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1 Mathematical Prerequisites

1.1 Basics of vector calculus

(a) Symbols, summation convention, Kronecker δ

Single- or multiple subscripts

ui −→ u1, u2, u3, ...
ui vk −→ u1 v1, u1 v2, u1 v3, ...

u2 v1, u2 v2, ...
...

tik −→ t11, t12, ...
...

Einstein’s summation convention

Definition: Whenever the same subscript occurs twicely in a term, a summation
over that “double” subscript has to be carried out.

Albert Einstein (1879-1955) was a German-Austrian-American theoretical physicist and
a physics professor at Prag University, ETH Zürich, TU Berlin and Princeton University.

Example: uj vj = u1 v1 + u2 v2 + ... + un vn

=
n∑

j=1

uj vj

Kronecker symbol

Definition: It exists a symbol δik with the following properties

δik =

{
0, if i 6= k
1, if i = k

Leopold Kronecker (1823-1891) was a German mathematician who worked as a private
tutor and became later a professor of mathematics at the University of Berlin.

Example: ui δik = u1 δ1k + u2 δ2k + ... + un δnk

with u1 δ1k =







u1 δ11 = u1
u1 δ12 = 0
···

u1 δ1n = 0

−→ ui δik = uk

If the Kronecker symbol is multiplied with another quantity and if there is a double
subscript in this term, the Kronecker symbol disappears, the “double” subscript can be
dropped and the free subscript remains.

Remark: Subscripts occurring twicely in a term can be renamed arbitrarily.
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(b) Terms and definitions of vector algebra

Remark: The following statements are related to the standard three-dimensional (3-d)
physical space meaning the Euclidian vector space V3.
Generally, SPACE is a mathematical concept of a set and does not directly refer
to the 3-d point space E3 and the 3-d vector space V3.

A: Vector addition

Requirement: {u, v, w, ...} ∈ V3

The following relations hold:

u + v = v + u : commutative law

u + (v + w) = (u + v) + w : associative law

u + 0 = u : 0 : identity element of vector addition

u + (−u) = 0 : −u : inverse element of vector addition

Examples to the commutative and the associative laws:

u
u

u

v

v

v
w

u + vu + v

v + u

v + w

u + v + w

B: Multiplication of a vector with a scalar quantity

Requirement: {u, v, w, ...} ∈ V3; {α, β, ...} ∈ R

1 v = v : 1: identity element

α (β v) = (αβ)v : associative law

(α + β)v = αv + β v : distributive law (addition of scalars)

α (v + w) = αv + αw : distributive law (addition of vectors)

αv = vα : commutative law

Remark: In the general vector calculus, the definitions A and B constitute the “affine
vector space”.

Linear dependency of vectors

Remark: In V3, three non-coplanar vectors are linearly independent, meaning that each
further vector can be expressed as a multiple of these vectors.
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Theorem: The vectors vi (i = 1, 2, 3, ..., n) are linearly dependent, if real numbers
αi exist which are not all equal to zero, such that

αi vi = 0 or α1 v1 + α2 v2 + ... + αn vn = 0

Example (plane case):

v1

v2

v3
α1 v1

α2 v2

α3 v3

v1 + v2 + v3 6= 0

but: α1 v1 + α2 v2 + α3 v3 = 0

−→ {v1, v2, v3}: linearly dependent

−→ {v1, v2}: linearly independent

Remark: The αi can be multiplied by any factor λ.

Basis vectors in V3

ex. : {v1, v2, v3} : linearly independent

then : {v1, v2, v3, v} : linearly dependent

Thus, it follows that

α1 v1 + α2 v2 + α3 v3 + λv = 0

−→ λv = −αi vi

or v =
−αi

λ
vi =: βi vi

with

{

βi =
−αi

λ
: coefficients (of the vector components)

vi : basis vectors of v

Choice of a specific basis system

Remark: In V3, each system of three linearly independent vectors can be selected as a
basis; e. g.

vi : general basis

ei : specific, orthonormal basis (Cartesian, right-handed)

v1

v2

v3

e1

e2

e3
vv

Basissystem vi Basissystem ei



4 Supplement to Continuum Mechanics Research

Representation of the vector v:

v =

{

βi vi

γi ei

here: Specific choice of the Cartesian basis system ei

Notations

v = vi ei = v1 e1 + v2 e2 + v3 e3

with

{

vi ei : vector components

vi : coefficients of the vector components

C: Scalar product of vectors

The scalar product of vectors is defined by the dot operator (dot product). The result of
the product is a scalar (scalar product).

The following relations hold:

u · v = v · u : commutative law

u · (v + w) = u · v + u ·w : distributive law

α (u · v) = u · (α v) = (αu) · v : associative law

u · v = 0 ∀ u, if v ≡ 0

−→ u · u 6= 0 , if u 6= 0

Remark: The definitions A, B and C constitute the “Euclidian vector space”. In case
that u · u 6= 0, especially when

u · u > 0 , if u 6= 0,

then A, B and C define the “proper Euclidian vector space V3” (physical space).

Square and norm of a vector

v2 := v · v , v = |v| =
√
v2

Remark: The norm is the value or the positive square root of the vector.

Angle between two vectors

v

u

u− v

α
<) (u ; v) =: α
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Law of cosines

|u− v|2 = |u|2 + |v|2 − 2 |u| |v| cos α

−→ cos α =
u2 + v2 − (u− v)2

2 |u| |v| =
u · v
|u| |v|

or u · v = |u| |v| cos α

Scalar product (inner product∗) in an orthonormal basis

Scalar product of the basis vectors ei:

<) (ei ; ek)

{

90◦, if i 6= k : cos 90◦ = 0

0◦, if i = k : cos 0◦ = 1

thus ei · ek = |ei| |ek| cos <) (ei ; ek)

= cos <) (ei ; ek)

It follows with the Kronecker δ

ei · ek = δik =

{

1, if i = k

0, if i 6= k

Scalar product of two vectors:

u · v = (ui ei) · (vk ek)

= ui vk (ei · ek)
= ui vk δik

= ui vi = u1 v1 + u2 v2 + u3 v3

D: Vector or cross product (outer product†) of vectors

The vector product of vectors is defined by the cross operator (cross product). The result
of the product is a vector (vector product).

One defines the following vector product

u× v = |u| |v| sin <) (u ; v)n

with n: unit vector ⊥u , v (corkscrew rule or right-hand rule, see page 7)

From the above definition, the following relations can be derived

u× v = −v × u : no commutative law

u× (v + w) = u× v + u×w : distributive law

α (u× v) = (αu)× v = u× (α v) : associative law

∗The explanation of the notion “inner product” can be found in the Appendix on p. 51
†The explanation of the notion “outer product” can be found in the Appendix on p. 55
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Scalar triple product (parallelepidial product):

u · (v ×w) = v · (w× u) = w · (u× v)

Arithmetic laws for the vector product (without proof)

u× u = 0

(u + v)×w = u×w + v ×w

u · (u× v) = v · (u× u) = 0

Expansion theorem:

u× (v×w) = (u ·w)v − (u · v)w

Lagrangean identity:

(u× v) · (w× z) = (u ·w) (v · z)− (u · z) (v ·w)

Joseph-Louis Lagrange (1736–1813) was an Italian-French mathematician and astronomer.

Norm of the vector product:

|u× v| = |u| |v| sin <) (u ; v)

Vector product in an orthonormal basis

here: Simplified representation in matrix notation

Calculation of

u = v ×w =

∣
∣
∣
∣
∣
∣
∣

e1 e2 e3

v1 v2 v3

w1 w2 w3

∣
∣
∣
∣
∣
∣
∣

= (v2 w3 − v3 w2) e1 − (v1w3 − v3w1) e2 + (v1 w2 − v2w1) e3

Remark: If u ⊥ {v, w} , then u · v = u ·w = 0

Example:

u · v = ui vi = (v2w3 − v3 w2) v1 − (v1w3 − v3w1) v2 + (v1 w2 − v2 w1) v3 = 0 q. e. d.

Remarks on the products between vectors

• On the scalar product

Decomposition of a vector (example in the 2-d space):

u1

u2

u1

u2 u

e1

e2 α

β

u = u1 + u2

with u1 = u1 e1 and u2 = u2 e2

u1 , u2 : vector components

u1 , u2 : coefficients of the vector components
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Projection of u on the directions of ei:

ui = u · ei

Verification of the projection law:

u · ei = (uk ek) · ei
= uk δki = ui q. e. d.

Calculation of the projections:

u1 = |u| |e1| cos α

= |u| cos α = u cos α

with u = |u|
u2 = u cos β

= u cos (90◦ − α) = u sin α

Note: For the values of the vector components, the following relations hold

u1

u2 u

α

u1 = u cos α

u2 = u sin α

• On the vector product

Orientation of the vector u = v×w:

u

v

w

α

(1) u ⊥ {v , w}

(2) corkscrew rule (right-hand rule)

It is obvious that

z

v

w

α z = w× v

−→ v ×w = −w × v

Value of the vector product:

w sin α

v

w

α

|v ×w| = |v| |w| sin α

= v (w sin α)
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Note: The vector v × w is perpendicular to v and w (corkscrew orientation). Its
value corresponds to the area spanned by v and w.

Scalar triple product (parallelepidial product):

z

v
w

u

γ

u · (v ×w) =: [uvw ]

with z = v ×w

follows u · z = |u| |z| cos γ

= z (u cos γ)

with (u cos γ) : projection of u on the direction of z

Remark: The parallelepidial product yields the volume of the parallelepiped spanned by
u, v and w.

