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1 Mathematical Prerequisites

1.1 Basics of vector calculus

(a) SYMBOLS, SUMMATION CONVENTION, KRONECKER. §

Single- or multiple subscripts

U; > U1, U2, U3, ...
UiV —> U1 V1, U Vg, U Vs, ...
Ug V1, Ug V2, ...

Lik — 11, t12, ...

FEINSTEIN’s summation convention

Definition: = Whenever the same subscript occurs twicely in a term, a summation
over that “double” subscript has to be carried out.

Albert EINSTEIN (1879-1955) was a German-Austrian-American theoretical physicist and
a physics professor at Prag University, ETH Ziirich, TU Berlin and Princeton University.

Example: Ujv; = ULV + UV + . F UV,

n
= E Uj vj
j=1

KRONECKER symbol

Definition: It exists a symbol d;;, with the following properties

5. [0 ik
k= N1, ifi=k

Leopold KRONECKER (1823-1891) was a German mathematician who worked as a private
tutor and became later a professor of mathematics at the University of Berlin.

Example: w; 0;; = U101k + Uo0op + ...+ Up Opk
urd = W
upde = 0

with Uy 51k =

U1l 51n == 0
— U0 = Uy

If the KRONECKER symbol is multiplied with another quantity and if there is a double
subscript in this term, the KRONECKER symbol disappears, the “double” subscript can be
dropped and the free subscript remains.

Remark: Subscripts occurring twicely in a term can be renamed arbitrarily.
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(b) TERMS AND DEFINITIONS OF VECTOR ALGEBRA

Remark: The following statements are related to the standard three-dimensional (3-d)
physical space meaning the EUCLIDian vector space V3.
Generally, SPACE is a mathematical concept of a set and does not directly refer
to the 3-d point space £% and the 3-d vector space V3.

A: Vector addition
Requirement: {u, v, w, ..} € V3

The following relations hold:

u+v =v+u : commutative law
u+ (v+w) = (u+v)+w :associative law
u+0 =u : 0 :identity element of vector addition
u+(—u) =0 : —u :inverse element of vector addition

Examples to the commutative and the associative laws:

u+v- v u-+v v V4w

u .\ LA

B: Multiplication of a vector with a scalar quantity

Requirement: {u, v, w,..} € V3 {a,3,..} € R

lv =v : 1: identity element
a(fv) = (ap)v : associative law
(a+pB)v = av+ v :distributive law (addition of scalars)
a(v+w) = av+aw :distributive law (addition of vectors)

av = vaq : commutative law

Remark: In the general vector calculus, the definitions A and B constitute the “affine
vector space”.

Linear dependency of vectors

Remark: In V3, three non-coplanar vectors are linearly independent, meaning that each
further vector can be expressed as a multiple of these vectors.
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Theorem: The vectors v; (i =1, 2, 3, ...,n) are linearly dependent, if real numbers
«; exist which are not all equal to zero, such that

o;vpi=0 or aqyvyi+oaeve+..+a,v, =0

Example (plane case):

V1—|—V2—|—V37é0

Vo Qg Vo
e
5 ) but: a; vy +asvy+azvy =0
V3 : ,/
Q1 Vi /,’ a3 Vs — {v1, va, v3}: linearly dependent
Vi s : :
v — {v1, vo}: linearly independent

Remark: The a; can be multiplied by any factor A.

Basis vectors in V?

ex. : {vi, vo, v3} : linearly independent

then : {vy, v, v3, v} :linearly dependent

Thus, it follows that

Q1 Vi +QaVy+a3vs+Av=0

— Av= —Q; V;

or v= )\Zvi =: B;v;

with Bi = TZ : coefficients (of the vector components)
v, . basis vectors of v

Choice of a specific basis system

Remark: In V3, each system of three linearly independent vectors can be selected as a

basis; e. g.
v; general basis
e : specific, orthonormal basis (Cartesian, right-handed)

Basissystem v; Basissystem e;
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Representation of the vector v:

@' Vi
VvV =
Vi €

here:  Specific choice of the Cartesian basis system e;

Notations
V = v;€ = vie|+ Uxey+ VUzes
) v;€e; : vector components
with '
V4 . coefficients of the vector components

C: Scalar product of vectors

The scalar product of vectors is defined by the dot operator (dot product). The result of
the product is a scalar (scalar product).

The following relations hold:

u-v =v-u : commutative law
u-(v+w) =u-v+u-w : distributive law
a(u-v) = u-(av)= (au)-v :associative law

u-v =10 Vu,if v=o0
—u-u # 0 Jif u#o0

Remark: The definitions A, B and C constitute the “EUCLIDian vector space”. In case
that u - u # 0, especially when

u-u>0 ,if u#o,

then A, B and C define the “proper EUCLIDian vector space V3 (physical space).

Square and norm of a vector

vii=v.v , v=|v]=VVv?

Remark: The norm is the value or the positive square root of the vector.

Angle between two vectors
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Law of cosines

lu—v|> = |u?+|v]? —2]ul|v] cos a
w? +vi—(u—v)? u-v
— cos o = =
2[ul[v] ul |v|
or u-v = |u]|v| cos a

Scalar product (inner product®) in an orthonormal basis

Scalar product of the basis vectors e;:
x( ) 90°, ifi#£k : cos90°=0
e, e
: 0°, ifi=k : cos 0°=1
thus e -er = el lex| cos Y(ei; er)

=cos J(e;; ex)

It follows with the KRONECKER §

1, iti=k
e ey =0 =

0, ifi#k

Scalar product of two vectors:
u-v = (u;€)- (vpex)
= u; vg (€; - ey)
= U; Uk, O

= U; V; = U7 V1 + Ug Vg + U3 Vg

D: Vector or cross product (outer product’) of vectors

The vector product of vectors is defined by the cross operator (cross product). The result
of the product is a vector (vector product).
One defines the following vector product

uxv=|ul|v|]sin 4(u; v)n

with n: unit vector L u, v (corkscrew rule or right-hand rule, see page 7)

From the above definition, the following relations can be derived

uxv = —vxu : no commutative law
ux (Vv+w) = uxv+uxw : distributive law
a(uxv) = (au) xv=ux (av) :associative law

*The explanation of the notion “inner product” can be found in the Appendix on p. 51
tThe explanation of the notion “outer product” can be found in the Appendix on p. 55
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Scalar triple product (parallelepidial product):
u-(vxw)=v-(wxu)=w-(uxv)

Arithmetic laws for the vector product (without proof)

uxu = 0
(U+ V)XW = UXWHVXW
u-(uxv) = v-(uxu)=0

Expansion theorem:
ux (vxw)=(u-w)v—(u-v)w
LAGRANGEan identity:
(uxv)-(wxz)=(u-w)(v-z)—(u-z)(v-w)
Joseph-Louis LAGRANGE (1736-1813) was an Italian-French mathematician and astronomer.
Norm of the vector product:
u x v] = Ju] [v] sin 3 (u; v)
Vector product in an orthonormal basis

here: Simplified representation in matrix notation
Calculation of
€1 €2 €3
u = VXW = V1 Uy U3
w1, Wy W3
= (Ug W3 — V3 wg) e; — (Ul W3 — Us ’LUl) e + ('Ul W9 — V2 ’LUl) €3
Remark: Iful {v,w} thenu-v =u-w =0
Example:
u-v = uv; = (vgws —vzwy) vy — (Vw3 —vgwy) vy + (V3 we —vawi)vg = 0 q. e d.
Remarks on the products between vectors

e On the scalar product

Decomposition of a vector (example in the 2-d space):

u = u; +us
with uy = u;e; and u; = usey
u;, Up : vector components

uy, ug :  coefficients of the vector components




Supplement to Continuum Mechanics Research

Projection of u on the directions of e;:

Verification of the projection law:
u-e;, = (ureg)-e;
= Ul = u; q.e. d.

Calculation of the projections:

u; = |ulle;| cos a

= |u|lcosa = ucos «
with u = |u]
Uy = ucosf

= wcos(90° — ) = usin «

Note: For the values of the vector components, the following relations hold

U] = U COS «

Uy = U sin «

e On the vector product

Orientation of the vector u = v X w:

u

W (1) ul{v, w}

T (2)  corkscrew rule (right-hand rule)

lvxw|l = |v||w|sin«

= v (wsin @)
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Note: The vector v x w is perpendicular to v and w (corkscrew orientation). Its
value corresponds to the area spanned by v and w.

Scalar triple product (parallelepidial product):

u-(vxw) = [uvw]

with z = vxw

follows uw-z = |ul|z| cos~y
= z(u cos )

with (u cos ) : projection of u on the direction of z

Remark: The parallelepidial product yields the volume of the parallelepiped spanned by
u, v and w.

Remark: The preceding Section on vector calculus and the following Sections on
tensor calculus and vector and tensor analysis are mostly written in a
basis-free representation. In case that basis systems are taken into con-
sideration, use is made, for simplicity, of the orthonormal basis e;.

However, to get a deeper inside into the material, the introduction of
arbitrary basis systems and, especially, natural basis systems as a sub-
group of arbitrary systems is helpful and will therefore be presented in
the Appendix to this Treatise.
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2 Fundamentals of tensor calculus

Remark: The following statements are related to the proper EUCLIDian vector space V3
and the corresponding dyadic product space V3 @ V3 ® --- @ V3 (n times) of
n-th order.

2.1 Introduction of the tensor concept

(a) TENSOR CONCEPT AND LINEAR MAPPING

Definition: A 2nd order (2nd rank) tensor T is a linear mapping which transforms
a vector u uniquely into a vector w:

w=Tu

uw eV . T e LOV3 V)
therein: 3 13 set of all 2nd order tensors or linear
LV V) . .
mappings of vectors, respectively
Remark: In this treatise on tensor calculus, we follow the notation given by REINT DE

BOER in his book “Tensorrechnng fiir Ingenieure”, Springer-Verlag, Berlin 1982.

Reint DE BOER (1935-2010) was a German civil engineer and a mechanics professor at the
University of Duisburg-Essen.

(b) TENSOR CONCEPT AND DYADIC PRODUCT SPACE

Definition:  There is a “simple tensor” (a ® b) with the property

(a®@b)c=:(b-c)a

a®b € V3@ V? (dyadic product space)
therein: ' '
® : dyadic product (binary operator of V3 ® V3)

Remark: (a®b) maps a vector ¢ onto a vector d = (b-c)a with the direction of a.
Basis notation of a simple tensor:

A=a®b=/(ae) R (bper) =a; b (e Reg)

) a; by, . coefficients of the tensor components
with

e, ® e, : tensor basis

Tensors A € V3®V? have 9 independent entries (and directions), such as a; b3 (e; ®e3) etc.
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Introduction of arbitrary tensors T € V3 @ V3 :

T = tu(e;®eg)

matrix of coefficients of T

with 9 independent entries

t11 ti2 ti3
with tj = | to1 tog tog : {

t31 t32 133

2.2 Basic rules of tensor algebra

Requirement: {A B, C, ..} e V3x V3.

(a) TENSOR ADDITION

A+B = B+A : commutative law
A+B+C) = (A+B)+C : associative law
A+0 = A S : 1dentical element

A+(-A) =0 : —A  :inverse element

Tensor addition with respect to an orthonormal tensor basis:
A=ay(e;®er), B=by(e®e)
— C=A+B = (ai + bir)(e; ®ey)
c
ik

Remark: A tensor addition carried out as an addition of the tensor coefficients requires
that both tensors have the same tensor basis.

(b) MULTIPLICATION OF TENSORS BY A SCALAR

1A = A : 1 : identical element
a(BA) = (apf)A : associative law
(a+B)A = aA+ A :distributive law (with respect to the addition of scalars)
a(A+B) = aA+aB :distributive law (with respect to the addition of tensors)

aA = A« : commutative law

(c) LINEAR MAPPING BETWEEN TENSOR AND VECTOR

The following definitions make use of the linear mapping (cf. 2.1)
w=Tu

Remark: In the literature, the linear mapping or the multiplication of a vector by a tensor
is also called “contraction”.
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The following relations hold:
A(u+v) = Au+ Av :distributive law
A(ou) = a(Au) : associative law

(A+B)u = Au+Bu :distributive law

(dA)u = a(Au) : associative law
Ou =0 : 0 :zero element of the linear mapping
Iu =u : I :identity element of the linear mapping

Linear mapping in basis notation:
A =qap(e;®er), u=u;e;

Au = (aik €e; (29 ek) (u]ej) = ik Uj (e,- (29 ek) ej
One obtains

A 5 " i : free index (basis index)
w= Au= aju;lx € = ajuse mi

e AN k : silent index (double index of w;)
%

€3

Remark: In general, a linear mapping A applied to a vector u
causes both a rotation and a stretch of u.

