattice using a representative periodic
cell (RPC) denoted by Y , see Figure 2 (right). For simplicity we consider the
RPC with the following definition: Y = Π3

i=1]0, ȳi[⊂ R
3, ȳi > 0 can be chosen

so that |Y | = 1 (i. e. unit volume of Y ). Let Yc be a (connected) subdomain
of Y with Lipschitz boundary, so that Ym = Y \ Yc.
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Fig. 2. Left: a micrograph of the osteon porosity arranged in cylindrical geometry.
The Haversian canals form the centre of each osteon bounded by the cement line.
The osteon matrix is penetrated by canalicular porous network arranged almost
radially with respect to the osteon axis. (The colour image provided by courtesy
of Zbyněk Tonar.) Right: microstructure decomposition w.r.t. the dual porosity:
darker gray/blue: Ωc, lighter gray/white: Ωm, and the representative periodic cell
Y decomposition.

This domain decomposition reflects the piecewise-continuous material coeffi-
cients; in general, we admit discontinuities in material coefficients on interface
Γmc, so that, using the unfolding operator Tε( ), see [4],

Tε
(
Dε

ijkl(x)
)
= χm(y)Dm

ijkl(y) + χc(y)D
c
ijkl(y) ,

Tε
(
αε
ij(x)

)
= χm(y)αm

ij (y) + χc(y)α
c
ij(y) ,

Tε(µ
ε(x)) = χm(y)µm(y) + χc(y)µ

c(y) ,

Tε
(
Kε

ij(x)
)
= ε2χm(y)Km

ij (y) + χc(y)K
c
ij(y) ,

(5)

where χd, d = m, c is the characteristic function of domain Yd. All the param-
eters “Amε, Acε” introduced above have their values defined w.r.t. material
points y in the microstructure – at that level these values are independent
of ε. The dual porosity is respected by ε2χm(y)Km

ij (y) in (5)4. This mod-
elling ansatz leads to complex homogenised constitutive laws expressed using
the homogenised material coefficients defined through the solutions of auxil-
iary microscopic problems. In what follows we record all the equations and
problems constituting the model of the homogenised medium obtained for
ε→ 0.

2.2 Homogenised Osteon – Two-Scale Model of the Cortical

Bone

We record the result obtained in [15]. The two scale model consists of the
microscopic problems at the level of osteons, which enable to compute ho-
mogenised coefficients involved in the macroscopic model describing a piece
of the compact bone.
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Microscopic Problems and Corrector Basis Functions The auxiliary
microscopic problems, which are listed below, are imposed in the RPC; they
comprise the steady and evolutionary problems. The associated solutions are
the corrector basic functions of displacements, ω̃ij , ω̄ij , ω̃P ,ω∗,P and of pres-
sures, π̃ij , π̄ij , π̃P . They are involved in the expressions of the homogenised
material coefficients. We shall use the following abbreviated notation which
conceals the dependence on spatial variables: π(t, ·) =: π(t), ω(t, ·) =: ω(t).
In the sequel we shall use the following bilinear forms:

aY (u , v)=∼

∫

Y

Dijkl(y)e
y
kl(u) e

y
ij(v) , bY (ϕ, v ) =∼

∫

Y

ϕαij(y)e
y
ij(v ) ,

bY m (ϕ, v )=∼

∫

Ym

ϕαm
ij (y)e

y
ij(v) , cYm

(ϕ, ψ) =∼

∫

Ym

Km
ij (y)∂

y
j ϕ∂

y
i ψ ,

dYm
(ϕ, ψ)=∼

∫

Ym

(µm)−1ψ ϕ ,

(6)

where ∼
∫
Yd

≡ |Y |−1
∫
Yd
, d = m, c, and ∂yj = ∂/∂yj (the same context used for

small strain tensor eyij). We define vectors Πrs = (Πrs
i ) whose components

Πrs
i = ysδir are constituted by coordinates ys, where δir is the Kronecker

symbol. By H1
#(Y ) we denote the Sobolev space [W 1,2(Y )]3 of Y -periodic

vector functions, the analogous notation holds for scalar functions. Below we
employ space (for any Yd ⊂ Y )

H1
#0(Yd) = {v ∈ H1

#(Yd)| v = 0 on ∂Yd ∩ Y } , (7)

so thatH1
#0(Ym) contains functions vanishing on the interface Γ = ∂Ym∩∂Yc.

Steady Problem for Strain-Associated Correctors We define couple
(ω̄rs, π̄rs) ∈ H1

#(Y )×H1
#0(Ym) as the solution of the following problem

aY (ω̄rs, v ) = −aY (Πrs, v) ∀v ∈ H1
#(Y ) ,

cYm
(π̄rs, q) = −bY m (q, ω̄rs +Πrs) ∀q ∈ H1

#0(Ym) ,
(8)

Evolutionary Problem for Strain-Associated Correctors For any t ∈
]0, T [, the couple (ω̃rs(t, ·), π̃rs(t, ·)) ∈ H1

#(Y )×H1
#0(Ym) must satisfy

aY (ω̃rs, v)− bY m

(
d

d t
π̃rs, v

)
= 0 ∀v ∈ H1

#(Y ) ,

bY m (q, ω̃rs) + cYm
(π̃rs, q) + dYm

(
d

d t
π̃rs, q

)
= 0 ∀q ∈ H1

#0(Ym) ,

(9)

where π̃rs(0) = −π̄rs and functions from H1
#0(Ym) vanish on the interface

∂Ym ∩ ∂Yc.
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Steady Problem for Pressure-Associated Correctors We define couple
(ω∗,P , π̃P (0)) ∈ H1

#(Y )×H1
#0(Ym) as the solution of the following problem

aY
(
ω∗,P , v

)
− bY m

(
π̃P (0), v

)
= bY (1, v ) ∀v ∈ H1

#(Y ) ,

bY m

(
q, ω∗,P

)
+ dYm

(
π̃P (0), q

)
= −dYm

(1, q) ∀q ∈ H1
#0(Ym) .

(10)

Evolutionary Problem for Pressure-Associated Correctors For any
t ∈]0, T [, we define couple (ω̃P (t, ·), π̃P (t, ·)) ∈ H1

#(Y ) × H1
#0(Ym) as the

solution of the following problem (initial condition π̃P (0) given by (10))

aY
(
ω̃P , v

)
− bY m

(
d

d t
π̃P , v

)
= 0 ∀v ∈ H1

#(Y ) ,

bY m

(
q, ωP

)
+ cYm

(
π̃P , q

)
+ dYm

(
d

d t
π̃P , q

)
= 0 ∀q ∈ H1

#0(Ym) .

(11)

Problem for Pressure Correctors in Channels The following problem
is imposed in channels Yc: find η

k ∈ H1
#(Y )/R, k = 1, 2, 3 satisfying

∼

∫

Yc

Kc
ij∂

y
j (η

k + yk) ∂
y
i ψ = 0 ∀ψ ∈ H1

#(Y ) . (12)

Macroscopic Problem in the Time Domain The macroscopic problem is
defined in terms of the homogenised material coefficients which are computed
using the corrector basis functions introduced above. While the homogenised
permeability Cij is time-independent tensor,

Cij =∼

∫

Yc

Kc
kl∂

y
l (η

j + yj) ∂
y
k (η

i + yi) , (13)

all other homogenised counterparts of Dijkl, αij , 1/µ, which below are de-
noted by Deff

ijkl , α
eff
ij andMeff , respectively, involve their time-dependent parts

which are responsible for the fading memory phenomenon present in the
macroscopic problem. Below we employ the Heaviside function H+(t).
The viscoelastic coefficients can be decomposed into two symmetric 4-order
tensors,

Deff
ijkl = [Eijkl +Hijkl(t)]H+(t) ,

which are defined, as follows:

• the homogenised elastic tensor

Eijkl = aY

(
Πkl + ω̄kl, Πij + ω̄ij

)
, (14)
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• the homogenised viscosity tensor of the fading memory

Hijkl(t) = cYm

(
d

d t
π̃kl(t), π̄ij

)
. (15)

While symmetry Eijkl = Eklij = Ejikl is evident, the symmetry Hijkl(t) =
Hklij(t) = Hjikl(t) results from the structure of (8), (9) and from the semi-
group general properties.

The Biot coefficients,

αeff
ij (t) = BijH+(t) + Pij(t)H+(t) ,

are decomposed into the constant and fading memory parts, as follows:

• the “elastic” homogenised Biot coefficients

Bij =∼

∫

Y

αij + bY
(
1, ω̄ij

)
, (16)

• the “fading memory” homogenised Biot coefficients

Pij(t) = bY
(
1, ω̃ij(t)

)
+ dYm

(
d

d t
π̃ij(t), 1

)
. (17)

The effective reciprocal Biot modulus,

M(t) = Mδ+(t) +N (t)H+(t) , (18)

where δ+(t) is the Dirac function, comprises two parts:

• the constant part,

M =∼

∫

Y

1

µ
+ dYm

(
π̃P (0), 1

)
+ bY

(
1, ω∗,P

)
, (19)

• and the part responsible for the fading memory effect:

N (t) = dYm

(
d

d t
π̃P (t), 1

)
+ bY

(
1, ω̃P (t)

)
. (20)

The ultimate form of the homogenised dual-porous Biot continuum is repre-
sented by the macroscopic model, where H(t),P(t) and N (t) are responsible
for the fading-memory effects. Their numerical representation and namely
the numerical scheme for computing the associated convolution integrals is
discussed in [13].
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Formulation of the Macroscopic Problem Recalling assumed unloaded
and stress-free initial structure, the homogenised problem reads, as: for a.a.
t ∈]0, T [ find u ∈ V and p ∈ H1(Ω) with p(0, ·) = 0 such that

∫

Ω

Eijklekl(u)eij(v ) +

∫

Ω

∫ t

0

Hijkl(t− τ)ekl(
d

d τ
u(τ)) dτ eij(v)

−

∫

Ω

(Bij + Pij(0)) p eij(v )−

∫

Ω

∫ t

0

d

d t
Pij(t− τ)p(τ) dτ eij(v ) =

∫

∂σΩ

g · v dΓ,

∫

Ω

(Bij + Pij(0)) eij(
d

d t
u) q +

∫

Ω

∫ t

0

d

d t
Pij(t− τ)eij(

d

d τ
u(τ)) dτ q

+

∫

Ω

Cij∂jp∂iq +

∫

Ω

qM
d

d t
p+

∫

Ω

q

∫ t

0

N (t− τ)
d

d τ
p(τ) dτ = 0 ,

(21)

for all v ∈ V0 and q ∈ H1(Ω).

2.3 Remarks and Numerical Illustrations

In this example we show for illustration purposes a few of the results pub-
lished in [13]. We consider a cylindrical segment with the microstructure
resembling the material of compact bone, see the micrograph at Figure 2
(left), with an “idealised” microstructure displayed at Figure 2 (right). The
example was computed using the microscopic material parameters listed in
Table 1, where µd and λd are the Lamé elasticity constants related to the
solid skeleton (in the matrix and in the “porous” channels as well), αij are
the stress coupling coefficients given by αij(y) ≡ α1δij + α2(1 − δij), µ is
the Biot elasticity coefficient and Kij is the permeability (involving the fluid
viscosity). The permeability parameters of matrix are defined in the local co-
ordinate system which is determined by the relative position of a given point
w.r.t. the position of axis of the nearest Haverse channel. In the present im-
plementation we assume parallel Haverse channels which, thus, generate just
a 2D anisotropy: In any point we define the vectors τ (y) and ν(y) defining

Table 1. Microscopic material parameters.

coefficient unit in matrix, y ∈ Ym in channels y ∈ Yc

Dijkl(y, t) GPa µd = 3, λd = 17 µd = 0.3, λd = 1.7
αij(y, t) 1 α1 = 0.8, α2 = 0.05 α1 = 1.0, α2 = 0.0
µ(y, t) GPa 7 4
Kij(y, t) m2/(GPa s) 3 · 10−7 [2νi(y)νj(y) + τi(y)τj(y) 3 · 10−3δij

+0.2 δ3iδ3j ]
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Fig. 3. The ν(y) (radial) and τ (y) (tangential) vectors defined for microstructure
resembling the osteon. A random sampling of 1000 out of all quadrature points is
shown. Top view of the RPC.

the local anisotropy axes of a particular microstructure with parallel Haverse
channels, see Figure 3.
The macroscopic material parameters were obtained by the homogenisation
procedure described above. For this both the stationary and time-dependent
microscopic characteristic responses are needed; in Figure 4 we display se-

pressure correctors in channels: ηk, k = 1, 2, 3

steady strain-associated correctors: ω̄rs, π̄rs steady pressure-associated correctors:
ω

∗,P , π̃P (0)

Fig. 4. Selected correctors solutions.
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Fig. 5. Macroscopic solution in selected time steps - macroscopic deformation (mag-
nified 2×), pressure distribution (colour scale), diffusion velocities (arrows).

lected solutions – the corrector basis functions – of the local microscopic
problems solved in the reference cell Y . Using those, homogenised material
parameters are computed and the macroscopic model is defined. In Figure 5
the macroscopic response of a cylindrical bone specimen is shown at different
steps of loading.

3 Hierarchical Homogenisation for Canaliculo-Lacunar
Porosity

The model described in the previous section is introduced in terms of material
parameters characterizing the periodic “mesoscale” representing the osteons
as the Biot continuum. We observed that the fading memory effects are in-
duced in all homogenised coefficients by the microflows in the dual porosity.
To describe its poroelastic properties we can use the information about its
geometry and topology. Thus, to compute the material parameters at the
osteon level, a homogenised model of the fluid-structure interaction in the
lacuno-canalicular porosity can be used.
The pores of two different sizes – the canaliculi and lacunae, see Figure 6,
are filled with a compressible fluid which can redistribute, since at both the
microscopic and mesoscopic scales the pores form one system of connected
channels. We apply the asymptotic homogenisation to upscale a simple mi-
croscopic fluid-structure interaction problem. The obtained poroelastic model
with double-porosity describes the matrix behaviour at the mesoscopic level.