Remark: The preceding Section on vector calculus and the following Sections on
tensor calculus and vector and tensor analysis are mostly written in a
basis-free representation. In case that basis systems are taken into con-
sideration, use is made, for simplicity, of the orthonormal basis ei.

However, to get a deeper inside into the material, the introduction of
arbitrary basis systems and, especially, natural basis systems as a sub-
group of arbitrary systems is helpful and will therefore be presented in
the Appendix to this Treatise.
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2 Fundamentals of tensor calculus

Remark: The following statements are related to the proper Euclidian vector space V3

and the corresponding dyadic product space V3 ⊗ V3 ⊗ · · · ⊗ V3 (n times) of
n-th order.

2.1 Introduction of the tensor concept

(a) Tensor concept and linear mapping

Definition: A 2nd order (2nd rank) tensor T is a linear mapping which transforms
a vector u uniquely into a vector w:

w = Tu

therein:







u, w ∈ V3 ; T ∈ L(V3, V3)

L(V3, V3) :
set of all 2nd order tensors or linear
mappings of vectors, respectively

Remark: In this treatise on tensor calculus, we follow the notation given by Reint de
Boer in his book “Tensorrechnng für Ingenieure”, Springer-Verlag, Berlin 1982.

Reint de Boer (1935-2010) was a German civil engineer and a mechanics professor at the
University of Duisburg-Essen.

(b) Tensor concept and dyadic product space

Definition: There is a “simple tensor” (a⊗ b) with the property

(a⊗ b) c =: (b · c) a

therein:

{

a⊗ b ∈ V3 ⊗ V3 (dyadic product space)

⊗ : dyadic product (binary operator of V3 ⊗ V3)

Remark: (a⊗ b) maps a vector c onto a vector d = (b · c) a with the direction of a.

Basis notation of a simple tensor:

A := a⊗ b = (ai ei)⊗ (bk ek) = ai bk (ei ⊗ ek)

with

{
ai bk : coefficients of the tensor components

ei ⊗ ek : tensor basis

Tensors A ∈ V3⊗V3 have 9 independent entries (and directions), such as a1 b3 (e1⊗e3) etc.
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Introduction of arbitrary tensors T ∈ V3 ⊗ V3 :

T = tik (ei ⊗ ek)

with tik =





t11 t12 t13
t21 t22 t23
t31 t32 t33



 :

{
matrix of coefficients of T
with 9 independent entries

2.2 Basic rules of tensor algebra

Requirement: {A, B, C, ...} ∈ V3 ⊗ V3 .

(a) Tensor addition

A + B = B + A : commutative law

A + (B + C) = (A + B) + C : associative law

A + 0 = A : 0 : identical element

A + (−A) = 0 : −A : inverse element

Tensor addition with respect to an orthonormal tensor basis:

A = aik (ei ⊗ ek), B = bik (ei ⊗ ek)

−→ C = A + B = (aik + bik)
︸ ︷︷ ︸

cik

(ei ⊗ ek)

Remark: A tensor addition carried out as an addition of the tensor coefficients requires
that both tensors have the same tensor basis.

(b) Multiplication of tensors by a scalar

1A = A : 1 : identical element

α (βA) = (α β)A : associative law

(α+ β)A = αA + βA : distributive law (with respect to the addition of scalars)

α (A + B) = αA + αB : distributive law (with respect to the addition of tensors)

αA = Aα : commutative law

(c) Linear mapping between tensor and vector

The following definitions make use of the linear mapping (cf. 2.1)

w = Tu

Remark: In the literature, the linear mapping or the multiplication of a vector by a tensor
is also called “contraction”.



Supplement to Continuum Mechanics Research 11

The following relations hold:

A (u + v) = Au + Av : distributive law

A (αu) = α(Au) : associative law

(A + B)u = Au + Bu : distributive law

(αA)u = α (Au) : associative law

0u = 0 : 0 : zero element of the linear mapping

I u = u : I : identity element of the linear mapping

Linear mapping in basis notation:

A = aik (ei ⊗ ek) , u = ui ei

Au = (aik ei ⊗ ek) (ujej) = aik uj (ei ⊗ ek) ej
One obtains

w = Au = aik uj δkj ei = aik uk
︸ ︷︷ ︸

wi

ei mit

{
i : free index (basis index)

k : silent index (double index of wi)

Remark: In general, a linear mapping A applied to a vector u
causes both a rotation and a stretch of u.

e1

e2

e3
u

Au

Identity tensor I ∈ V3 ⊗ V3 :

I = δik ei ⊗ ek = ei ⊗ ei

Proof of the defining property:

u = I u = (ei ⊗ ei) uj ej = uj (ei ⊗ ei) ej = uj δij ei = ui ei q. e. d.

Remark: Tensors built from basis vectors are called fundamental tensors. Thus,

I ∈ V3 ⊗ V3 is the fundamental tensor of 2nd order.

(d) Scalar product of tensors (inner product)

The following relations hold:

A ·B = B ·A : commutative law

A · (B + C) = A ·B + A ·C : distributive law

(αA) ·B = A · (αB) = α (A ·B) : associative law

A ·B = 0 ∀ A , if B ≡ 0

−→ A ·A > 0 for A 6= 0
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Scalar product of A with a simple tensor a⊗ b ∈ V3 ⊗ V3 :

A · (a⊗ b) = a ·Ab

Scalar product of A and B in basis notation:

A = aik (ei ⊗ ek), B = bik (ei ⊗ ek)

α = A ·B = aik (ei ⊗ ek) · bst(es ⊗ et) = aik bst(ei ⊗ ek) · (es ⊗ et)

One obtains
α = aik bst δis δkt = aik bik

Remark: The result of the scalar product is a scalar.

(e) Tensor product of tensors

Definition: The tensor product of tensors yields

(AB)v = A (Bv)

Remark: With this definition, the tensor product of tensors is directly linked to the linear
mapping (cf. 2.1 (a)).

The following relations hold:

(AB)C = A (BC) : associative law

A (B + C) = AB + AC : distributive law

(A + B)C = AC + BC : distributive law

α (AB) = (αA)B = A (αB) : associative law

IT = TI = T : I : identity element

0T = T0 = 0 : 0 : zero element

Remark: In general, the commutative law is not valid meaning that AB 6= BA.

Tensor product of simple tensors:

A = a⊗ b , B = c⊗ d

It follows with the above definition

(AB)v = A (Bv)

−→ [ (a⊗ b) (c⊗ d) ]v = (a⊗ b) [ (c⊗ d)v ]

= (a⊗ b) (d · v) c

= (b · c) (d · v) a

= [ (b · c) (a⊗ d) ]v
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Consequence:

(a⊗ b) (c⊗ d) = (b · c) a⊗ d

Tensor product in basis notation:

AB = aik (ei ⊗ ek) bst(es ⊗ et)

= aik bst (ei ⊗ ek) (es ⊗ et)

= aik bst δks(ei ⊗ et)

= aik bkt (ei ⊗ et)

Remark: The result of a tensor product is a tensor.

2.3 Specific tensors and operations

(a) Transposed tensor

Definition: The transposed tensor AT belonging to A exhibits the property

w · (Au) = (AT w) · u

The following relations hold:

(A + B)T = AT + BT

(αA)T = αAT

(AB)T = BT AT

Transposition of a simple tensor a⊗ b:

It follows with the above definition

w · (a⊗ b)u = w · (b · u) a

= (w · a) (b · u)

= (b⊗ a)w · u

−→ (a⊗ b)T = b⊗ a

Transposed tensor in basis notation:

A = aik (ei ⊗ ek)

−→ AT = aik (ek ⊗ ei) : exchanging the basis vectors

= aki (ei ⊗ ek) : exchanging the indices of the tensor coefficients
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Note: The transposition of a tensor A ∈ V3 ⊗ V3 can be carried out by an
exchange of the tensor basis or by an exchange of the subscripts of the
tensor coefficients.

(b) Symmetric and skew-symmetric tensors

Definition: A tensor A ∈ V3 ⊗ V3 is symmetric, if

A = AT

and skew-symmetric (antimetric), if

A = −AT

Symmetric and skew-symmetric parts of an arbitrary tensor A ∈ V3 ⊗ V3 :

symA = 1
2

(A + AT )

skwA = 1
2

(A−AT )

−→ A = symA + skwA

Properties of symmetric and skew-symmetric tensors:

w · (symA)v = (symA)w · v

v · (skwA)v = − (skwA)v · v = 0

Symmetric tensors with the property of positive definiteness:

• symA is positive definite, if symA · (v ⊗ v) = v · (symA)v > 0

• symA is positive semi-definite, if symA · (v ⊗ v) = v · (symA)v ≥ 0

(c) Inverse tensor

Definition: If A−1 inverse to A exists, it exhibits the property

v = Aw ←→ w = A−1 v

The following relations hold:

AA−1 = A−1A = I

(A−1)T = (AT )−1 =: AT−1(= A−T )

(AB)−1 = B−1A−1

Remark: The computation of the inverse tensor in basis notation is carried out by use of
the “double cross product” (outer tensor product of tensors), cf. Subsection 2.8.
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(d) Orthogonal tensor

Definition: An orthogonal tensor Q ∈ V3 ⊗ V3 exhibits the property

Q−1 = QT ←→ QQT = I

Additionally

{
(detQ)2 = 1 : orthogonality

detQ = 1 : proper orthogonality

Remark: The computation of the determinant of 2nd order tensors is defined with the aid
of the double cross product, cf. 2.8.