Identity tensor I € V3 ® V3:
I=dpe,®e, =€, ®e;
Proof of the defining property:

u=Iu= (ei®e,-)ujej:uj(e,-®ei)ej:uj(sz-jei:u,-e,- g. e. d.

Remark: Tensors built from basis vectors are called fundamental tensors. Thus,

I V3 ®)?is the fundamental tensor of 2nd order.

(d) SCALAR PRODUCT OF TENSORS (inner product)

The following relations hold:
A-B =B-A : commutative law
A-B+C) = A-B+A-C : distributive law
(¢A)-B = A-(aB)=a(A-B) :associative law
A-B =0 VA,ifB=0
— A-A>0forA#0




12 Supplement to Continuum Mechanics Research

Scalar product of A with a simple tensora®@b € V3 ® V3:
A-(a®b)=a-Ab

Scalar product of A and B in basis notation:
A = ay(e;®e), B= by (e; ®ey)
a =A-B= Ak (ei ® ek) : bst(es & et) = QL bst(ei ® ek) ' (es & et)

One obtains
o = i bst 0is Ope = @iy bigg

Remark: The result of the scalar product is a scalar.

(e) TENSOR PRODUCT OF TENSORS

Definition:  The tensor product of tensors yields

(AB)v= A(Bv)

Remark: With this definition, the tensor product of tensors is directly linked to the linear
mapping (cf. 2.1 (a)).

The following relations hold:

(AB)C = A(BC) . associative law
AB+C) = AB+AC . distributive law
(A+B)C = AC+BC : distributive law

a(AB) = («¢A)B = A(aB) : associative law
IT =TI =T : I : identity element
0

0T =TO0 = : 0 : zero element

Remark: In general, the commutative law is not valid meaning that A B # B A.

Tensor product of simple tensors:
A=a®b, B=c®d

It follows with the above definition
(AB)v = A(Bv)
—[@eb)(cod)]v =
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Consequence:
(a®@b)(c®wd) = (b-c)axd

Tensor product in basis notation:

AB = aj;(e;®ey)bs(es @ey)
= QL bst (ei ® ek) (es ® et)
= QL bst 6ks(ei ® et)

= Qi by (6; ® )

Remark: The result of a tensor product is a tensor.

2.3 Specific tensors and operations

(a) TRANSPOSED TENSOR

Definition: The transposed tensor A7 belonging to A exhibits the property

w-(Au) = (ATw) u

The following relations hold:
(A+B)" = AT+ B”
(@ A)T = a AT
(AB)Y = BTAT
Transposition of a simple tensor a ® b:
It follows with the above definition
w-: (a®b)u = w-(b-u)a
— (w-a)(b-u)
= (b®a)w-u
— (a®b)f = b®a

Transposed tensor in basis notation:
A = Qi (e,- X ek)
— AT = 4, (e, ®e€;) :exchanging the basis vectors

= ay; (e; ® e) :exchanging the indices of the tensor coefficients
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Note: The transposition of a tensor A € V3 ® V3 can be carried out by an
exchange of the tensor basis or by an exchange of the subscripts of the
tensor coefficients.

(b) SYMMETRIC AND SKEW-SYMMETRIC TENSORS

Definition: A tensor A € V? ® V? is symmetric, if
A=A"

and skew-symmetric (antimetric), if

A=—A"T

Symmetric and skew-symmetric parts of an arbitrary tensor A € V2 ® V3:
symA = 1(A+AT)
skwA = 1(A-AT)
— A = symA + skw A
Properties of symmetric and skew-symmetric tensors:
w-(symA)v = (symA)w-v
v-(skwA)v = —(skwA)v-v =0

Symmetric tensors with the property of positive definiteness:

e sym A is positive definite, if symA-(vev)=v-(symA)v >0

e sym A is positive semi-definite, if symA-(v®v)=v:(symA)v >0

(c) INVERSE TENSOR

Definition: If A~ inverse to A exists, it exhibits the property

v=Aw <+ w=ATlv

The following relations hold:
AA™" = ATTA=1
(AT = (A7) = AT} (= A7)
(AB)"! =B A"

Remark: The computation of the inverse tensor in basis notation is carried out by use of
the “double cross product” (outer tensor product of tensors), cf. Subsection 2.8.
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(d) ORTHOGONAL TENSOR

Definition:  An orthogonal tensor Q € V3 ® V3 exhibits the property

Q'=Q" «— QQ'-I

(det Q)? =1 : orthogonality

Additionall
1t1onally { det Q =1 - proper orthogonality

Remark: The computation of the determinant of 2nd order tensors is defined with the aid
of the double cross product, cf. 2.8.

Properties of orthogonal tensors:

Qv-Qw = Q'Qv-w=v-w

— Qu-Qu = u-u

Remark: Linear mapping with Q preserves the norm of the respective vector.

Illustration:

generally, a linear mapping with A € V3 @ V3

causes a rotation and a stretch

especially, a linear mapping with Q € V2 @ V3

causes only a rotation

(e) TRACE OF A TENSOR

Definition:  The trace tr A of a tensor A € V3 ® V3 is the scalar product

trA=A-1

The following relations hold:

tr(¢A) = atrA
tr(a®b) = a-b
trAT = trA
tr(AB) = tr(BA)
— (AB)-I = B-A” = B'.A
tr(ABC) = tr(BCA) = tr(CAB)
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2.4 Change of the basis

Remark: The goal is to find a relation between vectors and tensors which belong to
different basis systems.

here: Restriction to orthonormal basis systems which are rotated against each other.

(A) ROTATION OF THE BASIS SYSTEM

Illustration:

{0,e;} : basis system

*

{0,e;} : rotated basis system

{ @y} : angle between the basis vectors

*
e; and ey,

Development of the transformation tensor:
The following relations hold:

éi:Iéi and IT=e;®e,
Thus,

e =(ej@e;)e; = (e;-&)e,
using éi = i ék with §;r = e, - e, leads to

e, = (e; - bik ék) e; = (e;- ék) (e;-ey)e;

and one obtains

* *

e, =(ej-e,)(e;®e;)e; =8 Re; with R = (e;- ék) e; ® ey

Remark: R is the transformation tensor which transforms the basis vectors e; into the
basis vectors éi.

Coefficient matrix Rj;:

R, =e; L6y = €] les| cos X (ej;ék) = cosqy, Wwith |e;| = ey =1

Remark: R;; contains the 9 cosines of the angles between the directions of the basis

*
vectors e; and €.
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Orthogonality of the transformation tensor:

Remark: By R, the basis vectors e; are only rotated towards e;. Thus, R is an orthogonal
tensor.

Orthogonality condition:

RRT 1 = ik(ej @er) Ry, (e, ®epy) = Rjj Ry Okn € @ €
= Rj), Ry (€ @ €p)

It follows with I = ¢;, (e; ® e,) by comparison of coefficients

Rj Ry, = djp (*)

Remark: (x) contains 6 constraints for the 9 cosines (RR” = sym (RR")), i. e. only 3
of 9 trigonometrical functions are independent. Thus, the rotation of the basis
system is defined by 3 angles.

(B) INTRODUCTION OF “CARDANO ANGLES”

Idea: Rotation around 3 axes which are given by the basis directions e;. This procedure
goes back to GEROLAMO CARDANO.

Gerolamo Cardano (1501-1576) is considered one of the last great universal scholars of
the Renaissance with an astonishing international reputation in various fields, such as
medicine, mathematics, philosophy, physics, chemistry, and engineering.

Procedure: The rotation of the basis system is carried out by 3 independent rotations
around the axes ey, ey, es. Each rotation is expressed by a transformation
tensor R; (i=1,2,3).

Rotation of e; around es, e, e;:

& = {R:[Rs(Rse;)]} =Re;  with R=RyRyRs

Rotation of e; around ey, ey, e3:

& = {R3[Rs(Rie)]} =Re; with R=RsR;Ry

Obviously,

Remark: The result of the orthogonal transformation depends on the sequence of the
rotations.




18 Supplement to Continuum Mechanics Research

Illustration:

(a) Rotation around es, €5, e; (e. g. each by 90°)

1 (e3)

1y90°

i
Ja

/ 90°
(el)

(b) Rotation around ey, es, e3 (e. g. each by 90°)

/ el ; 900
90°

(91)

with

A (63)

Q 90° -

A )

Definition of the orthogonal rotation tensors R;

(a) Rotation around the es-axis

The following relations hold:
€] = Cos(p3e; + sin 3 eq
€y = —sinysze; + cospszes

€3 =e3
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In general,
o
e, = R3 e, = R3jk (ej & ek) e, = R3jk 5]“ €, = joi €;

Thus, by comparison of coefficients
cosps —singps 0

R3 = R3ji (Ej (029 ei) with R3ji = sin @3 COS ©3 0
0 0 1

(b) Rotation around the es- and e;-axis

Analogously,

cospy 0 singy |
Ry = Ryji(ej®e;) with Ryj = 0 1 0
| —singy 0 cospy |

[ 1 0 0
R) = Riji(e;j®e;) with Ry;; =] 0 cosgp; —sing
| 0 sing;  cosyy

Remark: The rotation tensor R can be composed of single rotations under consideration
of the rotation sequence.

(c) Definition of the total rotation R

(cq1) it follows from the rotation of e; around e3, eq, e; that

R — f*{ =RiR2R3
= Ryij (€ ® e;) Rano (€n, ® €,) R3py (€, ® €,)
= Ruij Rono Rapg 0jn dop (€; @ €4)
= Riij Rayjo R3oq (€5 ® €)

*
Riq
with
COS (P2 COS 3 — cos 2 sin g3 sin o
éiq = sin @1 sin g cos@s + cos g sins  —sine; sin ey sin s 4+ cos Y] COSEs — Sin ) cos P2
— cos 1 sin g cosws +sinyy sinps  cos 1 sin s sin s + sin oy cos s COS (p1 COS Y2

(co) it follows from the rotation of e; around eq, e;, e5 that
R— R =R;R;R;
= Rsij Rojo Riog (€; @ €,)
Ri,
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with

COS (P2 COS 3  sin (g Sin s COs 3 — cos Y Sin w3  €os 1 sin g cos 3 + sin ¢ sin 3

Riq = COs 2 sins  Sinei sin sy sin s 4+ cos ] CosSEs  Cos 1 sin s sin w3 — sin ¢y cos s

— sin @9 sin 1 cos 2 COS (1 COS P2

Orthogonality of “CARDANO rotation tensors”:

For all R € {R4, Ry, R, 1*{, R}, the following relations hold
R'=R” ie RR"=1 and (detR)>’=1 — orthogonality
Furthermore, all rotation tensors hold the following relation
detR=1 : “proper” orthogonality

Remark: A basis transformation with “non-proper” orthogonal transformations
(det R = —1) transforms a “right-handed” into a “left-handed” basis system.