3.1 Hierarchical Approach – General Setting

We consider the steady state of a deformable porous medium saturated by a
fluid, whereby the fluid drainage is controlled by a boundary flux. The poros-
ity of the medium is formed at two levels, distinguishable by different sizes
of pores, the primary and the secondary ones. They can be interconnected,
or disconnected by an impermeable solid phase.
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Fig. 6. Hierarchical arrangement of the dual porosity in the osteon “matrix”; levels
α and β.

The two levels, further labelled by superscripts α and β are associated with
two scales underlying the osteon matrix. Next we consider a “relative” micro-
and macroscopic scales. At the microscopic scale of the level α, we consider
an elastic solid phase called “matrix”, whereas the fluid fills the “canals”
(representing the canaliculi network) which can be drained, thus the fluid
can be expelled from, or sucked in the higher level porosity. The behaviour
of the matrix is assumed linearly elastic. The homogenisation procedure of
this two-phase medium allows us to obtain a model describing the upscaled
poroelastic level α.
Then, using the above mentioned (homogenised) α-poroelasticity model, we
can describe the material occupying the matrix of the microstructure β; recall
the relativity of the micro- and macroscales at this hierarchical homogenisa-
tion approach. At this “higher” level the canals can exchange the fluid with
the microscopic pores of the α level, so that only one fluid pressure value
characterises the steady state; this case corresponds to the structure of pores
in the canaliculo-lacunar system of the compact bone tissue, see Figure 6. Up-
scaling of the β-level leads to effective poroelastic properties of the relative
“macroscopic” level associated with the osteon matrix.

3.2 Homogenisation of Microscopic Scale – Upscaling Level α

At the level of canalicular porosity we consider the elastic solid phase perfo-
rated with the fluid-filled canaliculi, i.e with the canals.
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3.3 Governing Equations

The geometrical configuration of the studied domain Ωα ⊂ R
3 is decom-

posed into the matrix and the canals occupying the domains Ωα,ε
m and Ωα,ε

c ,
respectively, and their common boundary is Γα,ε. More precisely, the follow-
ing definitions are introduced

Ωα = Ωα,ε
m ∪Ωα,ε

c ∪ Γα,ε, Ωα,ε
m ∩Ωα,ε

c = ∅ , Γα,ε = Ωα,ε
m ∩Ωα,ε

c . (22)

The deformation of the matrix is governed by the problem involving the
following equations: Find (uα,ε, p̄α,ε) ∈ H1(Ωα,ε

m )/R× R such that

∫

Ω
α,ε
m

(IDα,ε : e(uα,ε)) : e(v ) + p̄α,ε
∫

Γ
α,ε
m

n [m] · v dSx

=

∫

∂extΩ
α,ε
m

gα,ε · v dSx +

∫

Ω
α,ε
m

f α,ε · v ,

∫

∂Ω
α,ε
c

ũα,ε · n [c] dSx + γαp̄α,ε|Ωα,ε
c | = −Jα,ε ,

(23)

for all v ∈ H1(Ωα,ε
m ), where uα,ε is the displacement vector of the matrix, pα,ε

is the fluid pressure, IDα,ε is the elasticity fourth-order tensor of the matrix
and γα is the fluid compressibility. The applied surface-force and volume-
force fields are denoted respectively by gα,ε and f α,ε. The outer unit normal
vector of the boundary Ωα,ε

m is denoted by n [m]. Condition (23)2 describes
that the change of the porosity (the left-hand side term) – change of volume
|Ωα,ε

c | is compensated by fluid compression and by the fluid out-flow Jε,α

through external boundary ∂extΩ
α,ε
c = ∂Ωα,ε

c ∪ ∂Ωα, i. e. outwards to Ωα.

3.4 Homogenisation Result

Domain Ωα is obtained from a periodic microstructure generated by the
representative unit cell Y α decomposed as follows

Y α = Y α
m ∪ Y α

c ∪ Γα
Y , Y α

c = Y α \ Y α
m , Γα

Y = Y α
m ∩ Y α

c . (24)

As a result, the domain Ωα is defined by
⋃

k∈Kε ε(Y α + k) with K
ε = {k ∈

Z
3, ε(Y α + k) ⊂ Ωα}. The upscaling procedure is described in [14].

Response at the Microscopic Scale The volume fraction of pores is
defined by φα = |Y α

c |/|Y α|. We assume existence of a limit surface force
gα and of a limit volume force f α. Using characteristic displacements ωij(y)
and ωP (y), the fluctuations of displacement are described, namely u1(x, y) =
ωij(y)∂jui(x)−ωP (y)p̄, where p̄ is the constant fluid pressure in Ωα. Func-
tions ωij(y) and ωP (y) are obtained as solutions of the following problems:
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find (ωij ,ωP ) ∈ H1
#(Ym)×H1

#(Ym) satisfying

aY m

(
ωij +Πij , v

)
= 0 , ∀v ∈ H1

#(Ym) ,

aY m

(
ωP , v

)
=∼

∫

ΓY

v · n [m] dSy , ∀v ∈ H1
#(Ym) ,

(25)

where aY m (w , v ) = −
∫
Ym

(IDey(w)) : ey(v ) and Π ij = (Πij
k ), i, j, k = 1, 2, 3

with Πij
k = yjδik. For the sake of brevity we use the notation Y := Y α, thus

dropping out the superscript α.

Model Obtained by Homogenisation The effective properties of the
deformable porous medium are introduced using the characteristic response
obtained at the microscopic scale. We define the following tensors, see [14],

Aijkl = aY m

(
ωij +Πij , ωkl +Πkl

)
,

Bij = − ∼

∫

Ym

divyω
ij , B̂ := B + φI ,

M = aY m

(
ωP , ωP

)
.

(26)

Obviously, the tensors AA = (Aijkl) and B = (Bij) are symmetric; moreover
AA is positive definite and M > 0.

Model of the Poroelasticity At this first-level of the homogenisation pro-
cess, we obtain the model of the poroelasticity governing the skeleton dis-
placements u ∈ H1(Ω) defined in Ω and fluid pressure p̄ ∈ R which verify
the following equations

∫

Ω

(
AAex(u)− p̄B̂

)
: ex(v ) =

∫

Ω

(1− φ)f · v +

∫

∂Ω

(1− φS)g · v dSx ,

∫

Ω

B̂ : ex(u) + p̄(M + φγ)|Ω| = −J

(27)

for all v ∈ H1(Ω), where J is the limit of the total flux Jα,ε outwards Ωα.

Note that all AA, B̂ ,M, φ, φS and J are associated with upscaling from level
α, therefore, they will be further labeled by superscript α.

3.5 Homogenisation of Mesoscopic Scale – Upscaling Level β

At the second upscaling stage, we consider the homogenised matrix associ-
ated with (27), now corresponding to the lacunar porosity level. Thus, the
fluid-filled channels represent the lacunae. The geometrical configuration of
the relative microstructure consists of two compartments: 1) the matrix Ωβ,ε

m
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which is formed by the porous medium associated with the upscaled mi-
crostructure of level α, 2) the channels Ωβ,ε

c which are filled with fluid and
connected with pores of level α through the interface Γ β,ε

m . Recall that the
dimensionless parameter ε → 0 now describes the ratio between the charac-
teristic sizes of the lacunae and of the whole osteon.

Description at the Mesoscopic Scale Level As the description of the
domain Ωα, the domain Ωβ at the mesoscopic scale is split as follows: Ωβ =
Ωβ,ε

m ∪ Ωβ,ε
c ∪ Γ β,ε, where Γ β,ε designates the interface between the subdo-

mains. The structure is loaded on ∂extΩ
β,ε
m = ∂Ωβ ∩∂Ωβ,ε

m by a surface-force

field ĝ
α = gα(1 − φαS) and by a volume-force field f̂

α
= (1 − φα)f α acting

on the matrix and drained on ∂extΩ
β,ε
c . The total outflow from Ωβ is Jβ,ε;

it incorporates the flux from the microporosity α through ∂extΩ
β,ε
m and from

the mesoscopic channels through ∂extΩ
β,ε
c . Note that on the interior part

of ∂Ωβ,ε
m surface-force g considered in (27) is represented by the interstitial

pressure in the β-porosity. So, the displacement uβ,ε ∈ H1(Ωβ,ε
m ) and the

pressure p̄ε ∈ R must satisfy the equation

∫

Ω
β,ε
m

(
AAαe(uβ,ε)− p̄εB̂

α
)
: e(v ) + p̄ε

∫

Γβ,ε

(1− φαS)v · n [m] dSx

=

∫

∂extΩ
β,ε
m

ĝ
α · v dSx +

∫

Ω
β,ε
m

f̂
α
· v , ∀ v ∈ H1(Ωβ,ε

m ), (28)

and the volume conservation

∫

Ω
β,ε
m

B̂
α
: e(uβ,ε) + (1 − φαS)

∫

∂Ω
β,ε
c

ũβ,ε · n [c] dSx

+ p̄ε[(Mα + γφα)(1 − φβ,ε) + γφβ,ε]|Ωβ | = −Jβ , (29)

where we used the displacement extension ũβ,ε to channels Ωβ,ε
c . We recall

1− φβ,ε = |Ωβ,ε
m |/|Ωβ |, where φβ,ε → φβ := |Y β

c |/|Y β |.

Homogenised Problem at the β Level Analysis of problem (28)-(29)
when ε → 0 leads to equations involving effective poroelastic properties of
the 2nd level which are evaluated using the characteristic responses ωij and
ωP .
In analogy with the level α, let Y β = Y β

m ∪Y β
c ∪Γ β

Y be the reference periodic
cell. The following local problems must be solved: find ωij ,ωP ∈ H1

#(Y
β
m),

i, j = 1, 2, 3, such that
∫

Y
β
m

[AAαey(ω
ij +Π ij)] : ey(v ) = 0 , ∀v ∈ H1

#(Y
β
m) ,

∫

Y
β
m

[AAαey(ω
P )] : ey(v ) = −

∫

Y
β
m

B̂
α
: ey(v )+∼

∫

Γ
β

Y

(1− φαS)v · n [m] dSy

(30)
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for all v ∈ H1
#(Y

β
m). In what follows by ωij and ωP we mean the solutions of

(30) and not that of (25), in spite of the same notation. While the solutions of
(30)1 express fluctuations with respect to the unit strain of the macroscopic
scale, the solutions of (30)2 interpret the local response with respect to the
unit pressure.
The effective poroelasticity properties of the upscaled mesoscale are repre-
sented by AAβ = (Aβ

ijkl), B
β = (Bβ

ij) and M
β, given as follows

Aβ
ijkl =

∫

Y
β
m

[AAαey(ω
kl +Πkl)] : ey(ω

ij +Πij) ,

Bβ
ij =

∫

Y
β
m

B̂
α
: ey(ω

ij +Π ij)− (1− φαS) ∼

∫

Y
β
m

divyω
ij ,

Mβ =

∫

Y
β
m

[AAαey(ω
P )] : ey(ω

P ) .

(31)

The response of the homogenised medium at macroscopic scale, i. e. upscaled
mesoscale for ε → 0, is represented by displacement field u ∈ H1(Ωβ) and
by the constant pressure p̄ ∈ R satisfying

∫

Ωβ

(
AAβex(u)− p̄B̂

β
)
: ex(v) =

∫

∂Ωβ

(1− φβS)ĝ
α · v dSx+

∫

Ωβ

(1− φβ)f̂
α
· v ,

∫

Ωβ

B̂
β
: ex(u) + p̄|Ωβ |M̂β = −Jβ ,

(32)

for all v ∈ H1(Ωβ) where

B̂
β
:= (1− φαS)φ

βI +Bβ ,

M̂β :=Mβ + φβ
[
(Mα + γφα)(1− φβ) + γφβ

]
.

(33)

3.6 Biot Poroelasticity Model for the Canaliculo-Lacunar

Porosity by Upscaling

The coefficients involved in the macroscopic formulation (32) can be identified
with the standard Biot poroelasticity model: indeed, we obtained equations
of the 2-level homogenised poroelasticity

σ = AAe − B̂p ,

ζ = B̂ : e + M̂(p− p0) ,
(34)

where σ = (σij) is the total stress, p is the fluid pressure (assuming the
reference pressure p0 := 0), u = (ui) is the displacement with respect to
reference state, ζ is the fluid content increase (per unit volume with respect

to the reference state). Thus, B̂ are the Biot stress coupling coefficients,
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AA is the effective elasticity stiffness, i. e. associated with the (drained) solid
skeleton, and M̂ expresses the overall Biot compressibility which incorporates
both the fluid compressibility and the skeleton compressibility w.r.t. the fluid
pressure increase.
It should be remarked that the definitions of the homogenised coefficients
involved in (34) were introduced upon the assumption of locally constant
pressure, thus excluding any fluid flow. Such conditions are also considered
in experiments which are used to measure the coefficients of the Biot model.
However, we can assume moderate pressure gradients on the (relative) macro-
scopic scale, thus, allowing for a “slow” fluid flow which does not induce
pressure oscillations on characteristic scales of the microstructures. In other
words, we neglected the fluid-structure interaction effects associated to flow
dynamic effects, namely the “microscopic” pressure oscillations and the wall
shear stress induced by flow of a viscous fluid.

Poroelasticity of the Canaliculo-Lacunar Porosity The idea is to use
the two-level upscaling procedure resulting in the constitutive laws (34) with
(33) and (26), (31) to introduce the material parameters of the osteon matrix
occupying domain Ym, see (5). Thus, for a given geometry of the representa-
tive periodic cells describing the canalicular porosity (level α) and the lacunae
(level β) we can compute Dm

ijkl := Aijkl , α
m
ij := B̂ij and 1/µm :=M .