Properties of orthogonal tensors:

Qv ·Qw = QT Qv ·w = v ·w

−→ Qu ·Qu = u · u

Remark: Linear mapping with Q preserves the norm of the respective vector.

Illustration:

u

AuQu

generally, a linear mapping with A ∈ V3 ⊗ V3

causes a rotation and a stretch

especially, a linear mapping with Q ∈ V3 ⊗ V3

causes only a rotation

(e) Trace of a tensor

Definition: The trace trA of a tensor A ∈ V3 ⊗ V3 is the scalar product

trA = A · I

The following relations hold:

tr (αA) = α trA

tr (a⊗ b) = a · b

trAT = trA

tr (AB) = tr (BA)

−→ (AB) · I = B ·AT = BT ·A

tr (ABC) = tr (BCA) = tr (CAB)
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2.4 Change of the basis

Remark: The goal is to find a relation between vectors and tensors which belong to
different basis systems.

here: Restriction to orthonormal basis systems which are rotated against each other.

(A) Rotation of the basis system

Illustration:

e1

e2

e3

α11

α21

α220

∗
e1

∗
e2

∗
e3

{ 0, ei} : basis system

{ 0,
∗
ei} : rotated basis system

{αik} : angle between the basis vectors

ei and
∗
ek

Development of the transformation tensor:

The following relations hold:
∗
ei = I

∗
ei and I = ej ⊗ ej

Thus,
∗
ei = (ej ⊗ ej)

∗
ei = (ej ·

∗
ei) ej

using
∗
ei = δik

∗
ek with δik = ei · ek leads to

∗
ei = (ej · δik

∗
ek) ej = (ej ·

∗
ek) (ei · ek) ej

and one obtains
∗
ei = (ej ·

∗
ek) (ej ⊗ ek) ei =: Rei with R = (ej ·

∗
ek) ej ⊗ ek

Remark: R is the transformation tensor which transforms the basis vectors ei into the

basis vectors
∗
ei.

Coefficient matrix Rjk:

Rjk = ej ·
∗
ek = |ej | |

∗
ek| cos<) (ej;

∗
ek) = cosαjk with |ej | = |

∗
ek| = 1

Remark: Rjk contains the 9 cosines of the angles between the directions of the basis

vectors ej and
∗
ek.
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Orthogonality of the transformation tensor:

Remark: By R, the basis vectors ei are only rotated towards
∗
ei. Thus, R is an orthogonal

tensor.

Orthogonality condition:

RRT !
= I = Rjk(ej ⊗ ek)Rpn (en ⊗ ep) = Rjk Rpn δkn ej ⊗ ep

= Rjk Rpk (ej ⊗ ep)

It follows with I = δjp (ej ⊗ ep) by comparison of coefficients

Rjk Rpk = δjp (∗)

Remark: (∗) contains 6 constraints for the 9 cosines (RRT = sym (RRT )), i. e. only 3
of 9 trigonometrical functions are independent. Thus, the rotation of the basis
system is defined by 3 angles.

(B) Introduction of “CARDANO angles”

Idea: Rotation around 3 axes which are given by the basis directions ei. This procedure
goes back to Gerolamo Cardano.

Gerolamo Cardano (1501-1576) is considered one of the last great universal scholars of
the Renaissance with an astonishing international reputation in various fields, such as
medicine, mathematics, philosophy, physics, chemistry, and engineering.

Procedure: The rotation of the basis system is carried out by 3 independent rotations
around the axes e1, e2, e3. Each rotation is expressed by a transformation
tensor Ri (i = 1, 2, 3).

Rotation of ei around e3, e2, e1:

∗
ei = {R1 [R2 (R3 ei)]} =

∗
Rei with

∗
R = R1R2R3

Rotation of ei around e1, e2, e3:

ēi = {R3 [R2 (R1 ei)]} = R̄ ei with R̄ = R3R2R1

Obviously,
∗
R 6= R̄ −→ ∗

e 6= ēi

Remark: The result of the orthogonal transformation depends on the sequence of the
rotations.
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Illustration:

(a) Rotation around e3, e2, e1 (e. g. each by 90◦)

90◦

90◦

90◦

1

1

2

2

3

3

e1

e2

e3

(e1)

(e2)

(e3)

∗
e1

∗
e2

∗
e3

(b) Rotation around e1, e2, e3 (e. g. each by 90◦)

with

 

90◦

90◦

90◦

180◦
1

1

2

2

3

3

(e1)

(e2)

(e3)

ē1

ē2
ē3

e1

e2

e3

∗
e1

∗
e2

∗
e3

Definition of the orthogonal rotation tensors Ri

(a) Rotation around the e3-axis

ϕ3

ϕ3
e1

e2

e3

◦
e1

◦
e2

The following relations hold:

◦
e1 = cosϕ3 e1 + sinϕ3 e2

◦
e2 = − sinϕ3 e1 + cosϕ3 e2

◦
e3 = e3
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In general,
◦
ei = R3 ei = R3jk (ej ⊗ ek) ei = R3jk δki ej = R3ji ej

Thus, by comparison of coefficients

R3 = R3ji (ej ⊗ ei) with R3ji =





cosϕ3 − sinϕ3 0
sinϕ3 cosϕ3 0

0 0 1





(b) Rotation around the e2- and e1-axis

Analogously,

R2 = R2ji (ej ⊗ ei) with R2ji =





cosϕ2 0 sinϕ2

0 1 0
− sinϕ2 0 cosϕ2





R1 = R1ji (ej ⊗ ei) with R1ji =





1 0 0
0 cosϕ1 − sinϕ1

0 sinϕ1 cosϕ1





Remark: The rotation tensor R can be composed of single rotations under consideration
of the rotation sequence.

(c) Definition of the total rotation R

(c1) it follows from the rotation of ei around e3, e2, e1 that

R −→
∗
R = R1R2R3

= R1ij (ei ⊗ ej)R2no (en ⊗ eo)R3pq (ep ⊗ eq)

= R1ij R2noR3pq δjn δop (ei ⊗ eq)

= R1ij R2joR3oq
︸ ︷︷ ︸

∗
Riq

(ei ⊗ eq)

with

∗
Riq =






cosϕ2 cosϕ3 − cosϕ2 sinϕ3 sinϕ2

sinϕ1 sinϕ2 cosϕ3 + cosϕ1 sinϕ3 − sinϕ1 sinϕ2 sinϕ3 + cosϕ1 cosϕ3 − sinϕ1 cosϕ2

− cosϕ1 sinϕ2 cosϕ3 + sinϕ1 sinϕ3 cosϕ1 sinϕ2 sinϕ3 + sinϕ1 cosϕ3 cosϕ1 cosϕ2






(c2) it follows from the rotation of ei around e1, e2, e3 that

R −→ R̄ = R3R2 R1

= R3ij R2joR1oq
︸ ︷︷ ︸

R̄iq

(ei ⊗ eq)
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with

R̄iq =






cosϕ2 cosϕ3 sinϕ1 sinϕ2 cosϕ3 − cosϕ1 sinϕ3 cosϕ1 sinϕ2 cosϕ3 + sinϕ1 sinϕ3

cosϕ2 sinϕ3 sinϕ1 sinϕ2 sinϕ3 + cosϕ1 cosϕ3 cosϕ1 sinϕ2 sinϕ3 − sinϕ1 cosϕ3

− sinϕ2 sinϕ1 cosϕ2 cosϕ1 cosϕ2






Orthogonality of “Cardano rotation tensors”:

For all R ∈ {R1, R2, R3,
∗
R, R̄}, the following relations hold

R−1 = RT , i. e. RRT = I and (detR)2 = 1 −→ orthogonality

Furthermore, all rotation tensors hold the following relation

detR = 1 : “proper” orthogonality

Remark: A basis transformation with “non-proper” orthogonal transformations
(detR = −1) transforms a “right-handed” into a “left-handed” basis system.

Example:

here: Investigation of the orthogonality properties of R3 = R3ij (ei ⊗ ej)

with R3ij =





cosϕ3 − sinϕ3 0
sinϕ3 cosϕ3 0

0 0 1





One looks at

R3R
T
3 = R3ij(ei ⊗ ej)R3on(en ⊗ eo)

= R3ij R3on δjn (ei ⊗ eo) = R3inR3on (ei ⊗ eo)

where

R3inR3on =





sin2 ϕ3 + cos2 ϕ3 0 0
0 sin2 ϕ3 + cos2 ϕ3 0
0 0 1



 = δio

and one obtains
R3R

T
3 = δio (ei ⊗ eo) = I q. e. d.

Furthermore,

detR3 := det (R3ij) = 1 −→ R3 is proper orthogonal

Description of rotation tensors:

In general, the transformation between basis systems ēi and basis systems
◦
ei satisfies the

following relation:
◦
ei = R̄ ēi with R̄ = R̄ik ēi ⊗ ēk

−→ ēi = R̄
T ◦
ei with R̄

−1 ≡ R̄
T
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Otherwise,
ēi =

◦
R

◦
ei with

◦
R =

◦
Rik

◦
ei ⊗

◦
ek

Consequence: By comparing both relations, it follows that

◦
R = R̄

T
, i. e.,

◦
Rik

◦
ei ⊗

◦
ek = (R̄ik)T ēi ⊗ ēk −→

◦
Rik = R̄ki

In particular,
◦
R =

◦
Rik (

◦
ei ⊗

◦
ek) =

◦
Rik (R̄ ēi ⊗ R̄ ēk)

=
◦
Rik R̄ni ēn ⊗ R̄pk ēp = (R̄ni

◦
Rik R̄pk) ēn ⊗ ēp

!
= R̄pn ēn ⊗ ēp = R̄T

−→ R̄ni

◦
Rik R̄pk

!
= R̄pn ←→ R̄ni

◦
Rik = δnk

Remark: The coefficient matrices R̄ni and
◦
Rik are inverse to each other, i. e., in general,

R̄ni

◦
Rik = δnk implies 6 equations for the 9 unknown coefficients

◦
Rik. Due to

R̄
−1

= R̄
T

, one has R̄−1
ni = (R̄ni)

T = R̄in, i. e.