Example:
here: Investigation of the orthogonality properties of Rs = Rg;; (e; ® €;)
cosps —sings 0

with  Rs;; = | singps cosps 0
0 0 1

One looks at
R; Rg = Rsij(e; ®ej) Ryopn(e, ® €5)
= R3ij R3on 6jn (€, ® €5) = Rgin R3on (€ ®€,)

where
sin® 3 + cos? 3 0 0
Rgm Rgon = 0 Sil’l2 ©3 + COS2 ©3 0 = 52'0
0 0 1

and one obtains
R3Rj = b, (ei®e,) =1 q. e d

Furthermore,

det Rg :=det (R3;;) =1 — Rg is proper orthogonal

Description of rotation tensors:

In general, the transformation between basis systems €; and basis systems éi satisfies the
following relation:

lell

éi = R i with R :le éz X ék

T -1

—» & =R"¢ with R RY




Supplement to Continuum Mechanics Research 21

Otherwise, o . o o .
= Rei with R = le e, ¥ e

Consequence: By comparing both relations, it follows that
° =T . 5 0 o B \T = o= - P
R=R , l.e, le e, e, = (le) €, ¥ e — Rzk :Rm
In particular,

o

R = Ry (6 ®6p) =Ry (Re; @ R&y)
= éik RTLZ én ® Rpk: ép - (an éik Rpk) én ® ép ; an én ® ép = RT

— Rm ﬁ R ; an — Rm l%ik = 5nk

Remark: The coefﬁ(:lent matrices R,; and Rzk are inverse to each other, i. e., in general,

R, le = 0, implies 6 equations for the 9 unknown coefficients Rzk Due to
R'=R" ,one has R = (Ry)" = Rip, i. e.

Rie= (Rip)" = Ry

(C) InTRODUCTION OF EULER ANGLES

Leonhard EULER (1707-1783) was a Swiss mathematician, physicist, astronomer, geogra-
pher, logician and engineer.

Remark: Rotation of a basis system e; around three specific axes.

*

Introduction of 3 specific angles around es, €;, €3 =e3

Illustration:

Idea: Given are 2 planes F and F with
in-plane vectors e, e; and él, 32

and surface normals es and 33.
The basis systems e; and éi are
related to each other by the Eu-
LERian rotation tensor R:

*
e,:=Re;
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1st step:

2nd step:

3rd step:

Rotation of e; in plane F around ez with the angle ¢,
such that e; is directed along the line ¢—c. This yields
the rotation tensor

cosp —sing 0
Rs;= | sing cosp 0 | e ®ey.
0 0 1

Then, the new system €; is computed as follows

éi = R3 e, = R3jk (ej &® ek) e, = R3ji ej .

Thus,
e, = Rsie; = cos p e + sin p ey
e, = Rspe; = —sinpe; +cospey
e; = jog e, = e€3.

Rotation of e; around e; with the angle §, such that
€, lies in the plane F, and €3 is directed normal to the

plane ]T" . This yields the rotation tensor
) 1 0 0
Ri= |0 cosd —sind | e;®¢€y.
0 sind cosod

Then, the new system €; is computed as follows

éi == R1 éi == lek (éj ® ék> éi == lei éj .

Thus,
él - lel éj = él
é2 = leg éj = cos e + sin d €3
é3 = leg éj = —sind €9 + Cos ) €s.

Rotation of €; in plane } around €3 with the angle .
This yields the rotation tensor

. costY —siny 0
R;= | siny cosyp 0| e;®e.
0 0 1

Then, the new system e; is computed as follows

* -t ~ ~ ~ ~ ~ ~ ~
e, = R3 e, = R3jk (ej (029 ek) e, = R3ji ej .
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Thus, . )
e, = Rsie; = cos ey + siny e,
ég = R3j2 e, = —sinye; +cosyey
es = Rysé; = é.
Summary:
(a) Inserting &; = R, &;
e = cosve + sin ) (cos § €, + sin d €3)
e, = —sin e + cost) (cosd €y + sin d €3)
33 = €3 = —sind ey + cosd ez
Result:
él = cospe, + siny cosdey, + siny sindes
32 = —sinYe; + cosy cosdey + cos sind e
e = — sinde, —+ cos b 3
— ;= Ry (&f/z) = Reg; with R=R;R,
€;
(b) Inserting €; = Rse;
e =  cost(cospe; +sinpey) +sint cosd (—sinp e, + cospesy) + siny sind es
e; = —siniy (cospe; +sinpey) +cost cosd (—sinpe, + cospey) + cost) sind ey
e; = —sind (—singe; + cospey) + cosd es
Result:
e; = (costh cosp —siny cosd sing) e+

+(cos 1) sin p 4 sin cosd cos ) es + sin sind e3

€ = (—siny cosg —cost cosd sinp) e+
+(—sin® sin ¢ + cos ) cosd cos p) es + cos ) sind e

e3 = sind sinpe; —sind cosp ey + cosd es

— éz: R(Rg ei) =: Rei with R = RRg = Rg Rl R3
\\_,—/

€;

Rotation tensors R and R:

For the total rotation the following relation holds:

*

e = (Rg Rl Rg) e, =: Rei

= (Rg Rl) (Rg ei) = Rg (Rl éi) = R3 éz
—~— W_/ ~——
€; e; *

€;
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Furthermore,
e,=Re; — e=R"e¢=Re;, — R=R
. . . * T
Analogously to the previous considerations — Rir= (Rix)" = Ry
Description:
cos1) cosp —siny cosd siny —sin cosp — cosy cosd sinp  sind sinp
R = | cosvy singp+siniy cosd cosp —sint) sing 4 cost) cosd cos —sind cosp | €; ® e

sin ) sin § cos Y sind cos

Combining rotation tensors with different basis systems:

Example: R := R; R,
ei=Ry8 = (Rs Ri)é&;

— R = Ry (& ®8&) Rino (€, ®86,)

= Ry ( Rie; @Ry &, ) Rino (€, ®@8,)
Risies ® Ry &

— R = RigRau R, (85 ® &) Rino (€, ® &)
= Rig Rap Rk Rino 61 (85 ® 8,)
= R égikv Ru Ry (€5 ® &)

RSO
Thus, the rotation tensor R is given by
cos Y —sin 0
R = | sin¢ cosé cost cosd —sind | € ® e

sinty sind cost sind  cosd

Remark: Concerning CARDANO angles, all partial rotations (e. g. R = R3Ry Ry with

e = R e;) are carried out with respect to the same basis e;, i. e. the combination
of the partial rotations is much easier.

Rotation around a fixed axis:

Remark: A rotation around 3 independent axes can also be described by a rotation around
the resulting axis of rotation:
— EULER-RODRIGUES representation of the spatial rotation

The EULER-RODRIGUES representation of the rotation is discussed later (see
section 2.7).

Benjamin Olinde RODRIGUES (1795-1851) was a French mathematician, banker and social
reformer.




Supplement to Continuum Mechanics Research 25

2.5 Higher order tensors

Definition:  An arbitrary nth order tensor is given by

Ac VPRV @) (n times)
with V2@ V3@ ---®V? :nth order dyadic product space

Remark: Usually, n > 2. However, there exist special cases for n = 1 (vector) and n =0
(scalar).

General description of the linear mapping

Definition: A linear mapping is a “contracting product” (contraction) given by

n—s

Kf’): C with n>s

Descriptive example on simple tensors:
(ab®ced) (exf)=(c-e)(d-flacb
N ~ ) A ~~ -
4
A B C

Note: In the sense of the above definition of the linear mapping, the special case n—s =0
yields a scalar and applies thus to the scalar or dot product.

Fundamental 4th order tensors

Remark: 4th order fundamental tensors are built by a dyadic product of 2nd order identity
tensors and the corresponding independent transpositions.

One introduces:

I®123 = (e;i®e)®(e;®e))
(I@I)i = ei®ej®ei®ej
IoD?T = e®e ®e e

ik

with (-)7: transposition, defined by the exchange of the ith and the kth basis system

Remark: Further transpositions of I ® I do not lead to further independent tensors. The
fundamental tensors from above exhibit the property

4 4 13 24

4 4
A=AT with AT =(AT)T

Consequence: The 4th order fundamental tensors are symmetric (concerning an ex-
change of the first two and the second two basis systems).
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Properties of 4th order fundamental tensors

(a) identical map

23
IDTA =(e;®e; Qe ®e;) ay(es @ e)
= g 0js 05t (€; ® €5) = a5 (6; ® ej) = A

4 23
— IL:=(I®ID7T is 4th order identity tensor

(b) “transposing” map

24
IDTA =(e;Re Re; ®e;)ay (e, ®e)
= A4t 5]'3 5it (ei &® ej) = Qaj; (ei ® ej) = AT

(c) “tracing” map

(I®I)A :(ei®ei®ej®ej)a,st(es®et)
= Qs 5js 5jt (ei ® ez’) = Qjj (ei X e,-)
— (A DI=(trA)I

with A-1I= Qgt (es X et) . (Ej &® ej) = Qgt 5sj (515]' = Qajj
Specific 4th order tensors

4
Let A, B, C,D be arbitrary 2nd order tensors. Then, a 4th order tensor A can be defined
exhibiting the following properties:

A = (aeBl
AT - [(AeB)IT = (ATeBNF
ATl = [(AeB) = (AteB YT

Furthermore, following relation holds:

From (%), the following relations can be derived:

(A®B)T(CoD)T — (AC®BD)T
23
(AB)T(C®D) = (ACB"@D)
23

(A®B)(C®D)T = (A®CTBD)

and s
(AB)TC = ACB”
(A®B)Tv = [A® BT
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4
Defining a 4th order tensor B with the properties

4 24 13
B = (AeB)" =[(A®B)"]"
4 24 24
B = [(A®B)T]" = (BoA)T
4 24 24
B! = [(A®B)T]—1:(BT—1®AT—1)T
it can be shown that
(A®B)(CeD)T = (AD” ®B'C)T
(AB)T(Co®D)T = (AC®DB")T
24 23 24
(A®B)T(C®D)T = (AD® CIB)T
(A®B)T(C®D) = (AC'B®D)
(A®B)(C®D)T = (A®DB’C)

and "
(AB)TC=AC'B

Furthermore, the following relation holds:

4,4
(CD)' =D"C”
4 4
where C and D are arbitrary 4th order tensors.
Higher order tensors and incomplete mappings

If higher order tensors are applied to other tensors in the sense of incomplete mappings,
one has to know how many of the basis vectors have to be linked by scalar products.
Therefore, an underlined superscript (+)¢ indicates the order of the desired result after the
tensor operation has been carried out.

Examples in basis notation:
13 . ,
(A B)_ = [aijkl (ei ® ej ® € ® el) bmno (em ® e, (059 eo)]_
= QK bmno 5km 5ln (ei & €; ® eo)

(A B)l = [aij (ei ® ej) bmno (em ® €n ® eo)]l

= Q4 bmno 5zm 5jn €

Note: Note in passing that the incomplete mapping (contraction) is governed by
scalar products of a sufficient number of inner basis systems.
Furthermore, the tensor product of 2nd order tensors can also be understood
as an incomplete mapping by AB = (AB)2.
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2.6 Fundamental tensor of 3rd order (RicCI permutation tensor)

Remark: The fundamental tensor of 3rd order is introduced in the context of the “outer
product” (e. g. vector product between vectors).

3
Definition: The fundamental tensor E satisfies the rule

3
uxv=E (u®v)

3
Introduction of E in basis notation:

There is
3

E = eijk (e,- X ej (29 ek)

with the “permutation symbol” e

1 . even permutation €123 = €931 = €312 = 1
Cijk = —1 : odd permutation — €321 = €913 = €139 = —1
0 : double indexing all remaining e;;;, vanish

3
Application of E to the vector product of vectors:

From the above definition,

3
uxv =E (u®v)
= ¢k (e, ®e;®er) (use; @ vy ey)
= €ijk Us Vg 5js Okt € = €ijk Uj VL €

= (Ug VU3 — Us 'U2) €1 + (Ug V1 — Uy Ug) €9 + (Ul V2 — U9 Ul) €3

Comparison with the computation by use of the matrix notation, cf. page 5

€1 € €3
uxXv=|u uy ug|= --- q.ed
v V2 U3

3
Identities for E:

Scalar product and incomplete mapping of two RICCI tensors yield a scalar and 2nd or 4th
order objects

3 3 23 24

3 3 3 3
E-E=6, (EE2=2I, (EEZ}=(IoD)” - (IcD)T
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2.7 The axial vector

Remark: The axial vector (pseudo vector) can be used for the description of rotations
(rotation vector).