Although in this section we considered the static case only, so that no pres-
sure gradients were considered, a slow flow leading to small pressure gradients
can be covered by the model presented in (34); for this the fluid increase can
be expressed by the Darcy flow. Namely, we can put ζ = −divw = div(K∇p)
with the permeability K = (Kij) resulting from the homogenisation of the
Stokes problem in Ωβ,ε

c , whereas the flow in the dual porosity would be neg-
ligible. However, the permeability Km

ij employed in (5) could be obtained
more genuinely, as follows. Using homogenisation of the Stokes flow at level
α, we would obtain the Darcy flow in the “matrix” of level β. The subse-
quent homogenisation step would give permeability coefficients which govern
the Darcy flow in the dual porosity embedding the lacunae. Details will be
described in a further publication.

3.7 Numerical Illustrations

In this section we present an example of upscaling with two microlevels α, β.
The material properties are given just by the stiffness IDα at the heteroge-
neous level α. The homogenised materials are then characterised by stiffness
Al

ijkl , Biot coefficients Bl
ij and Biot modulus M l, l = α, β.

The hierarchical procedure is intended to describe the osteon matrix and we
shall pursue this alternative in future research. However, in the present ex-
ample we consider the heterogeneous level β corresponding to the osteons, so
that the upscaled model is relevant to the macroscopic scale where a spec-
imen of the whole compact bone is loaded. Therefore, at the heterogeneous
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Fig. 7. Left: Two micro levels: α, β, macro level with β microstructure. Right:
Microstructure channel radii in 20% – 40% of the reference cell size (= 1).

level β the upscaled microstructure from the level α is distributed in a local
coordinate system and the homogenised material parameters of level α have
to be transformed accordingly.
Both microlevels make use of the same reference cell geometry: a cube with
cylindrical channel aligned with one axis. Here we show a simple parametric
study demonstrating how change in the channel radius (simultaneously at
α, β), see Figure 7 (right), influences the corrector solutions at α, β and
consequently the homogenised material parameters as well as the macroscopic
solutions of the homogenised problem (32) obtained for microstructures with
different porosities, see Figure 7 (left).
Quantitative results are shown in Figure 8. Obviously, as the channel in-
creases, the stiffness of the material decreases, leading to larger displacements
and pressure. Illustrative results are shown in Figure 9.

Fig. 8. Macroscopic pressure (left) and top displacement (right) depending on chan-
nel radius.

3.8 Conclusion

Using the hierarchical homogenisation, we developed the upscaled model
of a nested poroelastic material, often called the “double-porosity” model.
Since the model is intended to describe hierarchical structure of pores in the
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micro α : ωP

micro β : ω̄P

macro β: u (10×), von Mises stress

Fig. 9. Selected quantities of corrector solutions and macroscopic solution, depend-
ing on channel radius.

canaliculo–lacunar porosity, we consider two “microscopic” levels with con-
nected pores [14]; as the result is for a static problem there is just one scalar
fluid pressure associated with all levels. Formally the same expressions for the
poroelastic coefficients and the same microscopic equations can be obtained
for the case of closed inclusions, but then the pressure is a (macroscopic)
field, i. e. p = p(x), cf. [3].
The homogenisation procedure reported in this paper makes possible to treat
an arbitrary geometry and topology of the pores, whereby the localization
tensors and coefficients can be calculated as the response of the autonomous
microscopic problems.
Further research will be focused on the numerical studies with real data
describing the bone geometry at the level of osteons and with material data
known from the literature. In [12] and [13] we proposed an algorithm for
a solution recovery of the microscopic response on the osteon level. Using
the homogenisation approach we establish a straightforward link between
the mechanics valid on the microscopic level and the macroscopic behaviour
which can be used to simulate experiments on tissue samples. Therefore,
using inverse analyses formulated as optimization problems the microscopic
material constants can be identified.
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Abstract. Spider silk has attracted the attention of many scientists due to its
combination of high strength, ductility, and light weight. Spider silk has a semi-
crystalline structure consisting of stiff β-sheet crystals surrounded by amorphous
glycine-rich domains. We present an overview on these mechanical properties of
spider silks, and introduce a continuum mechanics-based finite element model to
study silk structure and the material properties of each component in the spider
silk. Here, we focus on recent refinements in this finite element model, including
plastic and viscous effects of the crystalline and the amorphous phases, respectively.
The ultimate goal of studying the properties of this amazing material is to find ways
to design an artificial material with similar properties.

1 Introduction

The spider webs can take a variety of forms, with one of the most common
type being the orb-web. The different families of spiders like Araneus or
Nephila build orb-webs, while other families of spiders construct tangle and
sheet webs [8, 22]. Orb-web spinning spiders produce a number of different
high performance structural fibres (see Figure 1). These fibres have excel-

Fig. 1. Schematic diagram of a spider web.
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lent mechanical properties, which are comparable to the very best synthetic
fibres produced today. The dragline, minor ampullate and viscid silks form
the major portions of the orb-web. The dragline silk is dominating the web
structure, which occurs in the form of mooring threads, framework and pre-
tensioned radial threads [11]. Different threads of spider silks in the web are
capable to withstand adverse conditions and impact created by fast moving
prey. The perfume-coated dragline helps to find their mates, swing from place
to place, or store the food and eggs [28].
Minor ampullate silk has a high elasticity and low strength and it is produced
by median spinneret [20]. Viscid silks produced by the flagelliform glands of
Nephila Clavipes are highly compliant.

1.1 Mechanical Properties and Applications of Spider Silk

Many biologists and material scientists have been fascinated by the extraor-
dinary mechanical properties of spider silk. Its strength and toughness are
superior to those of common metallic and non-metallic structural materials.
Table 1 compares Young’s modulus, strength and energy to break of different
materials. The dragline spider silk protein is a relatively soft material com-
pared to most metals and alloys, which have a comparable Young’s modulus
of about 10 GPa. Nevertheless, its yield strength is about 1 GPa, which is
half of high tensile steel, but a toughness estimated to be close to 105 J/kg,
which is 100 times of that of high tensile steel. Silk is frequently compared to
Kevlar, the material used for bulletproof vests. Although the tensile strength
of spider silk is a factor of four less than that of Kevlar (4 GPa), the energy
it takes to break silk is about three times greater (105 J/kg). Even some ex-
tremely soft proteins, like spider viscid silk, possess remarkable combinations
of yield strength and toughness. The Young’s modulus of spider viscid silk
is only 3 MPa, but its yield strength is about 0.5 GPa and its toughness is
about 105 J/kg. To summarise the mechanical properties of spider silk, it is
stronger than steel, tougher than Kevlar, and more resilient than its synthetic

Table 1. Mechanical properties for selected materials [12].

material Young’s modulus strength energy to break
[N/m2] [N/m2] [J/kg]

dragline spider silk 1 · 1010 1 · 109 1 · 105

Kevlar 1 · 1011 4 · 109 3 · 104

cellulose fibres 3 · 1010 8 · 108 9 · 103

high tensile steel 2 · 1011 2 · 109 1 · 103

tendon 1 · 109 1 · 108 5 · 103

bone 2 · 1010 2 · 108 3 · 103

rubber ca. 106 1 · 108 8 · 104

viscid silk 3 · 106 5 · 108 1 · 105
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rivals.
A range of applications of spider silk has been envisioned. Spider silk protein
can be used to coat medical implants for better performance and biocompat-
ibility [21]. Due to its low inflammatory potential and antithrombic nature, it
can be used for surgical thread, biomembranes, and scaffolds for tissue engi-
neering [2, 17]. Recombinant spider silk has potential applications in sutures
for eye surgery, artificial tendon, ligaments for knee construction [14, 16]. The
ability to dissipate energy at very high strain rates makes spider silk suitable
for body armour systems and ideal for ballistic protection [3, 18]. Spider silk
of Nephila madagascariensis can be used as hollow optical fibres to carry
light beams in nanoscale optical circuits or as nanoscale test tubes [19].

1.2 Silk Structure

Natural spider silk is composed of several proteins with repetitive sequence
motifs [10, 30]. These motifs are composed of a polyalanine (A)n or polyalanyl-
glycine segment (AG)n, where n ranges from 6 to 9 amino acids [13]. These
short peptides organise themselves into mechanically strong crystal blocks
measuring 2-5 nm on a side [9]. These are called crystalline subunits and con-
stitute 10-25% of the fibre volume in spider silk [13, 23]. These polyalanine
segments are followed by glycine-rich regions made of (GGX)n segments and
similar motifs, where n ranges from 16 to 20 [13], and X is any amino acid.
This is called amorphous phase, which is predominantly disordered [1, 7, 10].
The longer peptide sequences are oriented along the fibre axis in stretching
experiments [5, 13, 26].
The excellent mechanical properties of spider silk have been attributed to
the specific secondary structures of proteins in the repeating units of spider
silk proteins [20], which assemble into a hierarchical structure as shown in a
simplified sketch in Figure 2.
The goal of our work is to understand the mechanical properties of spider silk
fibres using a continuum mechanics-based finite element method approach.

Fig. 2. Schematic diagram of the spider silk architecture from macroscale to
nanoscale. Spider silk fibres are composed of crystalline subunits made of β-sheets
(dark grey) and semiextended disordered peptide chains (light grey) [4].
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We know the mechanical properties of spider silk at the nanoscale from atom-
istic molecular dynamics (MD) simulations of individual and coupled subunits
[4, 29]. Termonia’s network model [25] relies on molecular modelling of crys-
talline and amorphous phases. This model shows that the high stiffness and
yield strength of dragline spider silk are due to the β-sheet crystals, whereas
the high extensibility comes from the amorphous glycine-rich domains. But
this model fails to predict the Young’s modulus of spider silk from those of the
constituents. For a quantitatively correct prediction of a fibre’s macroscopic
mechanical response, a bottom-up approach is needed that links molecular
structure to fibre mechanics. Here, the following important points are con-
sidered in our finite element and material modelling approach of spider silk:
plastic and viscoelastic properties of crystal and amorphous components, re-
spectively, mesh convergence study, and 2-d and 3-d finite element models.
As such, this study presents a few steps forward towards predictive silk fibre
modelling.

2 Finite Element Modelling

2.1 A Comparison between COMSOL and LS-DYNA for Fibre

Models

In our previous study, all finite element simulations of fibre models were
performed with the COMSOL Multiphysics simulation software package [4].
COMSOL has some limitations, e. g. the extensive memory requirement for
solving models, limited choices in modelling 3-d contacts, not user friendly
for UMAT subroutine. To overcome these limitations, we used the LS-DYNA
finite element analysis software for our present work. In the present study,
finite element analysis of the fibre models with COMSOL are referred to as
old models and with LS-DYNA are referred to as new models.
Depending on the crystal arrangement in the amorphous phase, the fibre
model can be divided into three categories [4], a serial (lamellar-like) arrange-
ment of the crystalline and amorphous subunits (see Figure 3a), a parallel

Fig. 3. Finite element silk fibre models of a) serial arrangement and b) parallel
arrangement with the boundary constraints and the loading. The crystal component
shown in dark grey and the amorphous phase in light grey.
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Table 2. Comparison of finite element models: old fibre model (COMSOL) and
new fibre model (LS-DYNA).

parallel arrangement serial arrangement

Old model New model Old model New model
(COMSOL) (LS-DYNA) (COMSOL) (LS-DYNA)

displacement [nm] 1 1 0.72 0.72
stress [GPa] 2.510 2.502 0.277 0.271

(longitudinal) arrangement (see Figure 3b) and a random arrangement be-
tween these two extremes. For this comparison study, we have considered
the serial and parallel arrangements. Both fibre models are 39 nm long with
a 14 nm diameter of circular cross section. Table 2 shows the displacement
and stress results of the old model (COMSOL) and the new model (LS-
DYNA). For both models, linear elastic Hooke’s material law was considered.
The material parameters for the crystal component ρ=1200 kg/m3, E=80
GPa, ν=0.42 and for the amorphous component ρ=1200 kg/m3, E=2.7 GPa,
ν=0.31 were considered in both models. For both models, tetrahedral ele-
ments were considered with 0.6 nm element size. The loading and boundary
conditions are shown in Figure 3. The values in Table 2 show that both finite
element codes produce nearly the same results.

2.2 Mesh Convergence Study

Applying the finite element method, the mesh plays a crucial role in the
numerical simulation. In general, a finer finite element discretisation yields a
better approximation and more accurate calculation result. However, it has
always been a question: what is the resolution of the finite element mesh that
provides reasonably accurate results? Therefore, it is very important to check
the mesh independency of the numerical simulation model. The refinement of
the spatial discretisation in the finite element method can be accomplished in
two ways: first by dividing elements into smaller ones (h-refinement) and by
increasing their polynomial degree (p-refinement). In the present work, the
mesh refinement is obtained by h-refinement. To study mesh independency,
we have considered 3-d linear hexahedral (brick8) and tetrahedral (tetra4)
element types, as well as different element sizes, see Figure 4. Our results
show:

• Element type: Comparing the mechanical response of the elements, the
tetra4 elements used in LS-DYNA appeared to be stiffer than the brick8
elements. These differences are small when compared at very small mesh
size. However, the hexahedral elements are costlier than the tetrahedral
elements, because their nodes exhibit greater connectivity, leading to
denser matrices (computational cost of brick8 element model is about
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Fig. 4. Mesh convergence: a) Stress vs. number of degrees of freedom curves, b)
tetrahedral (tetra4) element model, c) hexahedral (brick8) element model.

1.5 times higher than tetra4 element model in the case of the LS-DYNA
viscoelastic material *MAT 006).

• Mesh size: Ideally for very fine meshes tetra4 and brick8 elements show
the same result independent of computing costs. As the mesh size de-
creases, the stress values for the tetra4 discretisation decrease significantly
compared to the brick8 elements.