◦
Rik= (R̄ik)T = R̄ki

(C) Introduction of EULER angles

Leonhard Euler (1707-1783) was a Swiss mathematician, physicist, astronomer, geogra-
pher, logician and engineer.

Remark: Rotation of a basis system ei around three specific axes.

Introduction of 3 specific angles around e3, ē1, ẽ3 =
∗
e3

Illustration:

F
∗
F

δδ

ψ

ψ

ϕ

ϕ

ē1

ē2

ẽ2

cc

e1

e2

e3

∗

e1

∗

e2
∗

e3

Idea: Given are 2 planes F and
∗
F with

in-plane vectors e1, e2 and
∗
e1,

∗
e2

and surface normals e3 and
∗
e3.

The basis systems ei and
∗
ei are

related to each other by the Eu-
lerian rotation tensor R:

∗
ei := Rei
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1st step:

ϕ

ϕ

ϕ

ē1

ē2

ē3 = e3

c c

e1

e2

Rotation of ei in plane F around e3 with the angle ϕ,
such that ēi is directed along the line c – c. This yields
the rotation tensor

R3 =





cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1



 ej ⊗ ek .

Then, the new system ēi is computed as follows

ēi = R3 ei = R3jk (ej ⊗ ek) ei = R3ji ej .

Thus,

ē1 = R3j1 ej = cosϕ e1 + sinϕ e2

ē2 = R3j2 ej = − sinϕ e1 + cosϕ e2

ē3 = R3j3 ej = e3 .

2nd step:

δ

δ

δ

ẽ1 = ē1

ē2

ẽ2

ē3

ẽ3

cc

Rotation of ēi around ē1 with the angle δ, such that

ẽ2 lies in the plane
∗
F , and ẽ3 is directed normal to the

plane
∗
F . This yields the rotation tensor

R̄1 =





1 0 0
0 cos δ − sin δ
0 sin δ cos δ



 ēj ⊗ ēk .

Then, the new system ẽi is computed as follows

ẽi = R̄1 ēi = R̄1jk (ēj ⊗ ēk) ēi = R̄1ji ēj .

Thus,

ẽ1 = R̄1j1 ēj = ē1

ẽ2 = R̄1j2 ēj = cos δ ē2 + sin δ ē3

ẽ3 = R̄1j3 ēj = − sin δ ē2 + cos δ ē3 .

3rd step:

ψ

ψ

ψ

∗
e3 = ẽ3 ∗

e2

∗
e1

ẽ1

ẽ2

cc

Rotation of ẽi in plane
∗
F around ẽ3 with the angle ψ.

This yields the rotation tensor

R̃3 =





cosψ − sinψ 0
sinψ cosψ 0

0 0 1



 ẽj ⊗ ẽk .

Then, the new system
∗
ei is computed as follows

∗
ei= R̃3 ẽi = R̃3jk (ẽj ⊗ ẽk) ẽi = R̃3ji ẽj .
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Thus,
∗
e1 = R̃3j1 ẽj = cosψ ẽ1 + sinψ ẽ2
∗
e2 = R̃3j2 ẽj = − sinψ ẽ1 + cosψ ẽ2
∗
e3 = R̃3j3 ẽj = ẽ3 .

Summary:

(a) Inserting ẽi = R̄1 ēi

∗
e1 = cosψ ē1 + sinψ (cos δ ē2 + sin δ ē3)
∗
e2 = − sinψ ē1 + cosψ (cos δ ē2 + sin δ ẽ3)
∗
e3 = ẽ3 = − sin δ ē2 + cos δ ē3

Result:
∗
e1 = cosψ ē1 + sinψ cos δ ē2 + sinψ sin δ ē3
∗
e2 = − sinψ ē1 + cosψ cos δ ē2 + cosψ sin δ ẽ3
∗
e3 = − sin δ ē2 + cos δ ē3

−→ ∗
ei = R̃3 (R̄1 ēi

︸ ︷︷ ︸

ẽi

) =: R̄ ēi with R̄ = R̃3 R̄1

(b) Inserting ēi = R3 ei

∗
e1 = cosψ (cosϕ e1 + sinϕ e2) + sinψ cos δ (− sinϕ e1 + cosϕ e2) + sinψ sin δ e3
∗
e2 = − sinψ (cosϕ e1 + sinϕ e2) + cosψ cos δ (− sinϕ e1 + cosϕ e2) + cosψ sin δ e3
∗
e3 = − sin δ (− sinϕ e1 + cosϕ e2) + cos δ e3

Result:
∗
e1 = (cosψ cosϕ− sinψ cos δ sinϕ) e1+

+(cosψ sinϕ+ sinψ cos δ cosϕ) e2 + sinψ sin δ e3
∗
e2 = (− sinψ cosϕ− cosψ cos δ sinϕ) e1+

+(− sinψ sinϕ+ cosψ cos δ cosϕ) e2 + cosψ sin δ e3
∗
e3 = sin δ sinϕ e1 − sin δ cosϕ e2 + cos δ e3

−→ ∗
ei = R̄ (R3 ei

︸ ︷︷ ︸

ēi

) =: Rei with R = R̄R3 = R̃3 R̄1R3

Rotation tensors R and
∗
R:

For the total rotation the following relation holds:

∗
ei = (R̃3 R̄1R3) ei =: Rei

= (R̃3 R̄1) (R3 ei
︸ ︷︷ ︸

ēi

) = R̃3 (R̄1 ēi
︸ ︷︷ ︸

ẽi

) = R̃3 ẽi
︸ ︷︷ ︸

∗
ei
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Furthermore,

∗
ei = Rei −→ ei = RT ∗

ei =:
∗
R

∗
ei −→

∗
R= RT

Analogously to the previous considerations −→
∗
Rik= (Rik)T = Rki

Description:

R =






cosψ cosϕ− sinψ cos δ sinϕ − sinψ cosϕ− cosψ cos δ sinϕ sin δ sinϕ

cosψ sinϕ+ sinψ cos δ cosϕ − sinψ sinϕ+ cosψ cos δ cosϕ − sin δ cosϕ

sinψ sin δ cosψ sin δ cos δ




 ei ⊗ ek

Combining rotation tensors with different basis systems:

Example: R̄ := R̃3 R̄1
∗
ei = R̃3 ẽi = (R̃3 R̄1) ēi

−→ R̄ = R̃3ik (ẽi ⊗ ẽk) R̄1no (ēn ⊗ ēo)

= R̃3ik ( R̄1 ēi ⊗ R̄1 ēk
︸ ︷︷ ︸

R̄1si ēs ⊗ R̄1tk ēt

) R̄1no (ēn ⊗ ēo)

−→ R̄ = R̄1si R̃3ik R̄1tk (ēs ⊗ ēt) R̄1no (ēn ⊗ ēo)

= R̄1si R̃3ik R̄1tk R̄1no δtn (ēs ⊗ ēo)

= R̄1si R̃3ik R̄1tk R̄1to
︸ ︷︷ ︸

R̄so

(ēs ⊗ ēo)

Thus, the rotation tensor R̄ is given by

R̄ =






cosψ − sinψ 0

sinψ cos δ cosψ cos δ − sin δ

sinψ sin δ cosψ sin δ cos δ




 ēi ⊗ ēk

Remark: Concerning Cardano angles, all partial rotations (e. g. R = R3R2R1 with
∗
ei = Rei) are carried out with respect to the same basis ei, i. e. the combination
of the partial rotations is much easier.

Rotation around a fixed axis:

Remark: A rotation around 3 independent axes can also be described by a rotation around
the resulting axis of rotation:

−→ Euler-Rodrigues representation of the spatial rotation

The Euler-Rodrigues representation of the rotation is discussed later (see
section 2.7).

Benjamin Olinde Rodrigues (1795-1851) was a French mathematician, banker and social
reformer.
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2.5 Higher order tensors

Definition: An arbitrary nth order tensor is given by

n

A ∈ V3 ⊗ V3 ⊗ · · · ⊗ V3 (n times)

with V3 ⊗ V3 ⊗ · · · ⊗ V3 : nth order dyadic product space

Remark: Usually, n ≥ 2. However, there exist special cases for n = 1 (vector) and n = 0
(scalar).

General description of the linear mapping

Definition: A linear mapping is a “contracting product” (contraction) given by

n

A
s

B=
n−s

C with n ≥ s

Descriptive example on simple tensors:

(a⊗ b⊗ c⊗ d)
︸ ︷︷ ︸

4

A

(e⊗ f)
︸ ︷︷ ︸

B

= (c · e) (d · f) a⊗ b
︸ ︷︷ ︸

C

Note: In the sense of the above definition of the linear mapping, the special case n−s = 0
yields a scalar and applies thus to the scalar or dot product.

Fundamental 4th order tensors

Remark: 4th order fundamental tensors are built by a dyadic product of 2nd order identity
tensors and the corresponding independent transpositions.