A
Definition:  The axial vector t is associated with the skew-symmetric part skw T of
an arbitrary tensor T € V3 ® V? via

A 3
t=1ET"

One calculates,

t =lej (e, e @ep)ty(e;®ey)

1 1
= 5 €ijk Lt Oj¢ Ops € = 5 Cijk Lj €

= % [(ts2 — taz) €1 + (tig — ta1) €2 + (a1 — t12) €3]

It follows from 2.3 (b)
T=symT +skwT

Thus, the axial vector of T is given by

A 3
t =1E (symT +skwT)"

3 3
=1E (skwT") = -1 E (skw T)

Remark: A symmetric tensor has no axial vector.

Axial vector and linear mapping:
The following relation holds:

A
(skwT)v=t xv Vve)?

Axial vector and the vector product of tensors:

Definition:  The vector product of 2 tensors {T, S} € V3 @ V3 satisfies

3
SxT=E (ST

Remark: The vector or cross product of two tensors yields a vector.
In comparison with the definition of the axial vector follows
3 A
IXT=ET =2t

Furthermore, the vector product of two tensors yields
SxT=-TxS
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Axial vector and outer tensor product of vector and tensor:

Definition:  The outer tensor product of a vector u € V? and a tensor T € V3 ® V3
satisfies

(uxT)v=ux (Tv); veV

Remark: The outer tensor product of vector and tensor yields a tensor.

The following relations hold:
uxT=—-(uxT)l=-Txu
— i.e. u x T is skew-symmetric
3
uxT=[E (ueT)?
with ()2 : “incomplete” linear mapping (contraction)

resulting in a 2nd order tensor.

Evaluation in basis notation leads to
uxT =[lereiRe e (ure Qtye; ey
= €ijk Uy tst 0jr Ops (€; @ €)
= ek Uj tie (€ ® €y)

In particular, if T = I, the following relation holds:

3
uxI=[E (u®D)?=cjiu;du(e;®e) =eju;(e;®e)

Furthermore, for the special tensor u x I follows
3
E (uxI)=—-2u

3 3
E(uxI)=IE (uxDT

— u=-— =3

1
2

Consequence: In the tensor u x I, the vector u is already the corresponding axial
vector.

Finally, the following relation holds:

3 3 3 3 \
— E@uxI)=—E (Eu)=—(EE)u=—2u
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Some additional rules:
(axb)®c=ax (b®c)
IxT) - w=T-Q with Q=wx1

APPLICATION TO THE TENSOR PRODUCT OF VECTOR AND TENSOR

Rotation around a fixed spatial axis

Rotation of x around axis e
x=at+u=a+C,u+b
a=(x-e)e
with u=x-—a
b =C5 (e X x)

and @p=pe; le/]=1

Determination of the constants C; and Cs:

(a) For the angle between u and u, the following relation holds

*

u-u

Cos p = with |u| = [u

uf [ul
Furthermore, one calculates
u-u=u-(Ciu+b)=Ciu-u+u-b =Cuf
=0,daulb
Thus,

C 2
ﬂ—(ﬁ — (i =cosp

CoS p = e

(b) For the angle between b and u, the following relation holds

b-u
bl |u]

cos(90° — ) =sinp =

Furthermore, one calculates
b-u=b-(Ciu+b)=C; b-u+b-b=|bJ?
=0,daulb

and
bl =Cyle x x| =C5 |e] |x|sin S(e; x) = Cy|u|
~— ”

1 [ul
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leading to
bE bl _ Glu
bl [ul  |uf |yl

sinp = =(Cy — C(y=siny

Thus, X is given by
x=(x-e)e-+cosp[x— (x-e)e|+sinp (e x X)
Determination of the rotation tensor R:

For the tensor product of vector and tensor, the following relation holds:

(exIx=ex (Ix)=exx
Thus,
X= (e®e)x—|—cosap(1—e®e)x+sin<p(e><I)x;Rx

— R=e®e+cosp(I-e®e)+sinp(exI) (%)

Remark: (%) is the EULER-RODRIGUES form of the spatial rotation.

Example: Rotation with (3 around the ez axis
R=R;=e;®e;z+cos p3(I —e3®e;s)+sin p3(e3 xI)
The following relation holds:
3
ez X I = [E (e3 ®I)]2
=lejn(ei®e Qe (e3®e ® e)?

= ek 0j3 0k (€; @ €)) = €53 (e; ® €)

=ee —e e
Thus, one obtains
R3 = e3®es3+ cosps (el Ke;+ey® 62) +sin<p3 (62 Ke —e ® 62)
= Rsij(ei ®e)

cospg —sinps 0
with Rs;j = | sings  cosps 0 q. e. d.
0 0 1
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2.8 The outer tensor product of tensors

Definition:

The outer tensor product of tensors (double cross product) is defined via

(A%%B)(ul X UQ) = Au; X Buy — Auy, X By,

As a direct consequence, one finds

AxB=BxA

Furthermore, the following relations hold:

(AxB) = ATxBT
(AxB)(CxD) = (AC%&BD) (ADxBC)
(IxI) =
(a®@b)x(c®d)= (axc)®(bxd)
(AxB)-C= (BxC)-A=(CxA)-B

From the above definition, it is easily proven that

[(AxB) - C][(u; x ug) - usg] = €;55 (Au; x Buy) - Cuy

The outer tensor product in basis notation reads

A>§§<B = Ak (ei ® ek) 3 bno (en & eO)

= Qi bpo (€; X €,) @ (e X €,)

3
) e Xe, = E (ei & en) = €inj €;
with

3
er xe, =E (e,®e,) =eppep

— AxB = a;; bpo €inj €kop (ej X ep)

Furthermore, it follows that

(AxB)-C = (A-I)(B-

AxI = (A-I)I- AT
AxB = (A-I)(

B-)I- (A" -B)I-(A-I)B"-
—(B-I)AT + ATBT + BT AT
)( ‘) - (A-)(B"-C)-(B-I)(A"-C)-
—(C-I) (AT -B)+ (ATBT).C+ (BT AT).C
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The cofactor, the adjoint tensor and the determinant:

The following relations hold:

+
cof A = LAxA =A, adjA = (cof A)T

(Au1 X Allg) . All3
(u1 X UQ) - ug

= LA TP -LAI)(AA - T)+ L AAA T) (x)

det A = %(A%&A)~A = det |ay| =

In basis notation, the cofactor of A reads

+
cof A = 3 (ik Gno €inj €rop) (€ ® €,) = ajp (€5 @ €))

Remark: The coefficient matrix 53-1, of the cofactor cof A contains at each position (-);,
the corresponding subdeterminant of A

+
G11= Qg2 a3z — g3 a3y etc.

The inverse tensor:

The following relation holds:

. cof AT

. -1 . .
Tt A A7 exists if det A £ 0

Rules for the cofactor, the determinant and the inverse tensor:

det (AB) = det AdetB
det (¢ A) = o®det A
detI = 1
det AT = det A

+
det A = (det A)?
det A™" = (det A)~!

+ +
det(A+B) = detA+A-B+A-B+detB

+ + +
(AB) = AB

(AT = (A7)
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2.9 The eigenvalue problem and the invariants of tensors

Definition:  The eigenvalue problem of an arbitrary 2nd order tensor A is given by

Ya : eigenvalue

a : eigenvector

(A—~yal)a=0, where {

Formal solution for a yields
_cof (A —a 1"
N det (A — YA I)

Consequence: Non-trivial solution for a only if the characteristic equation is fulfilled,
such that

a = (A — ’}/AI)_1

det (A —~vaI)=0
With the determinant rule
det(A+B) = [(A+B)x(A+B)]-(A+B)
(AxA)-A+1(AxA) - B+i(AxB)-A+

1(AxB)-B+i(BxB)-A+i(BxB) B

1
6
— 1
6
+ +
= detA+A-B+A-B+detB
follows
+
det (A —yaI) = det A+A-(—yal) + A (—ya )T+ det (—ya )
= det A —vas (AxA) T+ 3 A (IxI) —~5detI=0
With the abreviations

11, = % (AxA)-1I
11y = % (AxA)-A
the characteristic equation can be simplified to

det (A —yal) = I11n —ya lln+74 Ia — 74 =0

Remark: The abbreviations Ia, [1x and 1115 are the three scalar principal invariants
of a tensor A which play an important role in the field of continuum mechanics.

Alternative representations of the principal invariants
Scalar-product representation:
N = A-1I=1trA
(I3 ~AAT) = L[(trA)’ — tr (A A)
I3 -3 (AA-I)+1ATAT A
[(tr A)® —3trAtr (AA)+2tr(AAA)] = det A (*x)

IIn =
ITIpn =
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Note that (xx) yields the same result as (%) in Subsection 2.8.
Eigenvalue representation:

In = 7ya@) 740 + 7A@

ITn = a0 7A@ + 7A@ 7AB) T 7A@3) YAQ)

ITIA = 7Ya@) VA@) YA@3)
CALEY-HAMILTON-Theorem:

AAA —INAA+TINA—-TIIpAT = O
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3 Fundamentals of vector and tensor analysis

3.1 Introduction of functions

Notation: There

¢(-) : scalar-valued functions scalar variables
exist v(-) : vector-valued functions » of (-) ¢ vector variables
T(-) : tensor-valued functions tensor variables

Example: ¢(A) : scalar-valued tensor function
Notions:

e Domain of a function: set of all possible values of independent variable quantities
(variables); usually continuous

e Range of a function: set of all possible values of dependent variable quantities:
o(-); v(-); T(+)
3.2 Functions of scalar variables

here: Vector- and tensor-valued functions of real scalar variables

(a) VECTOR-VALUED FUNCTIONS OF A SINGLE VARIABLE

It exists:

u : unique vector-valued function,
u=u(a) with range in the open domain V3
a : real scalar variable

Derivative of u(a) with the differential quotient:

du(a)
Pyp— / JR—
w(a) =u'(a) = o
Differential of u(«):

du = u'(a) da
Introduction of higher derivatives and differentials:

d2
d*u = d(du) = u”(a) do? = u(e) da? etc.
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(b) VECTOR-VALUED FUNCTIONS OF SEVERAL VARIABLES

It exists:
u=u(a, g, 7, ..) with {a, g, ~, ..} : real scalar variables

Partial derivative of u(«, 3, v, ...):

ou(-)
Ox

wo(a, B, 7, ...) = =:U,,
Total differential of u(a, 3, v, ...):
du=u,,da+u,3df+u,,dy+ ---

Higher partial derivative (examples):

Pu(-) - Pu()
o0z 7 7T 0y 0

U, g =
Remark: The order of partial derivatives is permutable.

(¢) TENSOR FUNCTIONS OF A SINGLE OR OF SEVERAL VARIABLES

Remark: Tensor-valued functions are treated analogously to the above procedure.

(d) DERIVATIVE OF PRODUCTS OF FUNCTIONS

Some rules:

(a@b) = a@b+a®b
(AB)= A'B+AB
(A7) = —ATTA’AT

3.3 Functions of vector and tensor variables

(a) THE GRADIENT OPERATOR

Remark: Functions of the position (placement) vector are called field functions. Deriva-
tives with respect to the position vector are called “gradient of a function”.

Scalar-valued functions ¢(x)

grad ¢(x) := dg(i;(x) =:w(x) — result is a vector field
X
or in basis notation 5
grad ¢(x) := Plx) € =: ¢, €
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Vector-valued functions v(x)

d
grad v(x) := :;(X) =:S(x) —— result is a tensor field
e
or in basis notation
Ov; (x)
grad v(x) := E e Qe =0, €®e;
j

Tensor-valued functions T(x)

_T()

3
grad T(x) := o U (x) —— result is a tensor field of 3-rd order
X

or in basis notation
Otir(x)

grad T(x) := B
j

e Re,Re = ti, € Re,Re;

Remark: The gradient operator grad (-) = V(- ) (with V : Nabla operator) increases the
order of the respective function by one.

(b) DERIVATIVE OF FUNCTIONS OF ARBITRARY VECTORIAL AND
TENSORIAL VARIABLES

Remark: Derivatives concerning the respective variables are built analogously to the pre-
ceding procedures, e. g.