The results obtained (cf. Figure 4) indicate that linear hexahedral elements
are the elements of choice to represent our fibre finite element model, even
though they are difficult to generate due to the random distribution of crystals
in the amorphous phase.

2.3 3-d Finite Element Fibre Model

In the primary structure of spider silk, amino acids are linked into peptide
chain proteins by the peptide bonds. It can be seen that the silk proteins con-
sist of repeating units. The secondary structure refers to highly regular local
sub-structures. It is one level above the primary structure. The commonly
observed secondary structures are parallel and antiparallel β-sheets. Initially,
secondary structures of the spider silk were studied using X-ray diffraction
[9] and Fourier transform infrared measurements [31]. The spider silk was
found to be a semi-crystalline structure consisting of stiff β-sheet crystals
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Fig. 5. 3-d finite element model: a) Amorphous component in cylinder shape shown
as side view (left) and front view (right), b) crystal solid blocks placed randomly
in the amorphous component shown as side view (left) and front view (right), c)
surfaces of amorphous phase (light grey) in contact with surfaces of crystals (dark
grey).

surrounded by amorphous glycine-rich domains (Section 1.2).
We propose a continuummechanics-based 3-d finite element model, where the
stiff β-sheet crystals are considered as solid blocks, having similar mechani-
cal behaviour. The geometrical dimensions of the crystal blocks are obtained
from the all atom models [29]. The second component is the amorphous
phase, which is the remaining domain in silk. In the silk fibre model, crystals
are connected to the amorphous phase along the fibre axis direction. In the
direction perpendicular to the fibre axis, there are no connections between
crystals and amorphous phase. Therefore, forces are transferred from crystal
to amorphous phase and vice versa by friction between them in perpendicular
direction. To describe friction in the model, we introduced additional contact
surfaces, see Figure 5.
The finite element method can reach larger length scales at smaller computa-
tional cost, as compared to all atom simulations. The computational cost of
the finite element analysis of the cylindrical fibre model with 39 nm length,
14 nm diameter, about 2 · 105 finite elements, and applying a constant load of
1 nm displacement for 1 millisecond was about 3-4 CPU hours. The compu-
tational cost for a similar fibre model in an all atom simulation would require
about 1 million CPU hours for a several million atom system and microsec-
ond time scale. Moreover, setting up and modify a finite element model is less
time consuming than an atomistic model for molecular dynamics simulations.

2.4 Refined 2-d Finite Element Fibre Model

In the next step of our spider silk modelling, we added one more component
to account for the anisotropic cross-linking between the crystals. In the con-
tinuum mechanics-based approach, it is difficult to consider the influence of
one crystal on other crystals, which are a distance away from each other.
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Fig. 6. 2-d finite element model: a) Crystals (red) are connected with truss elements
in the amorphous phase component (grey), b) only truss elements with crystals.
Shortest truss elements (cyan), medium length truss elements (lime green) and
longest length truss elements (pink) connecting the randomly placed crystals.

Therefore, we introduced structural truss elements to mimic direct connec-
tions between neighbouring and distant crystals. For simplicity, we first built
a 2-d finite element model, which is shown in Figure 6. The crystals are
represented as rectangular faces and they are connected to the amorphous
component as well as the truss elements along the horizontal direction. The
crystals and the amorphous phase are not connected in vertical direction.
Therefore, we applied sliding friction between them. Contact sliding friction
in LS-DYNA is based on a Coulomb formulation. Friction is invoked by giv-
ing non-zero values for the static and dynamic friction coefficients, FS and
FD, respectively, in the *CONTACT input. The percentage of amorphous
chains, which are connected directly to the next crystal, side crystals in the
next column and distant crystals, is still unclear in the literature. We have
considered 65% of amorphous chains being connected directly to the next
crystal, 25% being connected to side crystals in the next column, and 10%
being connected to the distant crystals.

3 Model Calibration

Spider silk has different components and they exhibit different material prop-
erties. LS-DYNA offers a variety of material models, each with capabilities
designed to capture the unique behaviour of the different components. A ma-
terial model is described by a set of mathematical equations that gives a
relationship between stress and strain. Material models are often expressed
in a form in which infinitesimal increments of stress (or stress rate) are re-
lated to infinitesimal increments of strain (or strain rate). In this section, we
calibrated the crystal component and the 3-d finite element fibre model by
using standard material models of LS-DYNA.
The crystal component behaves like an elastoplastic material, which under-
goes non-reversible changes of shape in response to applied forces. There are
several mathematical descriptions of plasticity. We used the *MAT 003 mate-
rial model from LS-DYNA, which is suited to model isotropic and kinematic
hardening plasticity. For the finite element simulation, we used a crystal cube
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Fig. 7. Stress-strain curves for parallel and anti-parallel arrangement for a) AA
(dragline silk) and b) GA (cocoon silk) using the plastic material with kinematic
hardening model from LS-DYNA.

of size 2.048× 1.908× 2.691 nm3. The elastic modulus and the rupture strain
were taken from all atom simulations. In our previous work [29], we discussed
the MD simulations and finite element models proceeding from geometrical
as well as material linearity of the crystal component1. In the present study,
we took into account material nonlinearity and reproduced the previous MD
simulation results [29] as shown in Figure 7.
From a literature study, we found some interesting properties of spider silk:
cyclical loading characteristic shows that major ampullate silk is not com-
pletely reversible [27]. The hysteresis cycles indicate that a silk fibre does not
weaken substantially upon repeated loading. When a silk fibre is stretched
and held in place for some time, then, the required force decays exponentially.
Therefore, silk fibres show relaxation behaviour [24]. Load cycle experiments
by Denny (1976) indicate that major ampullate silk has a viscoelastic nature.
The induced energy during a load cycle has been supposed to be transformed
into heat through molecular friction [6].
As already mentioned, spider silk has two important components, crystals
and the amorphous matrix. Previously, we studied the crystal component in
detail [29]. It is an elastoplastic material. Therefore, the viscoelastic prop-
erties are assumed to be associated with the amorphous component. Before
we go into the complicated user defined material subroutine, we studied in-
built LS-DYNA viscoelastic material models. For study purposes, we assigned
*MAT 006 material for the amorphous phase. This material model provides
a general viscoelastic Maxwell model having up to 6 terms in the prony series
expansion and is used for modelling of the amorphous phase. Figure 8 shows
the loading rate effect on the silk fibre model. For this simulation study, we

1 The β-sheet rich crystalline units consist of a poly-alanine, sequence, in spider
dragline silk and cocoon silk, in an antiparallel or parallel arrangement of the
strands. In an antiparallel arrangement, the successive β-sheet strands alternate
directions so that the N-terminus of one strand is adjacent to the C-terminus
of the next. In a parallel arrangement, all of the N-termini of successive β-sheet
strands are oriented in the same direction.
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Fig. 8. Effect of loading rate on stress-strain curves of random arrangement fibre
model. An elastoplastic material was assigned for the crystal component and a
viscoelastic material for the amorphous phase.

have considered a random arrangement of the crystals over a length of 35 nm
and 25% crystallinity. As the loading rate increases, the stiffness as well as
the yield stress increases. Therefore, the fibre model is capable of describing
loading rate-dependent behaviour.

We also studied the effect of the length of the fibre model on the stress-strain
curves. For this simulation, we considered a random arrangement fibre model
with an elastoplastic material model (*MAT 003) for the crystal component
and a viscoelastic material model (*MAT 006) for the amorphous component.
We applied 2 nm/ns constant velocity load to all fibre models. The results in
Figure 9 show that if the length of the fibre model increases, the stiffness as
well as the yield stress decreases due to the viscous effect in the fibre model. If
an elastic material is assigned for the amorphous phase, the fibre mechanical
response is independent of its length.

Fig. 9. Effect of the length on stress-strain curves for the random arrangement fibre
model. Elastoplastic material assigned for the crystal component and viscoelastic
material for the amorphous phase.
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4 Summary and Future Work

Finite element analyses of the crystal block explained an elastoplastic ma-
terial behaviour of the crystal component and reproduced the molecular dy-
namic simulations results. In the proposed 3-d finite element fibre model,
elastoplastic crystals are randomly placed all in contact with the viscous
amorphous phase. This fibre model is able to describe loading rate-dependency
and length dependency behaviour. The second proposed model is a refined
2-d finite element fibre model, which is capable of predicting the anisotropic
cross-linking between the crystals.
In our refined 2-d finite element model we have considered truss elements,
which represent single connecting protein chains. The experimental measure-
ments on a single protein chain using force spectroscopy revealed a force-
extension behaviour in reasonable agreement with polymer random coil mod-
els such as the worm-like chain model (WLC) [15]. The force-extension be-
haviour of a single protein chain depends on its contour length [15], therefore
we distinguish the truss elements into three categories according to their
length. In LS-DYNA if the tensile test data is available, the stress-strain
points can be entered for use with *MAT 024.
Another important point is interactions within the amorphous phase. These
interactions exhibit different properties like stress/strain stiffening, kinematic
hardening, fluidisation, bond breaking, etc. Future steps of our work will aim
to create the user defined material subroutine to include all the properties
mentioned above.
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chanical response of silk crystalline units from force-distribution analysis.
Biophysical Journal 96 (2009), 3997–4005.

[30] Xu, M. & Lewis, R. V.: Structure of a protein superfiber: Spider dragline
silk. Proceedings of the National Academy of Sciences 87 (1990), 7120–
7124.

[31] Z. Y. Dong, R. V. L. & Middaugh, C. R.: Molecular mechanism of spider
silk elasticity. Archives of Biochemistry and Biophysics 284 (1991), 53–
57.





Dynamics of Mechanically Induced

Cytoskeleton Reorganisation: Experimental

Study and Mechanical Modelling

M. Deibler1, A. Avci2, W. Ehlers2, B. Markert2 & R. Kemkemer1,3

1 Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
2 Institute of Applied Mechanics (CE), Chair of Continuum Mechanics,
University of Stuttgart, Pfaffenwaldring 7, 70569 Stuttgart, Germany

3 Reutlingen University of Applied Sciences, 72762 Reutlingen, Germany

Abstract. Mechanical forces are crucial in controlling the integrity and function-
ality of cells and sub-cellular structures. In particular, the actin stress-fibre network
and associated adhesion sites are supposed to be load bearing structures as well as
crucial elements in the process of mechanotransduction within a cell. In fact, these
two structures show a dramatic reorganisation if an adherent cell is exposed to
external forces. The underlying molecular and biophysical mechanisms of the dy-
namic reorganisation processes are poorly understood. In order to study the struc-
tural adaptation of the actin cytoskeleton at the impact of external uniaxial cyclic
tensile strain, we monitor cells adherent on deformable substrates by life-cell fluo-
rescent imaging. We demonstrate that focal adhesions and the actin cytoskeleton
undergo dramatic reorganisation perpendicular to the direction of stretching forces.
We speculate that the rotation-like movement is a continuous lateral tread-milling-
like behaviour with a net mass displacement toward the less stressed-exposed side of
the fibres. In a further step, we propose a phenomenological model for the descrip-
tion of the distinct reorientation of the actin fibres. To this end, non-linear evolution
laws for the fibre orientations are formulated accounting for all experimentally ob-
served dependencies such as strain amplitude and frequency. The theoretical model
is implemented into the finite element framework and finally applied for simulating
the adaptation of the actin structure of a single fibroblast under cyclic tension.

1 Introduction

Cells are natively surrounded and pervaded by a plethora of mechanical pro-
cesses, acting on the cellular, sub-cellular and molecular level [22, 30, 33, 34].
On the cellular level, forces have an important impact on basic cellular func-
tions, such as migration [20, 26], proliferation [33] and differentiation [13].
In the process of mechanotransduction, cells are able to translate forces or
deformations in biochemical signals, which finally may lead to complex re-
sponses. The ability to detect and transform external mechanical stimuli is
an intrinsic attribute of mechanosensitive cells, such as fibroblasts, osteocytes
or endothelial cells [12, 39]. The cells are able to adapt their morphology and
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structural components once they are exposed to external mechanical stimuli.
Maintenance of the cellular shape is thereby a complicated net product of
membrane forces, osmotic pressure, shear stresses, tensional and compressive
forces, sophisticatedly balanced by a multitude of complex, rate-dependent
mechanisms [25].

Important elements for the structural integrity of cells are semi-dilute mesh-
works of semi-flexible biopolymers termed cytoskeleton [3, 24]. The cytoskele-
ton is essential in establishing a specific cell morphology and transmitting and
converting extracellular forces to cellular responses [6, 37]. It consists of mi-
crofilaments, microtubules, and a group of polymers collectively described
as intermediate filaments. Microfilaments are cable-like dynamic structures
assembled from actin monomers forming actin filaments, which can also as-
semble with additional proteins to contractile actin stress fibres, one major
intracellular tension bearing structure [10, 23].

A common approach to investigate mechanically induced cell responses in
vitro is the use of flexible membranes as cell culture substrates. Cells adhere
on such membranes and cyclic tensile deformation of the membrane can be
realised by a simple apparatus [2]. In such experiments, it is a well-observed
phenomena that cells respond to a uniaxial cyclic tensile strain (CTS) by
reorganising, over several hours, their cell morphology with respect to the
major axis of strain [4, 5, 8, 17, 19]. R. Buck was one of the first investi-
gators interested in the effects of uniaxial cyclic substrate deformation on
cell populations [5]. Using a rudimentary device to deform cells adhering to
a polysiloxane polymer substrate, he subjected fibroblast to 0.07 Hz cyclic
stretch with unknown amplitude. He found that cells align orthogonally to
the direction of stretch within 18-24 hours. This general behaviour could be
found for various cell types [4, 8, 18, 19]. This response is suggested to be
an avoidance reaction protecting the cells from longitudinal deformation and
force overload [5]. Further reports exhibited that this cell reorientation de-
pends on the strain amplitude [7, 19]. Increasing amplitudes led to faster cell
body orientation, requiring a minimal deformation of more than 2%.