One introduces:
I⊗ I = (ei ⊗ ei)⊗ (ej ⊗ ej)

(I⊗ I)
23

T = ei ⊗ ej ⊗ ei ⊗ ej

(I⊗ I)
24

T = ei ⊗ ej ⊗ ej ⊗ ei

with ( · )
ik
T : transposition, defined by the exchange of the ith and the kth basis system

Remark: Further transpositions of I⊗ I do not lead to further independent tensors. The
fundamental tensors from above exhibit the property

4

A=
4

AT with
4

AT = (
4

A
13

T )
24

T

Consequence: The 4th order fundamental tensors are symmetric (concerning an ex-
change of the first two and the second two basis systems).
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Properties of 4th order fundamental tensors

(a) identical map

(I⊗ I)
23

T A = (ei ⊗ ej ⊗ ei ⊗ ej) ast(es ⊗ et)

= ast δis δjt (ei ⊗ ej) = aij (ei ⊗ ej) = A

−→
4

I := (I⊗ I)
23

T is 4th order identity tensor

(b) “transposing” map

(I⊗ I)
24

T A = (ei ⊗ ej ⊗ ej ⊗ ei) ast (es ⊗ et)

= ast δjs δit (ei ⊗ ej) = aji (ei ⊗ ej) = AT

(c) “tracing” map

(I⊗ I)A = (ei ⊗ ei ⊗ ej ⊗ ej) ast (es ⊗ et)

= ast δjs δjt (ei ⊗ ei) = ajj (ei ⊗ ei)

= (A · I) I = (trA) I

with A · I = ast (es ⊗ et) · (ej ⊗ ej) = ast δsj δtj = ajj

Specific 4th order tensors

Let A,B,C,D be arbitrary 2nd order tensors. Then, a 4th order tensor
4

A can be defined
exhibiting the following properties:

4

A = (A⊗B)
23

T (∗)
4

A T = [(A⊗B)
23

T ]T = (AT ⊗BT )
23

T

4

A−1 = [(A⊗B)
23

T ]−1 = (A−1 ⊗B−1)
23

T

Furthermore, following relation holds:

4

( · ) T = [
4

( · )
13

T ]
24

T

From (∗), the following relations can be derived:

(A⊗B)
23

T (C⊗D)
23

T = (AC⊗BD)
23

T

(A⊗B)
23

T (C⊗D) = (ACBT ⊗D)

(A⊗B)(C⊗D)
23

T = (A⊗CTBD)

and

(A⊗B)
23

TC = ACBT

(A⊗B)
23

T v = [A⊗ (Bv)]
23

T
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Defining a 4th order tensor
4

B with the properties

4

B = (A⊗B)
24

T = [(A⊗B)
13

T ]T

4

B T = [(A⊗B)
24

T ]T = (B⊗A)
24

T

4

B−1 = [(A⊗B)
24

T ]−1 = (BT−1 ⊗AT−1)
24

T

it can be shown that

(A⊗B)
24

T (C⊗D)
24

T = (ADT ⊗BTC)
23

T

(A⊗B)
23

T (C⊗D)
24

T = (AC⊗DBT )
24

T

(A⊗B)
24

T (C⊗D)
23

T = (AD⊗CTB)
24

T

(A⊗B)
24

T (C⊗D) = (ACTB⊗D)

(A⊗B)(C⊗D)
24

T = (A⊗DBTC)

and

(A⊗B)
24

TC = ACTB

Furthermore, the following relation holds:

(
4

C
4

D)T =
4

D T
4

C T

where
4

C and
4

D are arbitrary 4th order tensors.

Higher order tensors and incomplete mappings

If higher order tensors are applied to other tensors in the sense of incomplete mappings,
one has to know how many of the basis vectors have to be linked by scalar products.
Therefore, an underlined superscript (·)i indicates the order of the desired result after the
tensor operation has been carried out.

Examples in basis notation:

(
4

A
3

B)3 = [aijkl (ei ⊗ ej ⊗ ek ⊗ el) bmno (em ⊗ en ⊗ eo)]
3

= aijkl bmno δkm δln (ei ⊗ ej ⊗ eo)

(A
3

B)1 = [aij (ei ⊗ ej) bmno (em ⊗ en ⊗ eo)]
1

= aij bmno δim δjn eo

Note: Note in passing that the incomplete mapping (contraction) is governed by
scalar products of a sufficient number of inner basis systems.
Furthermore, the tensor product of 2nd order tensors can also be understood
as an incomplete mapping by AB = (AB)2.



28 Supplement to Continuum Mechanics Research

2.6 Fundamental tensor of 3rd order (Ricci permutation tensor)

Remark: The fundamental tensor of 3rd order is introduced in the context of the “outer
product” (e. g. vector product between vectors).

Definition: The fundamental tensor
3

E satisfies the rule

u× v =
3

E (u⊗ v)

Introduction of
3

E in basis notation:

There is
3

E= eijk (ei ⊗ ej ⊗ ek)

with the “permutation symbol” eijk

eijk =







1 : even permutation

−1 : odd permutation

0 : double indexing

−→







e123 = e231 = e312 = 1

e321 = e213 = e132 = −1

all remaining eijk vanish

Application of
3

E to the vector product of vectors:

From the above definition,

u× v =
3

E (u⊗ v)

= eijk (ei ⊗ ej ⊗ ek) (us es ⊗ vt et)

= eijk us vt δjs δkt ei = eijk uj vk ei

= (u2 v3 − u3 v2) e1 + (u3 v1 − u1 v3) e2 + (u1 v2 − u2 v1) e3

Comparison with the computation by use of the matrix notation, cf. page 5

u× v =

∣
∣
∣
∣
∣
∣
∣

e1 e2 e3

u1 u2 u3

v1 v2 v3

∣
∣
∣
∣
∣
∣
∣

= · · · q. e. d.

Identities for
3

E:

Scalar product and incomplete mapping of two Ricci tensors yield a scalar and 2nd or 4th
order objects

3

E ·
3

E = 6 , (
3

E
3

E)2 = 2 I , (
3

E
3

E)4 = ( I⊗ I )
23

T − ( I⊗ I )
24

T
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2.7 The axial vector

Remark: The axial vector (pseudo vector) can be used for the description of rotations
(rotation vector).

Definition: The axial vector
A
t is associated with the skew-symmetric part skwT of

an arbitrary tensor T ∈ V3 ⊗ V3 via
A
t := 1

2

3

E TT

One calculates,
A
t = 1

2
eijk (ei ⊗ ej ⊗ ek) tst (et ⊗ es)

= 1
2

eijk tst δjt δks ei = 1
2

eijk tkj ei

= 1
2

[(t32 − t23) e1 + (t13 − t31) e2 + (t21 − t12) e3]

It follows from 2.3 (b)
T = symT + skwT

Thus, the axial vector of T is given by
A

t = 1
2

3

E (symT + skw T)T

= 1
2

3

E (skw TT ) = −1
2

3

E (skwT)

Remark: A symmetric tensor has no axial vector.

Axial vector and linear mapping:

The following relation holds:

(skwT)v =
A

t × v ∀ v ∈ V3

Axial vector and the vector product of tensors:

Definition: The vector product of 2 tensors {T, S} ∈ V3 ⊗ V3 satisfies

S×T =
3

E (STT )

Remark: The vector or cross product of two tensors yields a vector.

In comparison with the definition of the axial vector follows

I×T =
3

E TT = 2
A
t

Furthermore, the vector product of two tensors yields

S×T = −T× S
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Axial vector and outer tensor product of vector and tensor:

Definition: The outer tensor product of a vector u ∈ V3 and a tensor T ∈ V3 ⊗ V3

satisfies
(u×T)v = u× (Tv) ; v ∈ V3

Remark: The outer tensor product of vector and tensor yields a tensor.

The following relations hold:

u×T = −(u×T)T = −T× u

−→ i. e. u×T is skew-symmetric

u×T = [
3

E (u⊗T)]2

with ( · )2 : “incomplete” linear mapping (contraction)
resulting in a 2nd order tensor.

Evaluation in basis notation leads to

u×T = [(eijk ei ⊗ ej ⊗ ek) (ur er ⊗ tst es ⊗ et)]
2

= eijk ur tst δjr δks (ei ⊗ et)

= eijk uj tkt (ei ⊗ et)

In particular, if T ≡ I, the following relation holds:

u× I = [
3

E (u⊗ I)]2 = eijk uj δkt (ei ⊗ et) = eijt uj (ei ⊗ et)

Furthermore, for the special tensor u× I follows

3

E (u× I) = −2u

−→ u = −1
2

3

E (u× I) = 1
2

3

E (u× I)T

Consequence: In the tensor u × I, the vector u is already the corresponding axial
vector.

Finally, the following relation holds:

u× I = −
3

E u

−→
3

E (u× I) = −
3

E (
3

E u) = −(
3

E
3

E)2 u
!