0R(T, V) . aR”(T, V)
oT Oty

Some specific rules for the derivative of tensor functions with respect to tensors

e Re Ve, Ve

For arbitrary 2nd order tensors A, B, C, the following rules hold:

g—i — qent =1
%LAT — (en’
78(%;)1 = (I®I)

A

Ta i
a((:;B) - (AeDT
J(AB) _ (I®BT)f2l§
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MAA) o\ p e ear)
A = AT+ (Ix®A")
O(ATA) - 23 2
A = A"eDT+(I®A)
I(AAT) 2 ;;3
A = ADT+(I®A)
GATAT) i ar e
A = I®A")T+ (A" ®I)
J(ABC) B ™3
—op ~ Aec)
OA~! _ 1 T—1\T
A = —(AT® AT
aAT_l _ T-1 T-1 f2lil
A = —(A"TTT® AT
+
g_i = det A [(AT—l ® AT—l) o (AT—l ® AT—l)T]
d(a B) B op 156
e~ “actPac
oav) v da N ov
ac ac "4 aC
daA) Ja 0A
ac A9 T%¢
oAv)  [[oA)\z]= ov |,
oc (%) M e

Principal invariants and their derivatives (see also section 2.9)

ol .

8—1: = 1 with Ian=A"-1

OI1a .

SA. = AxI with IIp =3I —AA-I)
Ol

+
A= A with  IIIx =det A
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(¢c) SPECIFIC OPERATORS

here: Introduction of the further differential operators div (- ) and rot (- ).

Divergence of a vector field v(x)
divv(x) :=gradv(x) - I =: ¢(x) — result is a scalar field

or in basis notation ‘
divv(x) =uv;,; (e, ®e;) (e, ®ep)
= Vi,j 5271 5jn = Unsn

8211 i 8v2 4 8213
81’1 81’2 81’3

Divergence of a tensor field T(x)
divT(x) = [grad T(x)]I =: v(x) —— result is a vector field
or in basis notation
divT(x) =tu,; (eiQe,®e;)) (e, Re,)

= tiksj Okn Ojn € = tinn €

Remark: The divergence operator div (-) = V - (- ) decreases the order of the respective
function by one.

Rotation of a vector field v(x)

3
rot v(x) :=E [grad v(x)]? =:r(x) — result is a vector field

or in basis notation
rotv(x) =eijn (€ Qej®e,) v, (6, e,)
= €ijn Voyp 5jp Ono € = €ijn Un,j €;

Consequence: rotv(x) yields twice the axial vector corresponding to the skew-
symmetric part of grad v(x).

Remark: The rotation operator rot (-) = curl (-) = V X () preserves the order of the
respective function.

LAPLACE operator

A(-):=divgrad(-) — analogue to the previous
Pierre-Simon LAPLACE (1749-1827), since 1817 Marquis de Laplace, was a French mathe-
matician, physicist and astronomer.

Remark: The LAPLACE operator A(-) = V-V(-) preserves the order of the differentiated
function.
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Rules for the operators grad (- ), div (), and rot ( -)
grad (¢9p) = ¢grady + ¢ grad ¢
grad (pv) = v ®grad¢ + ¢gradv
grad (¢T) = T ®grad¢ + ¢pgrad T

grad (u-v) = (gradu)” v + (gradv)" u

)
grad(ux v) = uxgradv+gradu x v

23

grad(a®b) = [grada®b+a® (gradb)T|”
grad (Tv) = (grad T)%?V + Tgradv

erad (TS) = [(grad T)TSIET 4 (T grad 8)

323 24 3

3
grad (TS) = (gradT?)TS + (T grad S)?

grad (T -S) = (grad T)% ST + (grad S)?TT
gradx = 1

div(u®v) = udivv + (gradu) v
div(pv) = v-grad¢ + ¢ divv
div(Tv) = (divT?)-v+T7 - gradv

div (gradv)T = graddivv
diviuxv) = (graduxv)-I—(gradv xu)-1
= v-rotu—u-rotv

div(¢T) = Tgradep + ¢divT
div(TS) = (grad T)S + TdivS

313 313

3
div(TS) = (divTT) - ST+ TT . grad ST (1)
div(ivxT) = vxdivT +gradv x T

div(veT) = v®divT + (gradv) TV

313 23

div (v ® %) = v®div ”i‘ + [(grad v) (TT)T)3
div (gradv)™ = 0
div [grad v + (grad v)T] = divgradv + graddivv
divrotv = 0

rotrotv = graddivv — divgrad v
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rotgradv = 0
rot (gradv)T = gradrotv
rot (pv) = ¢rotv+grade X v
rot(uxv) = diviu®v—-—v®u)
= udivv+ (gradu)v — vdivu — (grad v)u
GRASSMANN evolution:
)7

v x rotv = 1grad(v-v) — (gradv) v = (gradv)"v — (grad v) v

Hermann Giinther GRASSMANN (1809-1877) was a German mathematician. He is one of
the fathers of vector and tensor calculus.

3.4 Integral theorems

Remark: In what follows, some integral theorems for the transformation of surface inte-
grals into volume integrals are presented.

Requirement: u = u(x) is a steady and sufficiently often steadily differentiable vector
field. The domain of u is in V3.

(a) PROOF OF THE INTEGRAL THEOREM

/u(x) ®da = /grad u(x)dv with da = nda
S v

da : surface element
and

n : outward-oriented unit surface normal vector
u(x) da,
_ (T/ 7

\ / dxs

Uy

e da4<—-'~'-'o'u,_ p ax, | <= day
X o ﬁl
i €1 dx3}/ das g
€3 ﬁg /*
da5
Us;

Basis: Consideration of an infinitesimal volume element dv spanned in the point P by
the position vector x, while 1; defines the values of u(x) in the centroid of the
partial surfaces 1-6.
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Determination of the surface element vectors da;:
da; = dxy x dx3 = dzydxs (es X e3)
=dzydrse; = —day —> e;=n; = —ny
Furthermore, one obtains
da; =dxs;dr;e; = —day — ey =ny, = —nj
dag =dxr;dryes = —dag — e3 = n3 = —ng

6

Remark: The surface vectors hold the condition Z da; =0.
i=1

Determination of the volume elements dv:

dv = (dx; X dxg) - dx3 = dx; dzy das
Values of u(x) in the centroids of the partial surfaces:

Remark: The increments of u(x) in the directions of dz;, dzs, dzs are approximated by
the first term of a TAYLOR series.

B 1 Ou 1 Ou
uy —u(x)+§a—xzdx2+ 59 dws
ou
u;, =uy+ 87 dxq
1
Furthermore, one obtains
_ _ du ou
u2:u5+a—dx2, Uz = Ug + = d!L’g
i) 81’3

Computation of the surface integral yields

6
/ u(x) @ da —» Zﬁi®da,-:ﬁ1®da1+ y@day, + -
——

dv = _ 8u
5(@v) ;- a—xl dxl) &® (_dal)

Thus

Zul®da2 = a dl’l ®da1 + a—dl’g ®da2+ du dx3®da3

ox 1) 01'3
with
dal = d!L’Q dl’g e, dag = dl’l dl’g (SN da3 = d!L’l CL'L'Q €3

yields

. du du du
E ﬁi@dai—<—®el+ ®62+—®83> dzq dzy dzs
—1 81'1 8 0 T3 /
aul- - o d dv
8—%- e; ®e; =gradu

S
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Thus .
Z u; ® da; = gradudv
i=1

Integration over an arbitrary volume V yields

/u(x) ® da = /grad u(x)dv q.e. d. (%)

S 1%

(b) PROOF OF THE GAUSSIAN INTEGRAL THEOREM

Johann Carl Friedrich GAuss (1777-1855) was a German mathematician, astronomer,
geodesist, and physicist who contributed to many fields in mathematics and science.

/u(x) ~da = /div u(x) dv

S 12
Basis: Integral theorem (x) after scalar multiplication with the identity tensor

I~/u(x)®da :I-/gradu(x)dv

S %
. /I. [u(x) ®da] = /I -grad u(x) dv
S u(x)-da Vo divu(x)

Thus, leading to

/ u(x) - da = / diva(x)dv  (+#)

S 1%

(c) PROOF OF THE INTEGRAL THEOREM

/T(x) da — /diVT(x) dv

S 1%

Basis: Scalar multiplication of the surface integral with a constant vector b € V3

b-/T(x)da:/b-T(x)da:/[TT(X)b]-da::/u(x)~da

S S S S

with u(x):= T?(x)b
It follows with the integral theorem (s:)

b-/T(x) da = /div [T?(x) b] dv

S 1%
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In particular, with b = const. and a divergence rule follows
div [T? (x) b] = divT(x) - b

leading to

b- /T(X) da = /divT(x) -bdv
S %
Thus

S/T(x)da:/divT(x)dv q. e d.

v

Remark: At this point, no further proofs are carried out.

(d) SUMMARY OF SOME INTEGRAL THEOREMS

For the transformation of surface into volume integrals, the following relations hold:

/u®da = /gradudv

S 1%
/gbda = /gradgbdv
S 1%
/u~da = /divudv (%)
S
313 313 3 3
/(TTS) da = div (TTS)dv = /[(diVT) LY+ T - grad L' | dv
S 12
/u xda = — [ rotudv
S
div T dv

div(u x T)dv

div(u® T)dv

—
H
o,
)
I
S VS Y Y Y T
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Application example: The integral theorem (x), as well as other theorems, can also be
313

applied to complexer terms, such as u := (T7'S). This yields by use of () from Subsection
3.3 (c)

313

313 3 3
/(TTS) -da = /div (TTS)dv = /[(divT) ST+ T - grad ST ]dv
S % %

For the transformation of line into surface integrals, the following relations hold:

j{u@)dx = —/gradxxda

L S
%gﬁdx = —/gradéxda
L S
j{u~dx = /(rotu)-da
L S
j{u xdx = /(I divu — grad Tu) da
L S
%de = /(rot T) da
L S

3.5 Transformations between current and reference configura-
tions

Given are the deformation gradient F = 0x/0X and arbitrary vectorial and tensorial field
functions v and A. Then, with t, (reference) and t (current time)

0

)
Grad(-) = —(-)
reference configuration oX
Div(-) = [Grad(-)]-I or [Grad(-)|I
\
( 0
arad () = ()
current configuration x
div(-) = J[grad(-)]-I or [grad(-)]I
\
The following relations hold:
Gradv = (gradv)F Grad A = [(grad A)F2
gradv. = (Gradv)F™! grad A = [(GradA)F '3
Divv = (gradv)-FT DivA = (grad A)F”

divv = (Gradv) -F7! divA = (GradA)F'!
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P1ovA identities (T, P, S: Cauchy and 1st and 2nd Piola-Kirchhoff stress tensors)

(1) Divvy = (det F)divv ~ (2) vo = (det F)F'v (3) Div(cof F) =0
(4) DivP = (detF)divT  (5) P=(detF)TF'! (6) S=(detF)F'TF’!

Therein, v = v(t) is an arbitary vector acting at the current configuration at time ¢, such as
the velocity. Then, vy is its initial value at o, while v, represents the image of v(t) at the
refence configuration. The same is true for the Cauchy stress T at the current configuration
and the Piola stress P acting as the image of T at the reference configuration.

Furthermore, it can be shown that

DivF'! = —FIH(F''GradF)! = —(detF)"'F ! [Grad (detF)]
divF? = —FT'(F'gradF ') = —(detF)F7” [grad (detF)']

Remark: If required, further relations of vector and tensor calculus can be constructed in
the respective context.

The description of non-orthogonal and non-unit basis systems, such as a general
or the natural basis, has not been discussed in this contribution so far. The
interested reader can find this material in the Appendix to this Treatise.

However, as the complete material has been presented in an absolute vector and
tensor notation, the entire material is independent of the choice of specific basis
systems.
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Appendix on Natural Basis Systems

A Differential geometry of continua

A.1 Tangent space and natural basis

In Section 1.1 B of the above vector and tensor treatise, an arbitrary vector v € Y has been
displayed both in a general basis system with non-coplanar basis vectors g; of arbitrary
lengths and in an orthonormal basis system e;, where the basis vectors e; are perpendicular
to each other with unit lengths, such that |e;| = 1.