Jungbauer et al. substantiated these observations by means of live cell ex-
periments on periodically deformed substrates utilizing rat embryonic fibrob-
lasts (REF52wt) and human dermal fibroblasts [19]. Beyond a characteristic
threshold stretch amplitude (REF52wt: 1%, HDF: 2%) both cell types re-
oriented faster with increasing deformation amplitude, following a linear de-
pendency of reorganisation time on amplitude. Sub-confluent fibroblasts re-
sponded to increasing frequencies (1.0× 10−4 Hz to 20.0 Hz) with a biphasic
characteristic. The orientation speed and maximal alignment increases with
frequency until reaching a threshold frequency at 1.0 Hz. Beyond this stimu-
lation frequency, both orientation parameters remained constant [19]. Since
the cytoskeleton is the major integrity providing structure within the cell
and essential for migration processes, it appears obvious that it might adopt a
central position in force-induced avoidance responses. Especially the dynamic
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microfilament system got increasingly into the focus of biomechanically mo-
tivated studies [15, 17, 31, 38]. Actin stress fibres (SF) were found to be reor-
ganised perpendicular to the direction of deformation within the experimental
time frame, coinciding with cell soma reorientation [11, 15, 17, 31, 36, 38].
Currently, the avoidance response is assumed to protect cells from longitudi-
nal deformation, thereby minimizing the intracellular strain and disruption
of vital cellular structures, as for example the cytoskeleton [5, 9, 19, 38].
Despite numerous experimental studies investigating actin dynamics during
biomechanical stimulation, a holistic picture how stress fibres are realigned
is still missing. Studies conducted so far are contradictory in terms of exper-
imental outcomes and observations. In order to determine the dynamics of
the actin stress fibre reorganisation, we performed experiments by using actin
fluorescent probes and a self-build setup to expose the cells to cyclic tensile
strain (CTS). This approach allowed for observing the structural adaptation
of actin stress fibres over a time of several hours with a sufficient temporal
resolution.
In order to obtain a better understanding of the mechanically triggered in-
ternal cell reorganisation, a phenomenological continuum model based on a
linear elastic stress analysis of a cell adhering to a flexible substrate is devel-
oped. The changes in the actin fibre orientation are predicted based on the
present minimum principal strain direction, where the evolution of the fibre
angle accounts for the relevant dependencies on the peak strain amplitude,
loading frequency and time history observed in the experiments. The govern-
ing differential equations and constitutive relations are implemented into a
two-dimensional finite element framework, which enables us to simulate the
uniaxial cyclic strain response of a fibroblast cell, but also paves the way for
the computation of more complex biaxial loading scenarios in the future.

2 Dynamic Actin Reorganisation upon Application of

Cyclic Tensile Strain

The setup for mechanically stimulating cells while observing their responses
by live-cell microscopy was developed previously by Jungbauer et al. [19].
The membrane is fixed in a device and stretched periodically as schemati-
cally shown in Figure 1A. Typically, cells adhere on the membrane with no
preferred direction of their long cell axis. The orientation gradually changes
once cyclic tensile strain is applied, adopting a highly ordered alignment per-
pendicular to the direction of deformation (Figure 1B, Figure 2A). Image
analysis is used to determine the orientation of the cell body (ϕCell body) and
the mean actin orientation angle (ϕActin) for predefined time points (Figure
1C).
We subjected Rat Embryonic Fibroblasts (REF52wt) transfected with EGFP-
Lifeact to periodic uniaxial tensile strain at various stimulation frequencies
at a constant amplitude of 8% and observed the behaviour of the cells by
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Fig. 1. Automated mechanostimulation of adherent cells. A) Experimental setup:
an elastic substrate is periodically deformed with help of computer-controlled
servo motors. Microscopy and mechanical stimulation are synchronised via a self-
developed software routine.B) Adherent cells, cultured on elastic PDMS substrates,
change their mean orientation from random to perpendicular during application of
cyclic tensile strain with respect to the major axis of deformation. C) Determina-
tion of cell body and actin orientation by image analysis (scale bar: 25 µm, double
arrow indicates direction of deformation).

live-cell microscopy. The cells showed the characteristic reorientation of the
cell body upon the application of the CTS (Figure 2A). The initial orienta-
tion is set by the deliberate selection of a field of view exhibiting cells with
initially random orientation with respect to direction of deformation. During
the experiments cells realigned orthogonally to the direction of cyclic tensile
deformation (see [11, 19]).
In accordance with the reorganisation of the cell bodies, the actin stress fi-
bre system within the cells gradually realigns from a initially nearly parallel
orientation with respect to the direction of CTS, to a virtually perpendicular
orientation by continuously shifting pre-existing fibres (Figure 2B). Transfec-
tion of REF52wt cells with pEGFP-Lifeact, a bacterial plasmid encoding a
fluorescent protein indirectly labelling f-actin, allowed the experimental visu-
alisation of this process. Remarkably, only a few stress fibres were disrupted
during mechanical stimulation. Most of these contractile filaments appeared
to remain macroscopically intact. The fibres seemed to rotate gradually to-
ward the new direction over time. Stress fibre orientation was quantified
by local image processing routines measuring the mean orientation in small
squares within the cells. Average orientation of the actin stress fibres within
the cell was then calculated form these local orientation angles.
To determine whether the deformation-induced fibre reorientation was de-
pendent on the applied stretching rate (deformation speed), CTS was ap-
plied at increasing frequencies. The mean actin stress fibre orientation was
determined over time for each experimental condition. The initial mean stress
fibre orientation angle ϕ̄0= 22.4◦ ± 3.5◦ (SEM, N > 8) was due to deliber-
ate selection of transfected cells, approximately oriented within the direction
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Fig. 2. Reorientation of the cell body and actin stress fibres of Rat Embryonic
Fibroblasts (REF52wt) during cyclic tensile deformation. A) Cell body alignment
from random to perpendicular with respect to the direction of tensile strain dur-
ing application of 8% stretch at 0.5 Hz (scale bar: 100 µm). B) Reorganisation of
actin stress fibres in EGFP-Lifeact expressing REF52wt cells orthogonally to the
direction of CTS. Actin stress fibres are continuously realigned during mechani-
cal stimulation (0.5 Hz, 8%, scale bar: 25 µm, double arrow indicates direction of
deformation).

of deformation. Non-stimulated cells maintained their initial actin alignment
over time (Figure 3A, black squares). A continuous non-linear increase in the
mean orientation angle ϕ̄ could be observed for all experimental conditions
(Figure 3A). Stimulation with 0.1 Hz led to a gradual shift of ϕ̄, levelling
off after 250 min cyclic deformation within the regime of indifferent orienta-
tion (approx. 45◦) (Figure 3A, purple circles). Increasing deformation rates
induced a faster change in the actin stress fibre alignment, determined by a
reduced half-maximal orientation time (t 1

2

), Figure 3B). Stimulation at 0.5
Hz led to a clearly distinguishable plateau phase after approximately 125
min of mechanical stimulation at a mean orientation angle of ϕ̄= 62.6◦ ±
0.6◦ (SEM, N > 8, Figure 3A, blue triangles), approaching a new steady
state of the actin orientation in a more perpendicular direction to the uni-
axial strain. Displaying no initial lag-time, the time course could be fit with
a simple exponential function. The approximated half-maximal orientation
time was determined to be 59.6 min ± 2.5 min with a maximal orientation
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Fig. 3. Reorientation characteristics of stress fibres in EGFP-Lifeact transfected
REF52wt cells subjected to 8% CTS. A) Mean actin stress fibre reorientation over
time for three selected frequencies at a fixed amplitude of 8%. B) Half-maximal
orientation time and maximal orientation velocity at deformation rates between 0.1
and 4.0 Hz.

speed (vmax) of 0.36
◦/min. Both parameters (t 1

2

) and vmax could be shown

to scale non-linearly with the deformation rate (Figure 3B).
Closer examination of this stress avoidance response exhibited two major
underlying mechanisms: a phenomenological rotation of apparently intact
stress fibres away from the major axis of tensile strain and fusion of fibres
parallel to the direction of stretch with subsequent alignment along rotating
actin filaments.

3 Modelling of Actin Stress Fibre Realignment

We proceed from an isotropic, linear elastic stress analysis, where the stress
state in the flexible PDMS substrate is computed from a Hookean elasticity
law with the stress tensor given as

σ =
E

(1 + ν)
ε+

E ν

(1 + ν) (1 − 2 ν)
(ε · I) I . (1)

Herein, E = 1.2 MPa and ν = 0.49 are the Young’s modulus and Poisson’s
ratio of the substrate, ε = sym(gradu) is the linear strain tensor of the in-
finitesimal theory with displacement vector u, and I is the identity tensor.
Due to the thinness of the substrate membrane (approx. 400 µm), (1) is
evaluated for plane-stress conditions with the out-of-plane stress components
being neglected. Moreover, the stress and deformation fields in the substrate
are assumed not to be affected by the adhering cells, which are modelled as
perfectly attached to the substrate. Relative movements of the cells and their
adhesion sites with respect to the PDMS membrane are not considered.
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The in-plane (1-2 plane) substrate displacements u1 and u2, and thus, the
deformations imposed on the cells, are computed from the momentum balance

divσ = 0
plane
−→
stress















e1 :
∂σ11

∂x1
+

∂σ12

∂x2
= 0 ,

e2 :
∂σ21

∂x1
+

∂σ22

∂x2
= 0 .

(2)

Herein, inertia and body forces have been neglected, e1 and e2 denote the
Cartesian in-plane basis vectors, x1 and x2 the respective coordinates, and
σik (i, k = 1, 2) the coefficients of the stress tensor components.
Proceeding from an initial distribution of the actin orientation ϕ0(x, t0) in
a cell (x ∈ ΩCell is the vector pointing to a position in the cell domain
ΩCell) at time t = t0 obtained from the experiments by image analysis (cf.
Figure 1), the reference fibre vectors read a0 = cos(ϕ0) e1 + sin(ϕ0) e2. The
actual actin fibre vectors in the deformed configuration can then be computed
from the mapping a = Fa0 with the material deformation gradient F =
gradu+ I. However, the temporal evolution of the fibre angle in the course
of the mechanical stimulation is described with respect to the unstrained
state, which has also been used for the image acquisition during the CTS
experiments.
The reorientation of the actin stress fibres is modelled based on the experi-
mental observation that a cell tries to escape from the loading direction by
rearranging its structural stiffness perpendicular to the exposed stretching.
In mechanical terms, this means that the actin fibres realign in the minimum
principal strain direction, which can be easily computed from the strain ten-
sor components. In particular, the principal direction ϕmin

p is found from

tan(2ϕmax
p ) =

2 ε12
ε11 − ε22

−→ ϕmin
p = ϕmax

p + 1
2 π . (3)

Proceeding from a tightly interconnected fibre network, even local stretching
of a part of the cell is assumed to activate the reorientation mechanism in the
entire cell. This hypothesis is corroborated by experiments locally stimulating
cells via atomic force microscopy or anisotropic stretching thereby inducing
a general stiffening of the cell body [21, 28, 35] or observing a stress fiber
response far away from the stimulation site [16]. Rigidity is governed by the
cytoskeleton thereby establishing a direct causality between the stiffening
response, the intracellular fibre network and the reorientation mechanism.
To describe the possibly biaxial state of strain that is sensed by a cell, we
use the common definition of the equivalent strain

εeq :=
1

E
σeq with σeq =

√

σ2
11 + σ2

22 − σ11 σ22 + 3 σ2
12 (4)

as the equivalent (von Mises) stress in the PDMS substrate under plane-
stress conditions. For the uniaxial CTS experiment, (4) simplifies to εeq =
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1
E
|σ11| = |ε11| with e1 being the stretching direction. In the same way as

the value of the equivalent strain is related to the externally applied peak
strain amplitude, its temporal change ε̇eq = dεeq/dt (equivalent strain rate)
is connected to the loading frequency1.
Experimental observations exhibit a cell-type specific lower threshold fre-
quency (0.01 Hz - 0.05 Hz) upon reorientation of cells and stress fibres occurs
[19]. Therefore, we assume that the persistence of the strain signal in the cell
is not very long. In other words, the signal dissipates over time. The cell’s
fading memory of the mechanical stimulus is modelled by use of decaying
exponential functions of the maximum values of εeq and ε̇eq. In particular,
we define the sensed peak strain amplitude and loading frequency as

ACell = Amax
Cell exp

(

−
t− tA
τA

)

with Amax
Cell = max

t∈[0,T ]

(

max
x∈Ωc

(

εeq(x, t)
)

)

, (5)

fCell = fmax
Cell exp

(

−
t− tf
τf

)

with fmax
Cell = max

t∈[0,T ]

(

max
x∈Ωc

(

ε̇eq(x, t)
)

π max
x∈Ωc

(

εeq(x, t)
)

)

. (6)

Therein, tA and tf denote the times in the considered time interval [0, T ]
at which the maximum values Amax

Cell and fmax
Cell occur, and τA and τf are

the relaxation time constants governing the fading memory effect. Based on
the above mentioned experimental observations, investigating embryonic rat
fibroblast cells, we assume τA = τf = 5 min.
Moreover, dependent on the cell type, the actin fibre bundles remain in the
reoriented state or relax back to their initial orientation if the loading has
stopped or is below some amplitude or frequency threshold Athr

Cell or f thr
Cell.