= −2u

with (
3

E
3

E)2 = 2 I
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Some additional rules:

(a× b)⊗ c = a× (b⊗ c)

(I×T) ·w = T ·Ω with Ω = w × I

Application to the tensor product of vector and tensor

Rotation around a fixed spatial axis

u
∗
u

a

b

x
∗
x

e

O

ϕ
Rotation of x around axis e

∗
x= a+

∗
u= a + C1 u + b

with







a = (x · e) e

u = x− a

b = C2 (e× x)

and ϕ = ϕ e ; |e| = 1

Determination of the constants C1 and C2:

(a) For the angle between u and
∗
u, the following relation holds

cosϕ =
u · ∗

u

|u| | ∗u|
with |u| = | ∗u|

Furthermore, one calculates

u · ∗
u= u · (C1 u + b) = C1 u · u + u · b

︸ ︷︷ ︸

= 0, da u ⊥ b

= C1 |u|2

Thus,

cosϕ =
C1 |u|2
|u|2 = C1 −→ C1 = cosϕ

(b) For the angle between b and
∗
u, the following relation holds

cos(90◦ − ϕ) = sinϕ =
b · ∗

u

|b| | ∗u|
Furthermore, one calculates

b · ∗
u= b · (C1 u + b) = C1 b · u

︸ ︷︷ ︸

= 0, da u ⊥ b

+b · b = |b|2

and
|b| = C2 |e× x| = C2 |e|

︸︷︷︸

1

|x| sin <) (e ; x)
︸ ︷︷ ︸

|u|
= C2 |u|
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leading to

sinϕ =
|b|2
|b| |u| =

|b|
|u| =

C2 |u|
|u| = C2 −→ C2 = sinϕ

Thus,
∗
x is given by

∗
x= (x · e) e + cosϕ [x− (x · e) e] + sinϕ (e× x)

Determination of the rotation tensor R:

For the tensor product of vector and tensor, the following relation holds:

(e× I)x = e× (I x) = e× x

Thus,
∗
x= (e⊗ e)x + cosϕ (I− e⊗ e)x + sinϕ (e× I)x

!
= Rx

−→ R = e⊗ e + cosϕ (I− e⊗ e) + sinϕ (e× I) (∗)

Remark: (∗) is the Euler-Rodrigues form of the spatial rotation.

Example: Rotation with ϕ3 around the e3 axis

R = R3 = e3 ⊗ e3 + cos ϕ3 (I− e3 ⊗ e3) + sin ϕ3 (e3 × I)

The following relation holds:

e3 × I = [
3

E (e3 ⊗ I)]2

= [eijk (ei ⊗ ej ⊗ ek) (e3 ⊗ el ⊗ el)]
2

= eijk δj3 δkl (ei ⊗ el) = ei3l (ei ⊗ el)

= e2 ⊗ e1 − e1 ⊗ e2

Thus, one obtains

R3 = e3 ⊗ e3 + cosϕ3 (e1 ⊗ e1 + e2 ⊗ e2) + sinϕ3 (e2 ⊗ e1 − e1 ⊗ e2)

= R3ij (ei ⊗ ej)

with R3ij =






cosϕ3 − sinϕ3 0

sinϕ3 cosϕ3 0

0 0 1




 q. e. d.
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2.8 The outer tensor product of tensors

Definition: The outer tensor product of tensors (double cross product) is defined via

(A
�

�

@

@

�

�

@

@ B)(u1 × u2) := Au1 ×Bu2 −Au2 ×Bu1

As a direct consequence, one finds

A
�

�

@

@

�

�

@

@ B = B
�

�

@

@

�

�

@

@ A

Furthermore, the following relations hold:

(A
�

�

@

@

�

�

@

@ B)T = AT
�

�

@

@

�

�

@

@ BT

(A
�

�

@

@

�

�

@

@ B) (C
�

�

@

@

�

�

@

@ D) = (AC
�

�

@

@

�

�

@

@ BD) + (AD
�

�

@

@

�

�

@

@ BC)

(I
�

�

@

@

�

�

@

@ I) = 2 I

(a⊗ b)
�

�

@

@

�

�

@

@ (c⊗ d) = (a× c)⊗ (b× d)

(A
�

�

@

@

�

�

@

@ B) ·C = (B
�

�

@

@

�

�

@

@ C) ·A = (C
�

�

@

@

�

�

@

@ A) ·B

From the above definition, it is easily proven that

[(A
�

�

@

@

�

�

@

@ B) ·C][(u1 × u2) · u3] = eijk (Aui ×Buj) ·Cuk

The outer tensor product in basis notation reads

A
�

�

@

@

�

�

@

@ B = aik (ei ⊗ ek)
�

�

@

@

�

�

@

@ bno (en ⊗ eo)

= aik bno (ei × en)⊗ (ek × eo)

with







ei × en =
3

E (ei ⊗ en) = einj ej

ek × eo =
3

E (ek ⊗ eo) = ekop ep

−→ A
�

�

@

@

�

�

@

@ B = aik bno einj ekop (ej ⊗ ep)

Furthermore, it follows that

A
�

�

@

@

�

�

@

@ I = (A · I) I−AT

A
�

�

@

@

�

�

@

@ B = (A · I) (B · I) I− (AT ·B) I− (A · I)BT−
−(B · I)AT + AT BT + BT AT

(A
�

�

@

@

�

�

@

@ B) ·C = (A · I) (B · I) (C · I)− (A · I) (BT ·C)− (B · I) (AT ·C)−
−(C · I) (AT ·B) + (AT BT ) ·C + (BT AT ) ·C



34 Supplement to Continuum Mechanics Research

The cofactor, the adjoint tensor and the determinant:

The following relations hold:

cof A = 1
2
A

�

�

@

@

�

�

@

@ A =:
+

A , adjA = (cof A)T

detA = 1
6

(A
�

�

@

@

�

�

@

@ A) ·A = det |aik| =
(Au1 ×Au2) ·Au3

(u1 × u2) · u3

= 1
6

(A · I )3 − 1
2
(A · I )(AA · I ) + 1

3
(AAA · I ) (∗)

In basis notation, the cofactor of A reads

cofA = 1
2

(aik ano einj ekop) (ej ⊗ ep) =
+
ajp (ej ⊗ ep)

Remark: The coefficient matrix
+
ajp of the cofactor cof A contains at each position ( · )jp

the corresponding subdeterminant of A

+
a11= a22 a33 − a23 a32 etc.

The inverse tensor:

The following relation holds:

A−1 =
cof AT

detA
; A−1 exists if detA 6= 0

Rules for the cofactor, the determinant and the inverse tensor:

det (AB) = detA detB

det (αA) = α3 detA

det I = 1

detAT = detA

det
+

A = (detA)2

detA−1 = (detA)−1

det (A + B) = detA+
+

A ·B + A ·
+

B + detB

(AB)
+

=
+

A
+

B

(
+

A)T = (AT )
+
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2.9 The eigenvalue problem and the invariants of tensors

Definition: The eigenvalue problem of an arbitrary 2nd order tensor A is given by

(A− γA I) a = 0 , where

{

γA : eigenvalue

a : eigenvector

Formal solution for a yields

a = (A− γA I)−1
0 =

cof (A− γA I)T

det (A− γA I)
0

Consequence: Non-trivial solution for a only if the characteristic equation is fulfilled,
such that

det (A− γA I) = 0

With the determinant rule

det (A + B) = 1
6

[(A + B)
�

�

@

@

�

�

@

@ (A + B)] · (A + B)

= 1
6

(A
�

�

@

@

�

�

@

@ A) ·A + 1
6

(A
�

�

@

@

�

�

@

@ A) ·B + 1
3

(A
�

�

@

@

�

�

@

@ B) ·A+

+ 1
3

(A
�

�

@

@

�

�

@

@ B) ·B + 1
6

(B
�

�

@

@

�

�

@

@ B) ·A + 1
6

(B
�

�

@

@

�

�

@

@ B) ·B

= detA+
+

A ·B + A ·
+

B+ detB

follows

det (A− γA I) = detA+
+

A · (−γA I) + A · (−γA I)++ det (−γA I)

= detA− γA 1
2

(A
�

�

@

@

�

�

@

@ A) · I + γ2A
1
2
A · (I

�

�

@

@

�

�

@

@ I)− γ3A det I = 0

With the abreviations
IA = 1

2
(A

�

�

@

@

�

�

@

@ I) · I

IIA = 1
2

(A
�

�

@

@

�

�

@

@ A) · I

IIIA = 1
6

(A
�

�

@

@

�

�

@

@ A) ·A
the characteristic equation can be simplified to

det (A− γA I) = IIIA − γA IIA + γ2A IA − γ3A = 0

Remark: The abbreviations IA, IIA and IIIA are the three scalar principal invariants
of a tensor A which play an important role in the field of continuum mechanics.

Alternative representations of the principal invariants

Scalar-product representation:

IA = A · I = trA

IIA = 1
2

(I2A −AA · I) = 1
2

[(trA)2 − tr (AA)]

IIIA = 1
6
I3A − 1

2
I2A (AA · I) + 1

3
ATAT ·A

= 1
6

[(trA)3 − 3 trA tr (AA) + 2 tr (AAA)] = detA (∗∗)
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Note that (∗∗) yields the same result as (∗) in Subsection 2.8.

Eigenvalue representation:

IA = γA(1) + γA(2) + γA(3)

IIA = γA(1) γA(2) + γA(2) γA(3) + γA(3) γA(1)

IIIA = γA(1) γA(2) γA(3)

Caley-Hamilton-Theorem:

AAA− IA AA + IIA A− IIIA I = 0
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3 Fundamentals of vector and tensor analysis

3.1 Introduction of functions

Notation: There

exist







φ( · ) : scalar-valued functions

v( · ) : vector-valued functions

T( · ) : tensor-valued functions







of ( · )







scalar variables

vector variables

tensor variables

Example: φ(A) : scalar-valued tensor function

Notions:

• Domain of a function: set of all possible values of independent variable quantities
(variables); usually continuous

• Range of a function: set of all possible values of dependent variable quantities:
φ( · ); v( · ); T( · )

3.2 Functions of scalar variables

here: Vector- and tensor-valued functions of real scalar variables

(a) Vector-valued functions of a single variable

It exists:

u = u(α) with







u : unique vector-valued function,
range in the open domain V3

α : real scalar variable

Derivative of u(α) with the differential quotient:

w(α) := u′(α) :=
du(α)

dα

Differential of u(α):
du = u′(α) dα

Introduction of higher derivatives and differentials:

d2u = d(du) = u′′(α) dα2 =
d2u(α)

dα2
dα2 etc.
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(b) Vector-valued functions of several variables

It exists:

u = u(α, β, γ, ...) with {α, β, γ, ...} : real scalar variables

Partial derivative of u(α, β, γ, ...):

wα(α, β, γ, ...) :=
∂u( · )
∂α

=: u,α

Total differential of u(α, β, γ, ...):

du = u,α dα+ u, β dβ + u, γ dγ + · · ·

Higher partial derivative (examples):

u,αα =
∂2u( · )
∂α2

; u, γβ =
∂2u( · )
∂γ ∂β

Remark: The order of partial derivatives is permutable.