Vector v in two basis systerr{/s
83

€

basis system g, basis system e;
. V = v;€ = Vi€ +12e+1vze
Representations of v: { o 71 ! 72 2 f’ K
V = U8 = V18 T U28 + U383

Natural basis / covariant tangent vectors

In V3, tangent vectors a; are introduced tangentially to the trajectories (curved parameter
lines #° with 0° € {6, 6%, 63 }).

{0, e;} : spatially fixed reference systen

{6, a; } : tangent system

The tangent vectors are the covariant basis vectors defined as

a; = () =X,

06 ’

A scalar multiplication of two tangent vectors a;, and aj yields the “covariant” metric
coefficients a;;. The metric coefficients a;; are symmetric, such that

Qjj, = ;- = A~ 8; — Qi = Ak

Note: As a result of the symmetry of a;., only 6 of the 9 entries of a;; are independent
quantities.
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From the definition of the scalar product, the metric coefficients and the cosines of the
angles between the a; and a; are connected to each other via

a;-a, = |a| |ag| cos <(a;; a;) with |a;| = ay
such that the angle < (a;; a;) = ¢ between a; and a; can be obtained as
ik
In the above computation of |/a; and \/ayy, there is no summation over ¢ and £, also see
the comments further below on this page.

COS i, =

Dual basis / contravariant cotangent vectors

Introduction of the dual basis via the property

1 ifi=k
a;-ak = §F = ()
0 if i # k meaning that a; L a*

Note: In case of i = k, a; is only parallel to a*, if |a;| = |a*| = 1.
Dual metric coefficients

a;p al = 0] —> 6 equations for 6 unknown entries in aki

Computation of the dual basis _
ak = M a;

Validity control by use of (x)

a;-a"=a;- ak’aj = aj; at = ok

Comments:

a; and q;; define the tangent space (covariant)

a’ and a” define the cotangent space (contravariant)

tangent and cotangent vectors are via (x) dual (inverse) to each other

EINSTEIN’s summation convention can only be applied, when a double index appears in
opposite positions (co- and contravariant)

The special case of an orthonormal basis

For the special case of an orthonormal basis e; with |e;| = 1, the general parameter lines
0" are equal to the straight parameter lines x*. Thus,

oxt

Qi = A; - A, = €; - €, = O,

9’:1’1-

aip ak = § — aki = 5k

k kj

a = k:

Sk e —
aj=0"ej=e

e, and 2'=ux;
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Notes:

e [t is easily concluded that the basis vectors e; and e, are perpendicular to each other
as far as i # k.
e In case of an orthonormal basis, tangent and cotangent space coincide yielding

A.2 Vector and tensor algebra in natural basis systems

Scalar or dot product

Note: The scalar or dot product between two objects, such as u and v, is also called
“inner product” as its result, a scalar, remains in terms of its metric coefficients in the
same tangent or cotangent space as the objects have been before.

Given two vectors u and v, for example, in a tangent and a cotangent basis system, the
scalar product can be computed in two ways

u-v =|ul|v|]cos J(u;v)
=/ (u'a;) - (uFay)\/(v,a™) - (v,a°) cos (u; v)
= VuiuFa;/0,0,0™ cos < (u; v) = Vulu; /v, cos J(u; v)

u-v = (u'a)- (vya®) =ulv(a - a")

= ulv OF = ulv; = ut vy +ulvg +udug

= u; v a*F = ut vk ay

From both equations, the cosine of the angle between u and v can be computed as

Cos <)(u;v)—u vo_ v

v ey,

Physical coefficients of vector components

The coefficients v; of a vector v = v; e; describe the real value of the vector components
v;e; with © = 1, 2, 3. Coefficients with this property are called physical coefficients. In
general, this is only true in orthonormal basis systems e; where |e;| = 1. In case of natural
basis systems with co- and contravariant basis vectors given through a; and a‘, this is
generally not the case meaning that both |a;| and |a’| are # 1.

Thus, physical coefficients are introduced via

‘ai | Q4

with no summation over (-);. From the above, physical coefficients v* are defined by

v = la;]v" and |a; = 1]
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Identity tensor of 2nd order

Note: The identity I is the fundamental tensor of 2nd order. Fundamental tensors are
constructed only by basis vectors

S S .
TERAX T T o0 © ox

= X, @gradf' =a;, ® a’
Control of the identical mapping using v = v" a,

? . .
v=Iv=(a ® a")v"a, =0v"0,a, =v"a, q e d

Representations of the identity tensor

Pulling the indices of T up and down by use of metric coefficients results in

I=a,®a =a'®a, =ad"a, ®a, =aqa’ @ a*

Note: From the cotangent basis defined as a’ = 90°/9x, one recognises that the dual or
cotangential basis is considered inverse to a; = 9x/06".

Furthermore, the second-order identity tensor I can be given in an arbitrary basis repre-
sented by g; and g* without changing its property, the identical map.

Transformation of basis systems

Consider a covariant natural basis system a; that should be given as a function of an
arbitrary covariant basis system g;. Then, the transformation tensor T can be constructed
as follows:

a, = Ia; with I = (gj®g/) and oF =g; - g"

= (gyog)a, = (g - a)g; = (g7 - oFay)g;
= (g7 - a) (g - g") g
= (g7 - a) (g @ g)g = Tg;

with T=(g" a)(g; ® g"

Comments:

e As T does not only include g; and g* but also a;, both systems, a; and g;, must be
known in advance.

e From a; = Tg;, one concludes to g; = T~ 'a;. As T displays a; as a function of g; in
the sense of a unique transformation, det T is non-zero, such that T~ exists.

By use of the same procedure as before, one obtains

T =(a’ - g) (3 ® a")
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such that

T 'a, = (& - g)(a; ® a*)a; = (a/ - gi) (a; - a*)ay
= (@ -dfgr)a, =(a;®al)g =1g =g qed

From the above transformations to find T and T~!, the following relations hold:

a; = (ai 'gj)gj g = (gi 'aj)aj

a' = (a’' - g;)g’ g = (g a;)al

This leads to the description of a vector v in two basis systems, a; and g;:
V=0l & = ) &
with the coefficients of the vector components reading

Ugg) - Uéa) (a; - gj) U{a) = Ufg) (g - aj)
Uj(g) = Vi(a) (2" - &) Vjta) = Vi(g) (8" - 2)

With the above equations, the validity of TT~! =1 can be proven:

TT' = [(g7 - ar) (g @ g")][(a" - &) (an ® a°)]
= (g/ - ap)(@" - g)(g; ® g")(a, ® a°)
= (g/ - ap)(@" - g)(g" - ay)(g; ® a°)

With a® = (a° - g,) g”, it follows that

TT' = (g a)(@" - 8)(g" - a:)(@ - g)(g @ &)

where () = (g, @ g") - (a" ®(*)an) = (go®g") - I
= (g, ®g") - (g"®gn) =00 =0,
such that TT ' = (g/ - a;) ¥ (a° - g,)(g; ® gP)
= (g’ aklfak ' gpl(gj © g”)

Now, with (k%) yielding

(g’ - ak)(ak g) = (g@®g) (a ®ak) =(g/®g) -1
= (g/®g) (8.©8") =00, =7

one finally obtains

TT '=d(goeg)=(gog)=1 qed
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In the special case, where the transformation of basis systems including a transition and a
rotation reduces to a pure rotation, the metric coefficients of both basis systems coincide
yielding

ap=a; -ap=Tg; - T =8i - 8 = gk

In this case, the transformation reduces to a pure rotation T = R with R™! = R”, compare
Section 2.4 (A).

Specific transformation for the determination of a; as a function of the orthonormal
basis e; = €’

a;=Te;, with T =(e"- a;)(e, ® e
such that

a;=[(e" - a;)(e, ® e)]e; = (a; - €")e, = (a, - e)e;

Equivalently, the inverse of the above transformation yields

e; =T 1a, with T !=(a" - e)(a, ® a*)

— e, =(e; - a")a,

A.3 Vector or cross product of tangent vectors

Note: The cross product is also called “outer product”.

3
By use of the Riccr permutation tensor E, compare Section 2.6, one obtains

3
aixaj:E(a,-(X)aj)

Remark: Gregorio R1cCI-CURBASTRO (1853-1925) was an Italian mathematician. To-
gether with his scholar Tullio LEVI-CIvITA (1873-1941), he is known as the father of tensor
calculus.

3
Ricct permutation tensor E

3
Note: Riccr’'s permutation tensor E is the fundamental tensor of 3rd order.

Ei*a;, ® a; ® ay, EVF = (a' xal)-af =: a e*

3 { Ejra' ®al @ a* with { Ejr = (a; xaj)- -ay = a e

On the next page, it is shown that /a = \/det |a;,| and va = \/det |a*| = (y/det |az|) L.
Note: The products (a; x a;) - a;, or (a’ x al) - a* also written as [a; a; a;] or [a’a’ a”]
are known as triple scalar or parallelepipedial products of the tangent and cotangent basis

vectors. The permutation symbols e;;; and €% are known as Levi-Civita symbols.
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Permutation symbols and orthonormal basis

1 : even permutation
eije = (€ X ej)-ep — eyp = ek = —1 : odd permutation
0 : else
e123 = (€1 X €3) - €3 = €931 = €312 :  even permutation
where '
e301 = (€3 X €3) - €] = €913 = €132 :  odd permutation

Therein, the specific form ej93 of the general permutation symbol e;;;, represents the rect-
angular parallelepiped with side lengths 1 and volume 1.

Determinantion of a¢ and a with the relations between E;;;, and Eik

Eijk = vVaeijry —> Epz =+ R Eis @
Eivk = ael* — E =4 E2 - /a
By use of the metric coefficients, E¥* can be displayed as function of E;j; and vice versa:
Estu — ais ajt aku Eijk — E123 — ail CLj2 CLk?’ Eijk
Ei93 = Eaz1 = Egio
where E £ e
L 321 = Lig13 = Lo
This yields

E123 — [all (CL22CL33 _ a23a32> _ a12 (a21a33 _ a23a31> + a13 (a21a32 _ a31a22)] E123

— E'? = det |a2k| Ei93

The other way round shows that

B i B ik
Egtu = ais Ajt Ak, EY — B = an Aj2 A3 EY

— E123 = det |a2k| E123

Combining the above relations for Ej53 and E!??, one easily concludes to
Eio3 = (det |ay|) E'?® = (det |ag]) (det [a*]) E1a3  —  det |a®*] = (det |a|)~*

- .
nd 123 @ = det |az| — a = det |a|, d:det|azk|

E123 \/5

Determination of ¢ and a with the cross product between basis vectors

3 , :
ajxa, = E(a®ay) = Ej;(a'®al ®a")(a; @ ay)
= \/5 €ijk 5{ 55 al = \/5 €12 al = \/5 €312 a’
= aa?
Note: The vector or cross product between two objects, such as a; and a,, is also called

“outer product” as its result, a vector, is mapped into the respective dual space meaning
that covariant objects yield a contravariant result and vice versa.
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One obtains a vector in the direction of a® with the value of |a; x a|:

la; x ag| = |ay||ag| singy = \/&11 ags sin® i

= \/an 929 (1 — COS2 @12)

where sin? ¢ = 1 — cos? @15 has been used. The value of the cosine function has been
computed on p. 50, such that

a2
COS Y12 = —F/———= — @12 = /0411 Q22 COS Y12

\/ 11 22
This leads to

la; x ay| = \/Cln gy — @11 Qg COS% Py = \/an agg — (a12)?
From a matrix A = |a;| with determinant

a1p a2 Aaps
det A = det |a;x| = det | ag az ass

a3; dazz2 G33

it is seen that a;; asy — (a12)2 is the upper left subdeterminant of det a;; and the entry
cof azs = (cof asz)T of the cofactor cof A of A at the position (- )33. With this information,
the cross product of a; and ay reads

33 . \/an a9 — (CL12)2 3 vV COf as3 a3

a; X ay = |a; X ag| = a’ =

|a3| Va33 33

33

In the next step, a® has to be found. Assume @ as an entry of A~! = |a?*| inverse to

A = |a;x|, such that one obtains A~ via

(cof A)T 53 cof agg

_1_ —
A7 = det A - ¢ det A

Now, it follows from the above that

det |a;
a; X ay = Ejgza’ = \/COf&ggM a’ = /det |a;| a® = Vdet A a®

cof ass

— E123 = \/detA = \/det \alk\ = \/5

Analogously, one finds
al x a2 =E®az = /det |a*| a3 = Vdet A~taz = /(det A)~Lag
1
— E123 = (det A)_ = (det |aik|)_1 = 7
a

with @ = a1, where a = det |a;,| and a™t = (det |a;|) ™! = det |a™*| = a.
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3
Note: As Riccr’s permutation tensor E is a fundamental tensor only formed by basis

3
vectors, the products of E are identical whatever basis is chosen, compare Section 2.6:

33 33 23 24

3 3
E-E=6, (EE2=2I, (EE =017 -1IeD”
To prove this feature by use of the natural basis system, the first identity reads
3 3 . .
E-E=E;(a®a ®a") - By (a*®a’ ®a°)

— is ,jt ko __ ijk
= Eijk Estoa a’ta®® = EijkEJ

= Vae (vVa) le* = ¢ ek =6

From the above result, an additional relation for the determinant a = det A of metric
coefficients can be seen:

6 = Eijx Egto a® a? a™ = \Ja ey, /a ey, a'® o/t a*?