The considered fibroblasts show a reverse orientation dynamics under strain-
relieved conditions with the back-rotation to the initial fibre direction ϕ0

taking place within the same time frame as the mechanically triggered re-
alignment [19]. This is accomplished in the model by setting

ϕmin
p = ϕ0 if ACell < Athr

Cell or fCell < f thr
Cell , (7)

where for the REF52wt cells Athr
Cell = 1 % and f thr

Cell = 0.01 Hz [19]. The final
evolution of the stress fibre orientation proceeds from two experimentally
inspired assumptions. First, the linear dependence of the fibre orientation
velocity (angular velocity) on the peak strain amplitude is adopted from
observations on whole cells, where the cell reorientation dynamics is assumed
to be also representative for the internal stress fibres. Second, the exponential

1 Consider a sinusoidal, uniaxial strain loading ε11 = Aload [
1

2
sin(2π fload t−

1

2
π)+

1

2
]. Then, the maximum value of the equivalent strain corresponds to the applied

peak strain amplitude, max(εeq) = Aload, and the magnitude of the equivalent
strain rate is proportional to the loading frequency, max(ε̇eq) = π fload Aload.
In the context of bone tissue adaptation, a more detailed discussion on strain-
amplitude-frequency relations can be found in Turner [29].
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Fig. 4. Sketch of the modelled fibre orientation velocity (angular velocity) function
(8) depending on the peak strain amplitude and the loading frequency in the CTS
experiment. For the plot (ϕmin

p − ϕActin)/τϕ = 1 has been used.

dependence of the maximal orientation velocity on the loading frequency (see
Figure 3B) is supposed to hold also for the entire alignment process. Following
this, the fibre angle is determined from the empirical rate equation

ϕ̇Actin = cAACell

(

1− exp(−cf fCell)
) 1

τϕ

(

ϕmin
p − ϕActin

)

(8)

with the parameters cA = 6.6 and cf = 2.0 and the time constant τϕ = 45
min controlling the speed of the fibre angle evolution. A plot of the function
is provided in Figure 4.

4 Materials and Methods

Cell Culture REF52wt rat embryonic fibroblasts were cultured at 37◦C,
5% CO2 in Dulbecco’s modified eagle medium (DMEM, 4.5 g/L D-glucose)
(Invitrogen, Karlsruhe, Germany) supplemented with 10% fetal bovine serum
(FBS; Invitrogen). Cells were used before passage 30.

Plasmids and Transfection Transfection was performed using pEGFP-
Lifeact [27] (kind gift of Michael Sixt, Institute of Science and Technology,
Klosterneuburg, Austria) with the Nucleofector Kit R (Lonza, Basel, Switzer-
land) and the AMAXA Nucleofector system (Lonza). Following transfection,
cells were plated on transparent, elastic poly(dimethylsiloxane) (PDMS, Syl-
gard 184, Dow Corning, Midland, USA) membranes coated with 5 µg/ml
bovine fibronectin (Sigma, Steinheim, Germany) and cultured for 16 h at
standard conditions (37 ◦C, 5% CO2 ) before experimental use.

Mechanical Stimulation Cells cultured on PDMS membranes were ex-
posed to uniaxial cyclic tensile strain (CTS) as described previously [11, 19].
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Briefly, a customised stretching device was fit on an upright fixed-stage micro-
scope (AxioExaminer, Carl Zeiss). PDMS membranes with cells are clamped
to this device and cells can be observed with the microscope. The entire
setup (microscope and stretching device) was enclosed by an environmental
chamber to perform the experiments at culture conditions 37 ◦C. Uniaxial
cyclic stretch experiments were performed with cells covered by phenol red
free Leibovitz L-15 media (Invitrogen) supplemented with 5% FBS and 1%
penicillin-streptomycin (Invitrogen). The stretching amplitude was kept con-
stant at 8% stretch, stretching frequency was varied from 0.1 Hz to 4.0 Hz.
Imaging was carried out using either an A-Plan 5x/0,12 Ph0 objective or
a W-Plan-Apochromat 40x/1,0 DIC objective (both Carl Zeiss) in combi-
nation with a Halogen lamp or the Colibri (Carl Zeiss) LED illumination
system. Additional magnification was achieved via a manual magnification
changer adjacent to the CCD-camera (AxioCam MRm3, Carl Zeiss). Cells
with comparable fluorescence intensity were chosen for each experiment. A
self-developed software routine was used to synchronise image acquisition
with the stretching control. Cyclic stretching was stopped every five minutes
(or other time intervals if indicated), cells were automatically focused and
z-stacks of images were taken in the relaxed state of the substrate.

Image Processing Z-stacks were projected via an extended depth of field
routine developed for ImageJ [1] by the Biomedical Imaging Group, EPFL,
Lausanne [14] and contrast enhanced, setting 0.5% of the overall pixels to
saturation. After background removal by means of thresholding and mask-
ing, actin orientation was extracted by 32 × 32 pixel sliding square analysis
of the images. Fast Fourier Transformation (FFT) was performed in each
square following shape analysis of the FFT image by fitting an ellipse to the
Fourier spectra and calculating the angle of the major axis. Rotation by 90◦

yielded the mean orientation of the actin bundles within the field of analysis.
The mean angle of actin orientation and the mean standard error was calcu-
lated using Matlab (MathWorks, Natick, USA). The mean inter-stress-fibre
distance was quantified by means of line plots across multiple sections within
one cell, averaging the results over six independent experiments.

FE Simulation All computations have been performed using the finite el-
ement solution environment FlexPDE V 6.20 (PDE Solutions Inc., 9408 E.
Holman Rd., Spokane Valley, WA 99206, USA). The implementation pro-
ceeds from a 2-d Cartesian framework (COORDINATES CARTESIAN2) with the
x-y coordinates representing the 1-2 plane of the thin PDMS membrane as-
suming plane-stress conditions. The degrees of freedom (DOF) of the analysis
are the in-plane substrate displacements u1 and u2, which also correspond to
the cell displacements, and the actin fibre orientation angle ϕActin.
The model described in Section 3 is implemented into FlexPDE using the
strong form of the momentum balance (2) to determine the unknown dis-
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Fig. 5. A) Geometry and boundary conditions of the displacement-driven, cyclic
tensile test with exemplary loading path for a peak strain amplitude of 8% at a
frequency of 0.5 Hz according to (9). B) Undeformed and deformed finite element
mesh during the cyclic tension test.

placements and the evolution equation for the fibre angle (8) (EQUATIONS
section). The strain and stress computation as well as the constitutive func-
tions describing the reorientation properties and the fading memory effect
are implemented in the DEFINITIONS section using the built-in features of
FlexPDE.

An initial-boundary-value problem describing the CTS experiment of a sin-
gle cell is defined using a rectangular domain (W × H = 220 × 165 µm2)
representing a small section of the cell-populated PDMS membrane (approx.
20× 20mm2). On it we imprinted a second domain ΩCell with the real shape
of a representative fibroblast cell reconstructed from an experimentally ac-
quired image (see Figure 5A, left). Initially, the displacements are set to zero
in the entire domain and the fibre angle in the cell is initialised with the values
obtained from the image analysis. The entire domain is spatially discretised
with triangular finite elements using quadratic interpolation functions for all
unknowns (778 elements, 1615 nodes, 4845 DOF). For the time integration,
FlexPDE uses by default a second-order backward difference formula with
adaptive time-step control. For the CTS simulation, we have chosen constant
time increments (FIXDT=ON) of one-tenth of the minimum period of the ap-
plied load, i. e., ∆t = (10 fload)

−1 to ensure a good signal reconstruction.
The rectangular domain is fixed horizontally at the left and vertically at the
bottom, while the top side is not constrained and the right side is loaded
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Fig. 6. Comparison between experiment and simulation at different reorientation
stages for a cell subjected to 8% CTS at 0.5 Hz. The simulated fibre directions are
depicted with respect to the undeformed cell as the current modelling approach
does not account for active cell reorientation and deformation.

displacement-driven in horizontal direction via

u1(t) = Aload W
[

1
2 sin

(

2 π fload t−
1
2 π

)

+ 1
2

]

. (9)

The geometry and boundary conditions, the loading path and the undeformed
and deformed FE mesh are depicted in Figure 5.
The computation results are written to a data file and analysed using the vi-
sualisation software tool Tecplot 360 2010 (Tecplot, Inc., 3535 Factoria Blvd.
S. E., Bellevue, WA 98015, USA). A comparison of the actin fibre orientation
obtained from the experiment and predicted by the simulation is given in
Figure 6. As can be seen, the phenomenological model is capable of mimick-
ing the reorientation behaviour very nicely. However, it must be noted that
the reorientation and change in shape of the whole cell is not described by
the current modelling approach as no relative movement between cell and
substrate is considered.

5 Conclusion and Discussion

Cells have remarkable abilities to sense and respond to mechanical signals of
their environment, but despite the physiological importance, the underlying
biological and mechanical mechanisms are poorly understood. We could ex-
perimentally demonstrate that the well-studied phenomenon of cell alignment
at the application of cyclic uniaxial tensile strain coincides with a rotation-
like reorganisation of the actin stress fibres in a perpendicular direction to the
strain axis. The kinetics of that process depends on the frequency of the cyclic
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strain. Remarkably, there is hardly a disruption and complete dissociation of
stress fibres in response to the strain visible. The stress fibres rather change
their orientation continuously within a time course of several minutes regard-
less of the frequency of the cyclic tensile strain. This observation is partly
in contrast to a mechanism proposed by Wang [32]. There, stress fibres are
suggested to have a basal intrinsic strain energy and deviation from it may
cause filament disassembly. Another phenomenological model suggests that
cells try to keep an optimal stress level in the stress fibres, and therefore,
the actin fibres reorganise in perpendicular direction upon the application
of uniaxial cyclic tensile strain [9]. However, the mechanism of the actual
reorganisation of the stress fibres is not addressed.
In our study, we proceed from a phenomenological description based on mean-
field physics thereby taking into account the relevant factors influencing the
actin reorientation process. In particular, we model the fibre angle as a field
function that evolves with a rate equation governed by the minimum principle
strain direction, the peak strain amplitude and the loading frequency. More-
over, time history effects as well as min/max thresholds are also accounted
for. Consequently, the macroscopic modelling approach enables us to mimic
the stress fibre reorganisation with sufficient spatial and temporal resolution.
However, a limitation of our as well as the other above-mentioned models is
that no molecular details of sub-cellular structures are considered.
Our and other experiments show that stress fibres and focal adhesions, which
link the extracellular environment to the stress fibres, are key players in the
mechanically induced reorganisation and need to be considered in a more
realistic model. The current description proceeds from a welded contact be-
tween cell and substrate such that active cell movement and deformation are
excluded. The discrete modelling of adhesion sites would alleviate this limita-
tion. It should finally be noted that with the presented continuum model and
its numerical treatment using the finite element method, it is straightforward
to extend the simulations to whole cell clusters or cells embedded into an
extracellular matrix and to more complex loading scenarios. This opens an
avenue for future investigations.
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Abstract. Avascular tumours are acclumerations of neoplastic cells without blood
supply. Neoplastic cells proliferate uncontrolled if enough nutrients are available.
Therefore, the local growth rate is governed by the amount of nutrients delivered
via diffusive transport.
In the context of the Theory of Porous Media (TPM), a phenomenolgical model
of avascular tumour growth is introduced, which is able to describe the local ac-
cretion and reduction of cells. The tumour cell tissue is treated as an aggregate
of two immiscible constituents. In this idealised biphasic macro-model, the aggre-
gate consists, firstly, of an extracellular matrix (ECM) and cells summarised to a
solid phase and, secondly, of a fluid phase comprising extracellular and interstitial
liquids, necrotic debris as well as cell precursors. Additionally, the growth-energy
concentration is introduced as an additional quantity, which measures the average
amount of chemical energy available for cell metabolism, and thus, controls the
growth process. The addition and removal of cell material is described by a mass
exchange between the solid and fluid constituents, which is controlled by the local
growth energy concentration.
The numerical treatment of the coupled multi-field equations is carried out within
the mixed finite element method proceeding from an implicit monolithic solution
strategy. The simulation of a growing tumour spheroid finally reveals the capabilities
of the model.

1 Introduction

Biological tissues are composed of many constituents, like various cell types,
abundant water, extracellular matrix (ECM), etc., cf. Cowin [8] for details.
Growth processes cause changes in the relative amount of these components
and their properties. In the last decades, continuum mechanics was exten-
sively applied in the context of material modelling of hard and soft biologi-
cal tissues, such as bone, cartilage or muscle, where nonlinear, inelastic and
anisotropic properties have been addressed. Reviews of achievements in the
biomechanics of biological tissues including growth and remodelling are given
by Taber [20] and Humphrey [12].
Here, particularly focussing on tumour growth processes, it is apparent that
growing tissues not only undergo changes in size and shape but also in their
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inner structure. In singlephasic models, the internal changes are described
employing the open-system theory. Thereby, only the cells and the ECM are
assumed to influence the overall mechanical behaviour and the fluid con-
stituents are neglected. This concept has been applied to growing tumour
spheroids by Ambrosi & Mollica [3, 4], using an open singlephasic material
model with an additional nutrient concentration that triggers the growth pro-
cess. A recent overview of different tumour models is given by Unnikrishnan
et al. [22].

Multiphasic models, which also include extracellular fluid, are proposed by
Ambrosi & Preziosi [5] and Byrne & Preziosi [7] for the description of avas-
cular tumours. Moreover, Preziosi & Tosin [18] describe a region of tumour
and healthy cells using a triphasic material description.

In the present article, a general framework for the description of non-equi-
librium growth processes in tumours is developed. Therefore, cells and the
extracellular matrix as well as the extracellular fluid are considered as individ-
ual components of the growing biological tissue. In addition, it is necessary to
take diffusion and consumption of metabolites (oxygen, glucose, ATP, etc.)
into account. However, it seems to be impossible to include all metabolic
mechanisms into a continuum-mechanical macro model. Therefore, following
the ideas of Markert & Ehlers [16] as well as Ambrosi & Guillou [2], a single,
non-mechanical quantity is introduced to summarise the metabolites insight
the extracellular fluid. This method provides the necessary thermodynamic
restrictions, which are evaluated for avascular tumour growth.