(c) Tensor functions of a single or of several variables

Remark: Tensor-valued functions are treated analogously to the above procedure.

(d) Derivative of products of functions

Some rules:
(a⊗ b)′ = a′ ⊗ b + a⊗ b′

(AB)′ = A′ B + AB′

(A−1)′ = −A−1A′ A−1

3.3 Functions of vector and tensor variables

(a) The gradient operator

Remark: Functions of the position (placement) vector are called field functions. Deriva-
tives with respect to the position vector are called “gradient of a function”.

Scalar-valued functions φ(x)

gradφ(x) :=
dφ(x)

dx
=: w(x) −→ result is a vector field

or in basis notation

gradφ(x) :=
∂φ(x)

∂xi
ei =: φ, i ei
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Vector-valued functions v(x)

gradv(x) :=
dv(x)

dx
=: S(x) −→ result is a tensor field

or in basis notation

gradv(x) :=
∂vi(x)

∂xj
ei ⊗ ej =: vi,j ei ⊗ ej

Tensor-valued functions T(x)

gradT(x) :=
dT(x)

dx
=:

3

U (x) −→ result is a tensor field of 3-rd order

or in basis notation

gradT(x) :=
∂tik(x)

∂xj
ei ⊗ ek ⊗ ej =: tik,j ei ⊗ ek ⊗ ej

Remark: The gradient operator grad ( · ) = ∇( · ) (with ∇ : Nabla operator) increases the
order of the respective function by one.

(b) Derivative of functions of arbitrary vectorial and
tensorial variables

Remark: Derivatives concerning the respective variables are built analogously to the pre-
ceding procedures, e. g.

∂R(T, v)

∂T
=
∂Rij(T, v)

∂tst
ei ⊗ ej ⊗ es ⊗ et

Some specific rules for the derivative of tensor functions with respect to tensors

For arbitrary 2nd order tensors A,B,C, the following rules hold:

∂A

∂A
= (I⊗ I)

23

T =:
4

I

∂AT

∂A
= (I⊗ I)

24

T

∂(A · I) I
∂A

= (I⊗ I)

∂
A
t(A)

∂A
= −1

2

3

E

∂(AB)

∂B
= (A⊗ I)

23

T

∂(AB)

∂A
= (I⊗BT )

23

T
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∂(AA)

∂A
= (A⊗ I)

23

T + (I⊗AT )
23

T

∂(ATA)

∂A
= (AT ⊗ I)

23

T + (I⊗A)
24

T

∂(AAT )

∂A
= (A⊗ I)

24

T + (I⊗A)
23

T

∂(ATAT )

∂A
= (I⊗AT )

24

T + (AT ⊗ I)
24

T

∂(ABC)

∂B
= (A⊗CT )

23

T

∂A−1

∂A
= −(A−1 ⊗AT−1)

23

T

∂AT−1

∂A
= −(AT−1 ⊗AT−1)

24

T

∂
+

A

∂A
= detA [(AT−1 ⊗AT−1)− (AT−1 ⊗AT−1)

24

T ]

∂(α β)

∂C
= α

∂β

∂C
+ β

∂α

∂C

∂(α v)

∂C
= v ⊗ ∂α

∂C
+ α

∂v

∂C

∂(αA)

∂C
= A⊗ ∂α

∂C
+ α

∂A

∂C

∂(Av)

∂C
=

[(

∂A

∂C

)
24

T

]
23

T v +

[

A
∂v

∂C

]

3

∂(u · v)

∂C
=

[(

∂u

∂C

)
13

T v

]

T +

[(

∂v

∂C

)
13

T u

]

T

∂(A ·B)

∂C
=

(

∂A

∂C

)

T B +

(

∂B

∂C

)

T A

∂(AB)

∂C
=

([(

∂A

∂C

)
24

T B

]

4

)
24

T +

([(

∂B

∂C

)
14

T AT

]

4

)
14

T

Principal invariants and their derivatives (see also section 2.9)

∂IA
∂A

= I with IA = A · I

∂IIA
∂A

= A
�

�

@

@

�

�

@

@ I with IIA = 1
2

(I2A −AA · I)

∂IIIA
∂A

=
+

A with IIIA = detA



Supplement to Continuum Mechanics Research 41

(c) Specific operators

here: Introduction of the further differential operators div ( · ) and rot ( · ).

Divergence of a vector field v(x)

divv(x) := gradv(x) · I =: φ(x) −→ result is a scalar field

or in basis notation
divv(x) = vi,j (ei ⊗ ej) · (en ⊗ en)

= vi,j δin δjn = vn,n

=
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

Divergence of a tensor field T(x)

divT(x) = [gradT(x)] I =: v(x) −→ result is a vector field

or in basis notation

divT(x) = tik,j (ei ⊗ ek ⊗ ej) (en ⊗ en)

= tik,j δkn δjn ei = tin,n ei

Remark: The divergence operator div ( · ) = ∇ · ( · ) decreases the order of the respective
function by one.

Rotation of a vector field v(x)

rotv(x) :=
3

E [gradv(x)]T =: r(x) −→ result is a vector field

or in basis notation

rotv(x) = eijn (ei ⊗ ej ⊗ en) vo,p (ep ⊗ eo)

= eijn vo,p δjp δno ei = eijn vn,j ei

Consequence: rotv(x) yields twice the axial vector corresponding to the skew-
symmetric part of gradv(x).

Remark: The rotation operator rot ( · ) = curl ( · ) = ∇ × ( · ) preserves the order of the
respective function.

Laplace operator

∆( · ) := div grad ( · ) −→ analogue to the previous

Pierre-Simon Laplace (1749-1827), since 1817 Marquis de Laplace, was a French mathe-
matician, physicist and astronomer.

Remark: The Laplace operator ∆( · ) = ∇·∇( · ) preserves the order of the differentiated
function.
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Rules for the operators grad ( · ), div ( · ), and rot ( · )
grad (φψ) = φ gradψ + ψ gradφ

grad (φv) = v ⊗ gradφ+ φ gradv

grad (φT) = T⊗ gradφ+ φ gradT

grad (u · v) = (gradu)T v + (gradv)T u

grad (u× v) = u× gradv + gradu× v

grad (a⊗ b) = [grada⊗ b + a⊗ (gradb)T ]
23

T

grad (Tv) = (gradT)
23

T v + T gradv

grad (TS) = [(gradT)
23

T S]3
23

T + (T gradS)3

grad (
3

TS) = (grad
3

T
23

T )
24

T S + (
3

T gradS)2

grad (T · S) = (gradT)
13

T ST + (gradS)
13

T TT

gradx = I

div (u⊗ v) = u divv + (gradu)v

div (φv) = v · gradφ+ φ divv

div (Tv) = (divTT ) · v + TT · gradv

div (gradv)T = grad divv

div (u× v) = (gradu× v) · I− (gradv × u) · I

= v · rotu− u · rotv

div (φT) = T gradφ+ φ divT

div (TS) = (gradT)S + T divS

div (
3

TS) = (div
3

T
13

T ) · ST +
3

T
13

T · gradST (†)

div (v ×T) = v × divT + gradv ×T

div (v ⊗T) = v ⊗ divT + (gradv)TT

div (v ⊗
3

T) = v ⊗ div
3

T + [(gradv) (
3

T
13

T )
23

T ]3

div (gradv)+ = 0

div [gradv ± (gradv)T ] = div gradv± grad divv

div rotv = 0

rot rotv = grad divv− div gradv
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rot gradv = 0

rot (gradv)T = grad rotv

rot (φv) = φ rotv + gradφ× v

rot (u× v) = div (u⊗ v − v ⊗ u)

= u divv + (gradu)v − v divu− (gradv)u

Grassmann evolution:

v × rotv = 1
2

grad (v · v)− (gradv)v = (gradv)Tv − (gradv)v

Hermann Günther Grassmann (1809-1877) was a German mathematician. He is one of
the fathers of vector and tensor calculus.

3.4 Integral theorems

Remark: In what follows, some integral theorems for the transformation of surface inte-
grals into volume integrals are presented.

Requirement: u = u(x) is a steady and sufficiently often steadily differentiable vector
field. The domain of u is in V3.

(a) Proof of the integral theorem

∫

S

u(x)⊗ da =

∫

V

gradu(x)dv with da = n da

and

{
da : surface element

n : outward-oriented unit surface normal vector

0

P

x

u(x)

e1

e2

e3

da1

da2

da3

da4

da5

ū1

ū2

ū3

ū4

ū5

dx1

dx2

dx3

Basis: Consideration of an infinitesimal volume element dv spanned in the point P by
the position vector x, while ūi defines the values of u(x) in the centroid of the
partial surfaces 1 - 6.
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Determination of the surface element vectors dai:

da1 = dx2 × dx3 = dx2 dx3 (e2 × e3)

= dx2 dx3 e1 = −da4 −→ e1 = n1 = −n4

Furthermore, one obtains

da2 = dx3 dx1 e2 = −da5 −→ e2 = n2 = −n5

da3 = dx1 dx2 e3 = −da6 −→ e3 = n3 = −n6

Remark: The surface vectors hold the condition

6∑

i=1

dai = 0 .