= det Aeyy eqpa®a?’ a*  —  (det A)7" = G ey eqoa’ @l at

Equivalently, one also obtains det A = ¢ &% e a5 ajy ag,

The second identity reads

3 3 ) )
(EE)2=E;;Eq [(a'®a’ @ a*) (a* ® a' @ a°) |2
= BEijk Eqo @?® o (a’ @ a°) = Eyjp Ego a/® o (a’ @ a’ay,)

= Eijk Ejkp (ai & ap) = €ijk ejk” (ai ® ap) =21

The final identity is obtained via

(BE)! = By B, [ (2l @ 8 @ ab) (a° @ a! @ a?) |4
= E;j1Egoa™ (' ® &/ @ a' ® a°)
= Eiyx Bsto ™ a0 (a' @ &' ® a, ® a,)
= BEij E’fp;(a" ® a’ (82)4 a,®a)=¢; e (a ®a ®a @a )= ..

=IeoD-TIe D"

Determinant of an arbitrary tensor T

From the basic rules of tensor calculus, the determinant of T = t*(a; ® a;) is defined by
the outer tensor product of tensors, compare Section 2.8, via

detT = }(T%T) - T
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This rule will be computed step by step:

TxT = t*t"(a; ® a;) % (a, ®a,)

= tF°(a; x a,) ® (ap x a,)

With (a; x a,,) = Eins a® = aejs a® and (ay X a,) = y/a ey @P, the above equation reads

TxT = tik tno(\/aeins as) ® (\/aelmp ap)
= a tlk tnoeinsekop (as ® ap)

By use of the matrix A = |a;x| with det A = a, the next step yields the determinant of T
reading

detT = detA % [ 179, se0p (2° @ @P) - 17 (2, ® a,,) ]
= detA % [+ 470 4™y epop 02 0P, ]

= det A I [t 1" tPey 60 | =: (det T) (det A)

with det T = det |¢**| and det A = det |a;z|. By a lengthy computation resulting in

[tzk $no tspeinsekop] — % { tll 6 [ (t22t33 o t23t32) + t12 6 [ (t23t31 o t21t33) ]

+ t13 6 [ (t21t32 _ t22t31)] }

1
6

one obtains the following rule

det T = det [t*(a; ® a;) ] = (det T') (det A)

det T = det [t*] = £ [t " 1P ej5€50p |
with

det A = det |a;| = é[aik (o Qg €5 |

In addition to the above, one obtains for contra- and mixedvariant T that

det T = det [ty (a’ @ a*)] ' det T = det |t;]
= (detT) (det A) det A = det [a*| = det |a’ - a*

det T = det [t (a’ ® ay)] { detT = det |t;*]
with

= (det T') (det A) det A = det |6i] = det |a’ - a;| = 1

From the above rule, it obvious that the determinant of a tensor T = t¥*(e; ® e;) given
in an orthonormal basis (e; ® e;) is equivalent to the determinant of its coefficient matrix
yvielding det T = det [t**| as det A = det |§;] = 1.

Examples: Vector product of arbitrary vectors u and v

uxv=|ul|v]sin<g(u;v)n
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with sin 4 (u; v) = cos(1/27— J(u; v)) and n: unit vector L {u, v}, following the
corkscrew or right-hand rule on page 7.

Norm of the vector product

[ux v| = [uf [v] sin (u; v)

3
By use of E, the vector product between u and v can be obtained as

) ) 3 )
uxv = ua; xvha, = v E(a; ®a,) = v E,,, (8" ®a’ ® af)(a; ® ay,)
F V@ €nop 02 87" = u'vP \/a ey, a”

= Va [(u?vd —udv?)al + (vl —ulvd)a? + (ulv? —u?ol)a?]

= v

Scalar triple product (parallelepipedial product)

(uxv)-w = (vxw)-u=(wxu) v

= (u'a; x v ay) - wha, = u'vlwk (a; x aj) - a

= Egutviwb = Vaeul vl wk
= u! (V¥ W’ —vdw?) + u? (P — o)+ ud (v w? — v wt)

J

~
—u2 (v! w3—v3 wl)

A.4 Spatial derivative of natural basis systems

Given curved parameter lines #°, the natural basis vectors a; change their values and
directions along #°. This makes it necessary to include spatial derivatives of tangent and
cotangent basis vectors.

(a) Derivatives of tangent vectors a; and Christoffel symbols of the 2nd kind

Procedure: One forms spatial derivatives a; j, and applies them with the help of CHRISTOF-
FEL symbols to the tangent basis ay

(‘3a,~ k
Ajf — T —. Fij ag

’ 067

with I';;*: CHRISTOFFEL symbols of the 2nd kind

Elwin Bruno CHRISTOFFEL (1829-1900) was a German mathematician and physicist. He
introduced fundamental concepts of differential geometry, thus opening the way for the
development of tensor calculus.

CHRISTOFFEL symbols of the 2nd kind

s k s . k §s __ s s __
a;j-a :Fij ai A =: Fij 5k—Fw — Fij =a;;-a
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Transformation of CHRISTOFFEL symbols

5;':{(1) e (0),=0 with & —ai-a,
— 0=(a'-a,),;=a’;-a;+a’ -a,;

Thus, it follows that

A A = —a,;j-ag — st :_Fjs
—— ——
sti Fijs

(b) Derivatives of cotangent vectors a’ and CHRISTOFFEL symbols of the 1st kind

Procedure: One forms spatial derivatives a’,; and applies them with the help of CHRISTOF-
FEL symbols to the cotangent basis a*

) oa’ ) )

[ . T k _ ik

a,; = 863 —.ija ——ija
: [ ) _ T __ i
Wlthfjk—a,j-ak——ij =agj-a.

CHRISTOFFEL symbols of the 1st kind

— k _ k s _ s
;= F” i — FZ] Qs A — Fijsa

with I';;,: CHRISTOFFEL symbols of the 1st kind

Determination of I';;,

S S
aj-a=1ya a,=Tysop =Ty — | Diyp=a;;  a

Note: The super- and subscripts of CHRISTOFFEL symbols can only be pulled up and
down by metric coefficients as far as they are not in connection with spatial derivatives.

A.5 Gradient and divergence operators

Gradient of a scalar-valued function ¢(x)

_de 0906 i
gra’d ¢(X) - & - 802 aX - ¢,Za
Gradient of a vector-valued function v(x)
grad v(x) dv _ Ov ® % =v,®a'

T dx 90 ox
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Given v in a covariant basis, one obtains with the CHRISTOFFEL symbols of the 2nd kind

v,=("a,); =v";a,+v"a,; =0v"a,+0v"I';’a, =v",a, +v°I'y"a,

)

Note that the last term has been obtained by renaming the indices s to n and n to s. Thus,

v, =0";+vTy") a, = U”‘ian

with v"}i : covariant derivative

Gradients of vector-valued functions v(x)

= v"‘ian@)al
grad v " :
= vn‘ia ® a

Divergence of a vector-valued function v(x)

divv = gradv - I
= ", (a,@a) - (& ©ay)
v”}iéflcﬁ- - Ui}z‘

Gradient of a tensor-valued function T (x)

T _ 96
®

T=22
grad T = 5 @ 5=

=T,®a"

Given a covariant basis of T, one obtains with the CHRISTOFFEL symbols of the 2nd kind

Tn = (t”az ®aj),n

= twﬂ a; & aj + t”( am & aj + a; ® ajm)
~— ~
Tinsas ans as

= tV,a;®a; +t9T,'a;® a; +1"I',/a; ®a,

Note that in the last line of T ,, use has been made of renaming 7 to s and s to ¢ in the 2nd
term and renaming j to s and s to jin the 3rd term. Thus, one obtains

T," = (t”m + tsjfsni + tisfsnj) (ai (29 aj) = t”‘nal (29 aj

-~

3
n
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In case of a contravariant basis of T, the same procedure as above yields

T n = (tij,n — tSijS — tisf‘jn‘gl (ai X aj) = tij‘nai (029 aj

)

ti;
1] n

With the above information, the gradient of T results in

t) a;®a; ®a"

t,-j‘nai ®al @a”

grad T = {

Divergence of a tensor-valued function T(x)

divT = (gradT)I
= t9| (ai®a;@a") (a*®a,) = 9| 5 0ra;

— divT = tij‘jaz‘

B Geometric measures of solid mechanics

B.1 Deformation gradient and deformation tensors

In solid mechanics, the motion of a body resulting from external forces and temperature
changes is described in a LAGRANGEan setting, where the deformation gradient F relates
the motion function x(Xo, t) of material points of the current position x at time t > ty to
their reference position xq at time tg.

Joseph-Louis LAGRANGE (1736-1813) was an Italian-French mathematician and astronomer,
who later became a naturalized French. He made significant contributions to the fields of
analysis, number theory, and both classical and celestial mechanics.

Based on arbitrary parameter lines 6, F is governed by

_dx 8x® o0 Aok
N dXO N 00’ 8X0 B

Therein, a; is the tangential natural basis vector in terms of the current configuration at
t, while h' is the cotangential dual basis vector at the reference configuration at t,. Thus,
F is a two-field tensor with one basis system in the current and the other basis system in
the reference configuration.

Given F, one computes F~! as

dx ox 00’
-1 _ 980 _ 0
P =" " ©ox

= hz ®ai
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Note that F and F~! can also be understood as transport mechanisms by the property

Fh, = a;, and F'a, = h; : covariant push forward and pull back

F'-'h = a' and F7a’ = h' : contravariant push forward and pull back

With F, one computes the right and left CAUCHY-GREEN deformation tensors as

C=FF=hw®a)(a®h’) =q;h’®@h’) : right CAUCHY-GREEN
B=FF" = (a;@h¥)(h/ ® a;) = h'i(a; ® a;) : left CAUCHY-GREEN

Remark: Augustin-Louis CAUCHY (1789-1857) was a French mathematician and professor
at the Ecole polytechnique at Paris, while George GREEN (1793-1841) was an English miller
and self-taught mathematician. His work was only found important by William Thomson
(Lord Kelvin) four years after his death.

As C is contravariant while B is covariant, B! and C~! enter the stage as further defor-
mation tensors with inverse variances compared to C and B:

C! = FIFT-1 = (hz &® ai) (aj ® hj) =a¥ h; ® hj
Bl — FT-IF = (a @ hy) (b @ al) = iy ai @

B.2 Co- and contravariant strain tensors

Based on the terms above, the basic strain tensors (contravariant strains) yield

E =
A:

(C-1) =
(T-BY) =

z (aij — hi;)(h'®h?) :  GREEN-LAGRANGE
1
2

NI= N[

(a;; —hy)(@ ®@al) :  ALMANSI

Emilio ALMANSI (1869-1948) was an Italian mathematician.

Note that E is based on the reference configuration with contravariant basis vectors h’ that
are constant over time, while A depends on contravariant basis vectors a’ of the current
configuration that change over time. Thus, the strain is basically stored in the difference
between a;; and h;j, while A has a further contribution through the basis a;.