To reveal the capability of the multi-field continuum model, the governing
coupled system of partial differential equations is numerically treated by use
of the mixed finite element method. Based on a direct implicit solution proce-
dure, an exemplary simulation of a 3-d growing tumour spheroid is presented.

2 Preliminaries

Biological tissues are multiphasic, porous materials, which are formed by
several interacting components. To describe the mechanical behaviour of
the overall biological material, it is necessary to consider its individual con-
stituents. In this contribution, tumour tissue is modelled as a multiphasic
continuum ϕ, which basically consists of superimposed and interacting solid
and fluid phases ϕα (α ∈ {S, F}), see Figure 1. In particular, the extracel-
lular matrix and the adhering cells are summarised within the solid phase
ϕS . These are surrounded by the extracellular fluid, which is subsumed in
the fluid phase ϕF . However, the extracellular fluid is itself a homogeneous
solution, which contains several mixture components, i. e., ϕF = ∪βϕ

β with
β ∈ {L, γ}. In detail, these mixture components are divided into a solvent
ϕL (liquid water) and several solutes ϕγ (nutrients, glucose, cell and matrix
precursors, cell debris, etc.).
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Fig. 1. Representative elementary volume (REV) of the biological microstructure
and biphasic macro model.

2.1 Immiscible Phases and Volume Fractions

The immiscible phases ϕα are described by their volume fractions nα =
dvα/dv (partial volume dvα per bulk volume dv), which must fulfil the sat-
uration constraint

∑

α

nα = nS + nF = 1 . (1)

Furthermore, the partial density ρα = dmα/dv and the material or realistic
density ραR = dmα/dvα both defined with the constituent mass element dmα

are related to each other via the volume fraction nα:

ρα = nαραR . (2)

Summation over the partial densities ρα yields the density ρ of the overall
aggregate:

ρ =
∑

α

ρα = ρS + ρF . (3)

2.2 Miscible Components and Partial Pore Densities

The fluid phase is an ideal mixture that contains several miscible components
ϕβ . These are described by employing the partial pore density ρβF , which
relates the fluid mixture component mass to the fluid volume:

ρβ = nF ρβF , where ρβF =
dmβ

dvF
. (4)
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Summation over the partial pore densities ρβF of the fluid mixture components
yields the material density ρFR of the fluid phase, which, in the context of the
Theory of Mixtures (TM), can be interpreted as the fluid mixture density:

ρFR =
∑

β

ρβF . (5)

2.3 Kinematic Relations

The kinematics is based on the concept of superimposed continua [cf., e. g.,
9, 10]. Within this framework, each material point Pα is characterised by
its position Xα in the reference configuration at time t = t0 and follows its
individual

motion function x = χα(Xα, t). Hence, each spatial point x is occupied at
every time t by material points of all constituents, which in addition have
their own velocity field

vα =
′

xα =
dχα(Xα, t)

dt
with (·)′α =

dα
dt

(·) = ∂ (·)
∂t

+ grad(·) · vα , (6)

where grad(·) = ∂(·)/∂x. The motion of the solid constituent ϕS is given
by the solid displacement vector uS , whereas the fluid motion is described
relative to the deforming solid using the seepage velocity wF . Thus,

uS = x−XS , wF = vF − vS , where vS = (uS)
′

S =
′

xS . (7)

Concerning the fluid components ϕβ , the overall fluid mixture velocity vF as
well as the mixture-component diffusion velocities dβF and the corresponding
seepage velocities wβ are given by

vF =
1

ρFR

∑

β

ρβFvβ , dβF = vβ − vF and wβ = vβ − vS . (8)

Herein, vβ denotes the velocity of ϕβ in analogy to (6). Moreover, the fol-
lowing relations hold:

( · )′F = ( · )′S + grad( · ) ·wF and ( · )′β = ( · )′S + grad( · ) ·wβ . (9)

The deformation gradient Fα and the spatial velocity gradient Lα are intro-
duced via

Fα =
∂ x

∂Xα
=: Gradα x and Lα =

∂ v

∂x
= gradvα. (10)
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2.4 Balance Equations

In this section, the constituent balance equations of mass and momentum are
introduced. The balance equations of the overall material can be obtained
as a result of the balance equations of the constituents [21]. For a detailed
derivation of the local balance equations, we refer to Ehlers [9, 10]. Here,
proceeding from isothermal, quasi-static conditions and waving inertia terms,
the partial balance equations of mass and momentum read:

(ρα)′α + ρα div vα = ρ̂α with
∑

α

ρ̂α = 0 , (11)

0 = divTα + ραbα + p̂α with 0 =
∑

α

(
p̂α + ρ̂αvα

)
. (12)

Therein, the local mass production ρ̂α results from a mass exchange process
among the constituents, which is used to model the growth process. Tα and
bα denote the partial symmetric Cauchy stress tensor and the volume force
acting on ϕα. Furthermore, p̂α is the direct momentum production of ϕα,
which describes the local momentum exchange between the constituents. The
summation constraints (11)2 and (12)2 hold due to the overall conservation
of mass and of momentum in a closed mixture system.

Concerning the miscible fluid components, the mass balance (11) can be

rewritten employing the partial pore density ρβF :

(nF ρβF )
′

β + nF ρβF div vβ = nF ρ̂βF with nF ρ̂βF = ρ̂β . (13)

For the materially incompressible phases, division of (11) by the constant
material density ραR leads to the constituent volume balance

(nα)′α + nα div vα = n̂α with n̂α :=
ρ̂α

ραR
(14)

as the respective volume production, which, in general, does not add up to
zero

∑

α n̂
α 6= 0. Analytical integration of the solid volume balance yields:

nS = nS
0S exp

(∫ t

t0

n̂S

nS
dt
)

︸ ︷︷ ︸

nS
tS

(detFS)
−1 = nS

tS(detFS)
−1 . (15)

Therein, the solid volume fraction is multiplicatively split into a deformation-
dependent part (detFS)

−1 and a growth-dependent part nS
tS . The quantity

nS
0S denotes the initial solid volume fraction at time t = t0 and nS

tS denotes
the solid volume fraction at time t ≥ t0 associated with an accompanying
reference configuration [cf. 13] or an intermediate configuration [cf. 1, 4].
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3 Constitutive Modelling

To close the continuum-mechanical problem, constitutive information is nec-
essary to describe the properties of the growing multiphasic material. In par-
ticular, specific constitutive equations for the partial Cauchy stress tensor Tα

as well as the volume production n̂α and the direct momentum production
p̂α are provided.

3.1 Modelling Assumptions

The following considerations proceed from an isothermal, biphasic material
description under quasi-static conditions with a fluid mixture and a solid
phase, which are both materially incompressible (ραR = const.). Moreover,
the fluid constituent is treated as a dilute solution that mainly consists of wa-
ter with low concentrations of dissolved molecules. In particular, the mixture
components are separated into the liquid solvent ϕL and several dissolved
solutes ϕγ (γ ∈ {1, 2, . . . , N} with N as the number of considered solutes).
Here, only those metabolites contributing to the cellular energy metabolism
are considered explicitly, while the remaining components of the extracellu-
lar fluid are assumed to be sufficiently available within the extracellular fluid
solution, such that they do not hinder the biological processes. They are con-
sidered implicitly as a part of the solvent ϕL. Moreover, it is assumed that
the partial solute densities per extracellular fluid volume are marginal, such
that their contribution to the fluid mixture density is negligibly small1:

ρFR ≈ ρLF = const. and
ργF
ρFR

≈ 0 . (16)

Inserting these assumptions into (8) and proceeding from finite component
velocities vγ , yields that the velocity of the solvent vL is identical with the
fluid mixture velocity vF , i. e.,

vL ≈ vF =⇒ dLF ≈ 0 . (17)

Hence, the mechanical properties of the fluid mixture are assumed to be
identical to those of the solvent.

3.2 Growth-Energy Concept

Following the idea of Markert & Ehlers [16], the vast amount of dissolved
chemical molecules is summarised in one quantity: the growth energy CF .
This concept is also known from the energy value on food labels. It is biologi-
cally motivated by the cellular energy metabolism, where the metabolisation

1 The extracellular fluid of a healthy person has a partial glucose density in the
range of ργF ≈ 0.7-1.0 g/l [cf. 14, p. 70], which is negligible compared to the
partial density of the solvent water ρLF ≈ 1.0 kg/l.
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of a certain substrate, i. e. the reactant of a metabolic reaction, follows a
fixed metabolic pathway and always yields the synthesis of the same amount
of adenosine triphosphate (ATP). For details regarding the cellular energy
metabolism, the interested reader is referred to Löffler [14]2. Following this,
the growth energy is obtained by summation over the fluid component densi-
ties multiplied with the respective constant energy values fγ , i. e., the amount
of energy that is gained from the respective component by cell metabolism:

CF :=
∑

γ

fγργF = fCρCF with ρCF =
∑

γ

ργF and fC =
CF

ρCF
. (18)

Therein, ρCF denotes the growth-energy density per pore-fluid volume, and
fC is the averaged energy value of all growth-energy components.

Growth-Energy Balance With definition (18), the growth-energy balance
is obtained by summation over the mass balances of the growth-energy com-
ponents ϕγ weighted by the respective energy values fγ . Hence, the growth-
energy balance has the same structure as a mass balance reading

(nFCF )′C + nFCF div vC = ĈF . (19)

Therein, the growth-energy velocity vC and the growth-energy production
ĈF are defined as

vC := dCF + vF =
1

CF

∑

γ

fγργFvγ and ĈF := nF
∑

γ

fγ ρ̂γF (20)

with the growth-energy diffusion velocity dCF .
The growth-energy production summarises the growth-energy consumption
of the cells. In contrast to the overall mass production, the growth-energy
production ĈF is in general not equal to zero. A negative growth-energy
production indicates a nutrient consumption, and a positive production indi-
cates a nutrient production (e. g., photosynthesis). This does not contradict
the summation constraint of the constituent mass productions (11)2, as the
growth-energy production is obtained by a mass-preserving transfer among
metabolic components with different energy values.

3.3 Constitutive Equations

Cauchy Stress Tensor The overall Cauchy stress tensor is obtained by
summation of the constituent Cauchy stress tensors

T = TS +TF with TS = TS
E −nSpFR I and TF = −nF pFR I . (21)

2 In particular, pp. 102 f: β-oxidation, fatty acid metabolism, pp. 105 f.: ketone
body degradation, pp. 149 ff.: amino acid degradation, pp. 157 ff: citric acid cycle,
glucose degradation
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Therein, the constituent Cauchy stress tensors contain the fluid pressure pFR

and the solid extra stress tensorTS
E . The fluid frictional stresses are neglected.

Regarding growing biological tissue, it is convenient to split the solid extra
stress tensor into a purely mechanical part TS

E/mech and a growth-related

part TS
E/grow,

TS
E =

TS

E/mech

︷ ︸︸ ︷

ρS
∂ ψS

∂FS
FT

S

TS

E/grow

︷ ︸︸ ︷

−ρSR(nS)2
∂ ψS

∂nS
I = TS

E/mech +TS
E/grow . (22)

The mechanical part of the solid extra stress, TS
E/mech, is described by a

neo-Hookean elasticity law:

TS
E/mech = detFS

(

µS
(
BS − I

)
+ λS ln

(
detFS

)
I
)

. (23)

Following Ambrosi & Preziosi [5], cell adhesion and repulsion are considered
via the growth-dependent part of the extra stress tensor TS

E/grow:

TS
E/grow = −nSpSgrow I

with pSgrow =







α
nS

nSn

(
nS − nSt

)2(
nS − nSn

)

√
1− nS

for nS ≥ nSt ,

0 for nS < nSt .

(24)

Therein, pSgrow denotes the growth pressure, where in the natural state defined

by nSn neither cell repulsion nor attraction occurs. In areas with a solid
volume fraction below the threshold nSt, no interactions between the cells
are possible since the cells are too far away from each other to interact. If
the solid volume fraction nS exceeds the value nSn, the cells are repulsing
each other, and if nSt < nS < nSn, the cells are attracting each other. A
qualitative plot of pSgrow is given in Figure 2.

Momentum Production Concerning the fluid and the growth-energy mo-
mentum productions, the effective production terms p̂F

E and p̂C

E are intro-
duced by separating the pressure-dependent part from the effective part of
the production terms:

p̂F
E := p̂F − pFR gradnF and

p̂C

E := p̂C − πC gradnF with πC =
∑

γ

fγπγ

fC
.

(25)

Therein, πC denotes a growth-energy related quantity equivalent to an os-
motic pressure. Following Ehlers [10], appropriate constitutive assumptions
for the effective momentum productions are given by

p̂F
E = −(nF )2

γFR

kF
wF and p̂C

E = −(nF )2
RCθρCF
DC

dCF (26)
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Fig. 2. Qualitative plot of the growth pressure pSgrow.

with the conventional hydraulic conductivity kF (isotropic Darcy permeabil-
ity), the effective fluid weight γFR and the growth-energy diffusion coefficient
DC . The parameter RC is an equivalent to the specific gas constant, and θ is
the absolute temperature.

Inserting (26) and (21)2 in the momentum balance (12) yields the conditional
equations of the seepage velocity and the growth-energy diffusion velocity

nFwF = − kF

γFR
grad pFR and nF ρCF dCF = −DC grad ρCF . (27)

These equations are commonly known as Darcy’s law and Fick’s law.