The GREEN-LAGRANGE and ALMANSI strains are connected to each other by contravariant
push-forward and pull-back transformations reading

A = FEF = j(a; —hy) F (W o hW)F ' =
FTflhigFT—lhj

E = F'AF = Ii(a;—hj)F'(a®@a)F =
N——

FTaig FTaj

(aij — hij) a' @ al

N[

(aj — hi)h' @ b/

N [—=
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In addition to the above, there is a further set of strain tensors, the covariant KARNI-
REINER strains, yielding

Kr =
Ko =

(T-C) =
B-1) =

(h7 —a")(h; ®h;) :  reference-configuration-based

NI= N[

1
2
1(h7 —aY)(a; ®a;) :  current-configuration-based

Zvi KARNI and Markus REINER have been working at the Israel Institute of Technology,
Haifa, Israel. They published serveral papers in the 50th and 60th of the last century.

Here, the KARNI-REINER strains are connected to each other by covariant push-forward
and pull-back transformations yielding

KC = FKRFT = %(h” - Cl,ij) F(hz &® hj)FT = %(hw - aij) QR a;
N—— —
Fh;® Fh;
(hw — alﬂ) F_l(a,- (%9 aj)FT_i:

F-la@F-1 a;

KR = F_1 I(CFT_1 = % %(hw — aij) hz (029 hj

B.3 Deformation and strain velocities

Material velocity gradient F: Based on the deformation gradient F, the material
velocity gradient reads

d s ox d N ;
—a(a—m%&(a‘f@h)—aﬁ@h

Spatial velocity gradient L: Once the material deformation velocity F is given, one
forms the spatial deformation velocity L via

d a a. 8. a . ;
( x> XXX _LF= (4 ®a)(a ® )

T 0Xo - Oxy,  O0x 0xg
% . | | |
with L= a_x —FF'=(30h)F =4 oF 'h=4®a
X

— | F=a,®hi, F=4®h', L=4Qa

As F is always invertible as a result of det F > 0, th}s is not necessarily the case for F, for
example, under simple shear conditions, where det F = 0. This leads to
I=FF')= FF'+FF ) =0
L
-L
Following the above, one observes two possibilities to describe L

L=FF' and L=-F(F!)
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Describing these terms by use of the natural basis system yields

F =a®h — F =40k
].'—“_1 = hl & a’ — (F_l). = hz & a
such that
FF! = (a®a FT-1FT = (ai®@a;
= ( and LT = ( )
-FF ) = —(a;,®a —(FT-Y'FT = —(a' ® a;)

With L and L7, the rates of a; and a’ can be given as
a = La =(a,®a" a; =4a,0" =4,

a = -LTa' = (a"®a,)a’ =a") =&’

Deformation velocity D and spin tensor W: By splitting the spatial velocity gradient
L in a symmetric and a skew-symmetric part, one obtains

L=D+W

D =:(L+L") with D = D7
where

W =1L-L") with W = —-WT7

and

(; ®a’ +a' Q&)

1
D=1(L+L")= : L
—5(aead +a ®a)

This leads to the following conclusions

0— P (aik a’ ® ak)-: flzk(al ® akl+ gzk(al ® ak2+aik(ai ® ak)J
2‘6 éi®a;r:—LT ai®z';i,:—L

0=1=(a*a;®a,) = i"(a; @ a;) + a" (& ®ay) + 0’ (a; @ &)

~~
—2D éz®a1:L ai®éi:LT

Thus, there are two further possibilities to describe D
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GREEN-LAGRANGE strain rates:

=3(C-1) = s ®ht)
A= 4T - BY] = i@ @a¥) + (an — ha)[ (& @ a*) + (2’ @ &F)]
= 1a;(a' ®@a") + (ay — ha)[ LT (2’ @ a*) — (a' ® a*) L7 ]

-~

—LTA - AL

Based on the above, it is obvious that the push-forward and pull-back relations between
E and A do not hold for E and A. To overcome this feature, one introduces the so-called
contravariant “upper OLDROYD or LIE derivative” yielding

A .
A=FI1EF!

AN . .
A=A+LTA+AL=D=li(a®at) — . .
E=F'AF

James Gardner OLDROYD (1921-1982) was a British mathematician and rheologist.
Marius Sophus LIE (1842-1899) wa a Norwegian mathematician.

KARNI-REINER strain rates:

Kp = 3(1-C7) = i (h; ® hy)
Ko = %(B—I) = —zat(a®@ay) + 5(h" —a®)[(& @ ay) + (a; @ &) ]
= —jat(a,@an) +3(h" ML (@ a) + (& @ a) LT

-~

LKc+KoLT

As for the GREEN-LAGRANGE and the ALMANSI strains, there is no push-forward and
pull-back relation between K and K¢ as it is for K# and K. This leads to the so-called
covariant “lower OLDROYD or LIE derivative” for K¢ yielding

v .
Ko =FKRrF7T

V . .
Ke: =Ko —LKe - KoL =D = —litf(a;@a,) — v
KR — F—IKC FT—I

B.4 Transport theorems

In this section, the transport theorems for line, area and volume elements will be presented
with respect to a natural basis system.

(1) Line elements in the reference configuration at time ¢y and in the current configuration
at time ¢:

dxq (to) = d0'hy (to), dx () =df'a;(t) }

dx = F dxg

a; = F hz — dx = d9'F h1 = delal
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(2) Volume elements in the reference configuration at time ¢, and in the current config-
uration at time ¢:

dvg (to) = d#'dA%de?® (hy x hy) -hy = dO'de?de>vh
N——

VAhS
dv (t) = d0'd62de® (a; x as) -a; = d0'd62de*/a

Vaa3

with a = det |ag,| and h = det |hg|. To find the meaning of \/a/v/h, one proceeds with the
determinant of the right Cauchy-Green deformation tensor C:

det C = det (F'F) = (det F)?

From the above computation of the determinant of an arbitrary tensor, compare p. 58, one
concludes to

det C = det [ag(h' @ h*)] = (det |a;|) (det |h™*]) = (det |ai|) (det |hi]) ™" = %

B

— detF=-—~= — dv=detFdu,

5

(3) Area elements in the reference configuration at time ¢y and in the current configuration
at time t with, for example, directions h? at t, and a3 at t:

dag (to) = d9'd#?(hy x hy) = d#'dh*vhh?
da(t) = df'dé?*(a; x ay) = d#'db?\/aa’

where, for example, a® can be given as

at = Byt = O e Ve
det F Vva

— da = d6'de*>Vh (cof F)h® —  da = (cof F)day
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C Stress and stress power

C.1 Cauchy, Kirchhoff and Piola-Kirchhoff stresses

Stresses t are exerted to a material body B by external forces acting at the surface S

yielding
/tda:/Tnda:/Tda:/didev
S S S B

Therein, the scalar surface element da of the current configuration is transformed into
a vector-valued surface element da = nda with n as the outward-oriented unit surface
normal. Furthermore, use has been made of the CAUCHY theorem t = T n with T as the
CAUCHY stress, also called true stress. Finally, an integral theorem transfers the tensor-
valued function T at the oriented surface with surface element da towards a vector-valued
function div T in the body B with volume element dv, compare Section 3.4.(d).

Surface element, for example da?, surface normal and volume element:

da® = dx; x dx, = df'a; x db%ay, = d0'd¥*\/aa® — n?=da®/|da®| =a®/Va?
dv = (dx; x dxg) - dxg = d6'd6?\/aa® - dfPas — d6'd02d03\/a

with Va3 = cof ass/(det A) and det A = det |a;x| = a, compare p. 56

Stress vector and stress tensor:

For the present example, the normal of the surface under consideration is again oriented
towards the a® direction. Thus, with

T= tik(a,- ® ak)

where t=Tn®=t*(a; ® a;,) = a;

Cauchy, Kirchhoff and Piola-Kirchhoff stresses

Tda = T (cof F)day = (det F) TF'!da,
T = (detF) T : Kirchhoff stress
where
P = (det F) TFT-! . 1st Piola-Kirchhoff stress

(
in addition: S = (det F)F'TF”"!: 2nd Piola-Kirchhoff stress

Gabriel P1oLA (1794-1850) was an Italian mathematician, who did not accept a professorial
offer of a university. Instead, he preferred to live as private tutor.

Gustav Robert KIRCHHOFF (1824-1887) was a German physicist working on electricity
problems. He held professorships at Breslau (nowadays Wroclaw), Heidelberg and Berlin.
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Concerning the above stresses, the KIRCHHOFF stress 7T is the volumetrically weighted
CAUCHY stress what can be seen by the inclusion of det F = dv/dvy = v/a/v/h. Thus,

a - .
T = va t*(a; @ ay,) = 7% (a; ® ay,)

Vh

While CAucHY and KIRCHHOFF stresses are symmetric acting at the current configuration,
the 1st PIoLA-KIRCHHOFF stress P = 7 FT~1 also called nominal stress, is non-symmetric
as a result of its two-field character with the first basis in the current and the second in
the reference configuration:

P— ﬁ yik (ai ® ak) (an ® hn) — ﬁ fik (ai ® hk) — Ttk (ai ® hk)

Vh Vh
Tda® =  t*(a; ® a,) d0'd6*Vaa® = t*d6'd6*Vaa,

and N |
Pdaj = ﬁtlk (a; @ hy) d0'd*Vhh? = 3 d0'de*Vaa;

From the above equations, it is seen that the stress vector t = T da?® exerted on the current
surface element is identical compared with the same values and the same directions of the
stress P daj exerted on the reference surface element both proceeding from the current
directions a;.

However, concerning the load vector p = P nj, things are different resulting in

s _Va P p:<¢am) £ <¢am>t

PR Vi Vi VIR ) Vam T\ VE Vim

where da} = d'd6>v/h h? together with n3 = h?/v/h33 has been used.

Finally, writing the 2nd PIOLA-KIRCHHOFF stress in a natural basis system yields
S — FIr FT! = (hy @ al)r* (a; @ ay) (al @ hy) = 7 (h; @ hy)

Thus, the 2nd ProLA-KIRCHHOFF stress S can be understood as a formal pull back of
the KIRCHHOFF stress towards the reference configuration. However, S is not directly
connected with the load vector p but with an artficial load vector

gy (YA veR)
p=F p_<\/ﬁx/ﬁ>mhl

where the basis vectors a; have been exchanged by h,.
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C.2 Stress power

Mechanical energy is exerted onto a body by

/t-;‘cda:/Tn-kda:/TTk-da
S S S

= /(diVT-)'c—l—T-grad)'()dv:/T-Ldv
B B

Therein, static equilibrium without body forces through div T = 0 has been assumed. The
stress power T - L can now be displayed in various forms, where the symmetry of T can
be used:

A
T -L=T -D=detF(r - -D)=detF(r - A)

A
Here, the equivalence of D and A has been taken into consideration. Proceeding from the

pull-back and push-forward operations of stresses and strain rates, one obtains

+.-D =FSF?T .FI-lEF!=S . E

) ) — S-E=P.F
7-L=PF' .FF'!=P . F }

With respect to a natural basis system, the above relations yield

7D = 7" ®a) - $a,(@"®a%) =17%a,

S E=7%h®h) - La,(h"oh’)=1r*a,
Using D = (& ®a' +a' ® 4;), 7 - D reads

T-D=7"a®a) - j(a,0a’ +a°®a,)

3T (@ - 8)0F + 0 (ar - &) ] =57 [(a; - &) + (ar - &) ]

To prove that this result is equivalent with 7 - L, use is made of the symmetry of 7. Thus,

ToL=g(r4r) L=t e (aea) - (& @a)
= %(Tik+7ki) (a; - 4,)6; = %(Tzk + 7R (ay - A)
= %(Tik_'_Tki) (a; - &) = %Tik[(ai ca) + (ag - &) q. e. d.

Without using the symmetry of the KIRCHHOFF stress, 7 - L yields the same result as
P - F, what can easily be seen from

T L =7ka®a)- (4, ®a®)=71%(a; - &)

P F =7%@a®h) - (4 ®h*)=71"(a; - a)