Mass and Growth-Energy Production The solid mass production de-
scribes the degenerative and regenerative processes that occur within a bi-
ological tissue. In the context of tumour growth, the regenerative process
describes the cell proliferation, and cell apoptosis and necrosis are considered
as degenerative processes. The solid volume production is therefore additively
split into a part that describes the degenerative process n̂S

deg and another part

that describes the regenerative process n̂S
reg:

n̂S = n̂S
reg − n̂S

deg with n̂S
reg ≥ 0 and n̂S

deg ≥ 0 . (28)

Furthermore, the growth-energy production is additively split into a basal-
metabolic part ĈF

basal and an additional growth-dependent part ĈF
grow. The

basal-metabolic part denotes the growth-energy consumption of cells in a qui-
escent state, and the growth-dependent part describes the additional growth-



114 R. Krause et al.

energy consumption if the tissue is proliferating:

ĈF = ĈF
basal + ĈF

grow with

{

ĈF
basal = −kbasal nS ,

ĈF
grow = −kgrow n̂S

reg .
(29)

As a consequence of thermodynamic considerations, cell proliferation is only
possible if the growth energy exceeds a certain threshold value. Concerning
the degenerative process, here, only necrotic cell death caused by malnu-
trition (nutrient starvation) is considered. Thereby, it is assumed that the
considered tumour cells have lost their ability to initiate an apoptotic cell
death. Accordingly, the solid volume production is calculated by employing
a Mechalis-Menten-type reaction equation, where a regenerative process is
considered if the growth-energy exceeds the threshold CF

0 , and a degenera-
tive process is considered if the growth-energy is below this threshold:

n̂S =







n̂S
reg = γ nSnF CF − CF

0

KC+
M + (CF − CF

0 )
if CF > CF

0 ,

n̂S
deg = δ nSnF CF

0 − CF

KC−

M + (CF
0 − CF )

if CF ≤ CF
0 .

(30)

Herein,KC+
M andKC−

M denote the Michaelis constants representing the growth-
energy at which the volume production is half of its maximum.

4 Numerical Treatment

For the numerical treatment of initial-boundary-value problems, the weak
formulation of the governing partial differential equations are implemented
and numerically discretised in space and time. The presented continuum-
mechanical growth model is governed by five independent field variables: the
solid displacement vector uS , the fluid seepage velocitywF , the effective fluid
pressure pFR, the growth-energy diffusion velocity dCF and the growth energy
CF . However, by use of (27)1, the filter velocity nFwF is obtained as a func-
tion of the pressure gradient, and the growth-energy gradient governs dCF

via (27)2. Hence, the fluid seepage velocity and the growth-energy diffusion
velocity can be substituted by the respective gradient terms. Accordingly, the
number of independent field variables reduces to three, and wF and dCF can
be computed in a post-processing step. In summary, the governing equations
are the overall momentum balance

0 = div
(
TS

E − pFRI
)
, (31)

which is obtained by summation over the partial momentum balances (12),
the mixture volume balance (14)

0 = − div
(
vS + nFwF

)
, (32)
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which is obtained by summation over the constituent volume balances, and
the growth-energy balance: (19)

0 = nF (CF )′S + CF div vS + div
[
nFCF (wF + dCF )

]
− ĈF . (33)

Therein, it must be taken into account that p̂S+ p̂F = n̂SρSRwF . However,
concerning the mixture volume and momentum balances, influences of the
solid volume production are negligible since the considered biological growth
processes are slow and differences of densities and of the velocities of the
involved constituents are finite. Furthermore, TS

E(uS) and n̂S are given by
(22) and (28), vS = (uS)

′

S , cf. (6), and ĈF according to (29).

4.1 Weak Formulation

Following the standard Galerkin procedure (Bubnov-Galerkin), a weak for-
mulation of the governing balance relations is obtained by multiplying the
strong formulation by a test function followed by an integration over the do-
main Ω and integration by parts to obtain boundary terms. This procedure
leads to the weak formulation of the overall momentum balance:

GuS =

∫

Ω

(
TS

E − pFR I
)
· grad δuS dv −

∫

Γt

t̄ · δuS da = 0 . (34)

Therein, δuS denotes the test function and t̄ = (TS
E − pFR I)n is the total

external load vector, which acts on the Neumann boundary Γt of the overall
medium, where n denotes the outward-oriented unit surface normal.
Analogously, the weak formulation of the overall volume balance is found by
multiplication with the test function δpFR and integration over the domain
Ω:

GpFR =

∫

Ω

[

div vS δp
FR +

kF

γFR
gradpFR · grad δpFR

]

dv+

+

∫

Γv

v̄F δpFR da = 0 .

(35)

Herein, v̄F = −kF /γFR gradpFR · n denotes the fluid volume efflux through
the Neumann boundary Γv.
Applying the same procedure to the growth-energy balance using the test
function δCF yields

GCF =

∫

Ω

[

nF (CF )′S + CF div vS − ĈF
]

δCFdv+

+

∫

Ω

(
CF kF

γFR
gradpFR +DC gradCF

)
· grad δCFdv+

+

∫

Γd

d̄C δCFda = 0 .

(36)
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Therein, d̄C = −
(
CFkF /γFR gradpFR +DC gradCF

)
· n denotes the growth-

energy efflux through the Neumann boundary Γd, e. g., parenteral nutrition.
Since the growth energy only influences slow growth and remodelling pro-
cesses and has no influence on the mechanical behaviour, short-time fluctua-
tions of the growth energy are neglected. On the large time scale of growth
processes, the growth energy is assumed to be at a quasi-steady state with
(CF )′S = 0.

4.2 Solution Procedure

To solve the three-field variational problem, an implicit monolithic solu-
tion strategy is used. Therefore, the spatial domain Ω is approximated by
a discrete domain Ωh with Ne finite elements, and the resulting system of
semi-discrete differential-algebraic equations (DAE) of first order in time is
solved using an implicit Euler scheme. However, the use of equal approx-
imation orders may lead to strongly mesh-dependent results with strange
instabilities that arise from spurious pressure modes if low permeabilities kF

and materially incompressible constituents are considered [15, p. 418f]. More
precisely, the patch test or the inf-sub condition (also known as Ladyzhen-
skaya-Babuška-Brezzi (LBB) condition) must be fulfilled [cf. 6, p. 210]. These
conditions are satisfied if the approximations for shape and test functions of
the solid displacement are chosen one order higher than the approximations
used for shape and test functions of the fluid pressure and the growth energy.
Quadratic approximations for the solid displacement and linear approxima-
tions for the other primary variables are the simplest combination that yields
stable solutions and is known as Taylor-Hood element [15, p. 418f].

4.3 Internal Variables

The growth processes within biological tissues are modelled by changes of
the volume fraction of the accompanying reference configuration nS

tS . It is
possible to calculate the growth process globally by introducing an additional
field variable or locally at every integration point[cf. 23].
For a global calculation, the solid volume fraction nS must be used as an ad-
ditional degree of freedom of the finite element system with the solid volume
balance (14)α=S as governing equation readily blowing up the system size.
Here, the solid volume fraction is calculated locally in the sense of a collo-
cation method by introducing nS

tS as an internal history variable. Therefore,
the ordinary differential equation

Lh
n = (nS

tS)
′

S − n̂S detFS = 0 (37)

is solved at every integration point xh
n of the finite element mesh. The result

is then used to obtain the actual solid volume fraction nS from (15).
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5 Numerical Example

As a numerical example, three avascular tumours with different proliferation
rates are calculated. It is taken into account that tumour cells differ in their
proliferation rate depending on tumour type and malignancy. The volume is
discretised by 896 finite elements using 20-node brick elements. The results
are obtained by calculating one eighth of an unloaded tumour spheroid with
an initial diameter of 50 micrometer, cf. Figure 3. The initial and boundary
conditions are adopted form Ehlers et al. [11]. Thereby, symmetry conditions
are used on the inner surfaces. On the outer surface, a pore pressure of zero
and a growth-energy value that lies inside the physiological range are applied
and held constant during the calculation.

p̄FR = 0.0, C̄F = 0.211

nS
0S = 0.75

IC

BC

Fig. 3. Considered initial-boundary-value problem, adopted from Ehlers et al. [11],
proceeding from an initial solid volume fraction of nS

0S = 0.75, and using symmetry
boundary conditions on the inner surfaces.

For the simulations, PANDAS was used as numerical framework. PANDAS is
a numerical tool, which is designed to efficiently solve porous media problems.
It includes the mixed finite element method as well as Diagonally Implicit
Runge-Kutta methods (DIRK), such as implicit Euler techniques, for global
and local equation systems.
The simulations proceed from an initial volume fraction of nS

0S = 0.75, the
material parameters given in Table 1 and varying proliferation coefficients
γ = {3.0 × 10−5, 1.5 × 10−5, 7.5 × 10−6} [cm3/(J s)]. In Figure 4, the ratios
of tumour radii of the simulations to the initial radius are depicted and com-
pared to in-vitro experiments [19]. Figure 5 depict results of the qualitative
three-dimensional simulation. The colouring indicates the distribution of the
tumour cell volume fractions. Within the spheroids, three regions can be iden-
tified: the outer rim (red), where the cells are proliferating, a transient region
with quiescent cells (yellow) and the necrotic core without living cells (blue).
At the end of the simulation depicted in Figure 5, top right, the tumour
surface begins to buckle. This results from the fact that the tumour surface
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Table 1. Material parameters used for the tumour growth example.

parameter symbol value SI unit

1st Lamé constant of the solid skeleton µS 1.0 × 10−5 N/cm2

2nd Lamé constant of the solid skeleton λS 5× 10−5 N/cm2

effective density of dense solid ρSR 1.3 × 10−3 kg/cm3

effective density of pore-fluid mixture ρFR 1.0 × 10−3 kg/cm3

Darcy permeability kF 3.0 × 10−2 cm/s
natural solid volume fraction nSn 0.75 —
cell interaction threshold nSt 0.65 —
growth stress constant α 50 N/cm2

tumour proliferation coefficient γ variant cm3/(J s)
tumour necrosis coefficient δ 1.5 × 10−5 1/s
boundary and initial growth-energy value C̄

F 2.11 × 10−1 J/cm3

growth-energy threshold value C
F
0 1.05 × 10−1 J/cm3

basal metabolic growth-energy consumption kbm 1.0 × 10−4 J/(cm3 s)
additional growth-energy consumption kr

gr 60.0 J/cm3

growth-energy diffusion coefficient DC 2.0 × 10−8 cm/s

growth Michaelis constant KC+
M 3.0 × 10−2 cm/s

necrosis Michaelis constant KC−

M 2.0 × 10−2 cm/s

Fig. 4. Development of the outer tumour radius of the simulations related to its
initial radius compared with experimental data given by Schwachöfer et al. [19,
Figure 1, 100µg/ml], which are related to their size after 10 days.

grows faster than the inner domain yielding to surface instabilities, which
can also be observed in in-vitro experiments. As can be seen, the model is
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γ = 3.0× 10−5cm3/(J s) nS [–]

t0 = 0 t = 2d t = 6d t = 4d

γ = 1.5× 10−5cm3/(J s) nS [–]

t0 = 0 t = 6d t = 12d t = 18d

γ = 7.5× 10−6cm3/(J s) nS [–]

t0 = 0 t = 11.5d t = 23d t = 34.5d

Fig. 5. Qualitative 3-d simulation results of a growing avascular tumour spheroid
mapped with the distribution of the volume fraction of living tumour cells using
variant proliferation coefficient γ.

in principle capable in mimicking the biologically correct growth behaviour.
However, more investigations are necessary to provide reliable and cell-type
specific predictions.

6 Conclusion and Future Work

The described modelling approach using a biphasic TPM model extended
by the concept of growth energy provides an adequate framework for the
description of avascular solid tumour growth. Thereby, the solid constituent
describes the extracellular matrix and the cells, while the extracellular liquids
including necrotic debris, interstitial liquids and the multiple components
dissolved in them are described by the fluid constituent.
The growth-energy concept summarises the huge amount of nutrients, which
are dissolved in the extracellular fluid, in their effect to a non-mechanical
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quantity triggering the growth process. This concept reduces the numerical
effort and allows for a thermodynamic evaluation of the constitutive equations
for growth processes.
The model has then been applied to the prediction of the early stages of avas-
cular tumour growth. An IBVP of a tumour spheroid and its solution calcu-
lated by PANDAS were presented. For the description of tumour growth, the
growth-energy acts as the major trigger of the growth process. The model
provides the basis for further investigations in the sense of a numerical labo-
ratory (in-silico experiments). To extent this model towards vascular tumours
that develop in a healthy tissue, vasculature and surrounding tissue can be
included into this framework (cf. [17]).
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Häufle, Daniel . . . . . . . . . . . . . . . . . . . . 39

Kemkemer, Ralf . . . . . . . . . . . . . . . . . . 89

Krause, Robert . . . . . . . . . . . . . . . . . . 105

Maili, Salah . . . . . . . . . . . . . . . . . . . . . . 53

Markert, Bernd . . . . . . . . . . 75, 89, 105

Nackenhorst, Udo . . . . . . . . . . . . . . . . . . 1

Patil, Sandeep P. . . . . . . . . . . . . . . . . . 75

Rohan, Eduard . . . . . . . . . . . . . . . . . . . 53

Rupp, Tille . . . . . . . . . . . . . . . . . . . . . . . 39

Schmitt, Syn . . . . . . . . . . . . . . . . . . . . . 39

Wagner, Arndt . . . . . . . . . . . . . . . . . . . 17





List of Participants

Reza Abedian, M. Sc.
abedian.reza@ddh-gruppe.de

Labor für Biomechanik und Bio-
materialien, Orthopädische Klinik
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Medizinische Hochschule Hannover

Dipl.-Ing. Annika Radermacher
annika.radermacher@rwth-aachen.de

Institut für Angewandte Mechanik
RWTH Aachen

JP Dr.-Ing. Tim Ricken
tim.ricken@uni-due.de

Institut für Mechanik
Universität Duisburg-Essen

Dr. Eduard Rohan
rohan@kme.zcu.cz

Department of Mathemathics
and Mechanics
University of West Bohemia

JP Dr.-Ing. Oliver Röhrle
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