Determination of the volume elements dv:

dv = (dx1 × dx2) · dx3 = dx1 dx2 dx3

Values of u(x) in the centroids of the partial surfaces:

Remark: The increments of u(x) in the directions of dx1, dx2, dx3 are approximated by
the first term of a Taylor series.

ū4 = u(x) +
1

2

∂u

∂x2
dx2 +

1

2

∂u

∂x3
dx3

ū1 = ū4 +
∂u

∂x1
dx1

Furthermore, one obtains

ū2 = ū5 +
∂u

∂x2
dx2 , ū3 = ū6 +

∂u

∂x3
dx3

Computation of the surface integral yields

∫

S(dv)

u(x)⊗ da −→
6∑

i=1

ūi ⊗ dai = ū1 ⊗ da1 + ū4 ⊗ da4
︸ ︷︷ ︸

(ū1−
∂u

∂x1
dx1)⊗ (−da1)

+ · · ·

Thus
6∑

i=1

ūi ⊗ dai =
∂u

∂x1
dx1 ⊗ da1 +

∂u

∂x2
dx2 ⊗ da2 +

∂u

∂x3
dx3 ⊗ da3

with
da1 = dx2 dx3 e1 , da2 = dx1 dx3 e2 , da3 = dx1 dx2 e3

yields
6∑

i=1

ūi ⊗ dai =

(
∂u

∂x1
⊗ e1 +

∂u

∂x2
⊗ e2 +

∂u

∂x3
⊗ e3

)

︸ ︷︷ ︸

∂ui
∂xj

ei ⊗ ej = gradu

dx1 dx2 dx3
︸ ︷︷ ︸

dv
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Thus
6∑

i=1

ūi ⊗ dai = gradu dv

Integration over an arbitrary volume V yields
∫

S

u(x)⊗ da =

∫

V

gradu(x) dv q. e. d. (∗)

(b) Proof of the GAUSSian integral theorem

Johann Carl Friedrich Gauss (1777-1855) was a German mathematician, astronomer,
geodesist, and physicist who contributed to many fields in mathematics and science.

∫

S

u(x) · da =

∫

V

divu(x) dv

Basis: Integral theorem (∗) after scalar multiplication with the identity tensor

I ·
∫

S

u(x)⊗ da = I ·
∫

V

gradu(x) dv

−→
∫

S

I · [u(x)⊗ da]
︸ ︷︷ ︸

u(x) · da
=

∫

V

I · gradu(x)
︸ ︷︷ ︸

divu(x)

dv

Thus, leading to ∫

S

u(x) · da =

∫

V

divu(x) dv (∗∗)

(c) Proof of the integral theorem
∫

S

T(x) da =

∫

V

divT(x) dv

Basis: Scalar multiplication of the surface integral with a constant vector b ∈ V3

b ·
∫

S

T(x) da =

∫

S

b ·T(x) da =

∫

S

[TT (x)b] · da =:

∫

S

u(x) · da

with u(x) := TT (x)b

It follows with the integral theorem (∗∗)

b ·
∫

S

T(x) da =

∫

V

div [TT (x)b] dv
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In particular, with b = const. and a divergence rule follows

div [TT (x)b] = divT(x) · b

leading to

b ·
∫

S

T(x) da =

∫

V

divT(x) · b dv

Thus ∫

S

T(x) da =

∫

V

divT(x) dv q. e. d.

Remark: At this point, no further proofs are carried out.

(d) Summary of some integral theorems

For the transformation of surface into volume integrals, the following relations hold:

∫

S

u⊗ da =

∫

V

gradudv

∫

S

φ da =

∫

V

gradφ dv

∫

S

u · da =

∫

V

divu dv (∗)

∫

S

(
3

T
13

T S) · da =

∫

V

div (
3

T
13

T S) dv =

∫

V

[ (div
3

T)LT +
3

T · gradLT ] dv

∫

S

u× da = −
∫

V

rotudv

∫

S

Tda =

∫

V

divTdv

∫

S

u×Tda =

∫

V

div (u×T) dv

∫

S

u⊗Tda =

∫

V

div (u⊗T) dv
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Application example: The integral theorem (∗), as well as other theorems, can also be

applied to complexer terms, such as u := (
3

T
13

T S). This yields by use of (†) from Subsection
3.3 (c)

∫

S

(
3

T
13

T S) · da =

∫

V

div (
3

T
13

T S)dv =

∫

V

[ (div
3

T)ST +
3

T · gradST ]dv

For the transformation of line into surface integrals, the following relations hold:

∮

L

u⊗ dx = −
∫

S

gradx× da

∮

L

φ dx = −
∫

S

gradφ× da

∮

L

u · dx =

∫

S

(rotu) · da

∮

L

u× dx =

∫

S

(I divu− grad Tu) da

∮

L

Tdx =

∫

S

(rotT)Tda

3.5 Transformations between current and reference configura-
tions

Given are the deformation gradient F = ∂x/∂X and arbitrary vectorial and tensorial field
functions v and A. Then, with t0 (reference) and t (current time)

reference configuration







Grad ( · ) =
∂

∂X
( · )

Div ( · ) = [Grad ( · )] · I or [Grad ( · )] I

current configuration







grad ( · ) =
∂

∂x
( · )

div ( · ) = [grad ( · )] · I or [grad ( · )] I

The following relations hold:

Gradv = (gradv)F GradA = [(gradA)F]3

gradv = (Gradv)F−1 gradA = [(GradA)F−1]3

Divv = (gradv) · FT DivA = (gradA)FT

div v = (Gradv) · FT−1 divA = (GradA)FT−1
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Piola identities (T, P, S: Cauchy and 1st and 2nd Piola-Kirchhoff stress tensors)

(1) Divv0t = (detF) divv (2) v0t = (detF)F−1v (3) Div (cof F) ≡ 0

(4) DivP = (detF) divT (5) P = (detF)TFT−1 (6) S = (detF)F−1TFT−1

Therein, v = v(t) is an arbitary vector acting at the current configuration at time t, such as
the velocity. Then, v0 is its initial value at t0, while v0t represents the image of v(t) at the
refence configuration. The same is true for the Cauchy stress T at the current configuration
and the Piola stress P acting as the image of T at the reference configuration.

Furthermore, it can be shown that

DivFT−1 = −FT−1 (FT−1 GradF)1 = −(detF)−1FT−1 [Grad (detF)]

divFT = −FT (FT gradF−1)1 = −(detF)FT [grad (detF)−1]

Remark: If required, further relations of vector and tensor calculus can be constructed in
the respective context.

The description of non-orthogonal and non-unit basis systems, such as a general
or the natural basis, has not been discussed in this contribution so far. The
interested reader can find this material in the Appendix to this Treatise.

However, as the complete material has been presented in an absolute vector and
tensor notation, the entire material is independent of the choice of specific basis
systems.
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Appendix on Natural Basis Systems

A Differential geometry of continua

A.1 Tangent space and natural basis

In Section 1.1 B of the above vector and tensor treatise, an arbitrary vector v ∈ V3 has been
displayed both in a general basis system with non-coplanar basis vectors gi of arbitrary
lengths and in an orthonormal basis system ei, where the basis vectors ei are perpendicular
to each other with unit lengths, such that |ei| = 1.

Vector v in two basis systems

g1

g2

g3

e1

e2

e3 vv

basis system gi basis system ei

Representations of v:

{
v = vi ei = v1 e1 + v2 e2 + v3 e3

v = v̄i gi = v̄1 g1 + v̄2 g2 + v̄3 g3

Natural basis / covariant tangent vectors

In V3, tangent vectors ai are introduced tangentially to the trajectories (curved parameter
lines θi with θi ∈ { θ1, θ2, θ3 }).

e1

e2

e3
x (θi)

0

∗
0

θi

ai { 0, ei } : spatially fixed reference systen

{
∗
0, ai } : tangent system

The tangent vectors are the covariant basis vectors defined as

ai :=
∂x(θi)

∂θi
=: x,i

A scalar multiplication of two tangent vectors ai and ak yields the “covariant” metric
coefficients aik. The metric coefficients aik are symmetric, such that

aik = ai · ak = ak · ai −→ aik = aki

Note: As a result of the symmetry of aik, only 6 of the 9 entries of aik are independent
quantities.
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From the definition of the scalar product, the metric coefficients and the cosines of the
angles between the ai and ak are connected to each other via

ai · ak = |ai| |ak| cos <) (ai ; ak) with |ai| =
√
aii

such that the angle <) (ai ; ak) = ϕik between ai and ak can be obtained as

cosϕik =
aik√
aii
√
akk

In the above computation of
√
aii and

√
akk, there is no summation over i and k, also see

the comments further below on this page.

Dual basis / contravariant cotangent vectors

Introduction of the dual basis via the property

ai · ak := δki =

{

1 if i = k

0 if i 6= k meaning that ai ⊥ ak
(∗)

Note: In case of i = k, ai is only parallel to ak, if |ai| = |ak| = 1.

Dual metric coefficients

aik a
kj = δji −→ 6 equations for 6 unknown entries in akj

Computation of the dual basis
ak = akj aj

Validity control by use of (∗)
ai · ak = ai · akjaj = aij a

kj = δki

Comments:

• ai and aij define the tangent space (covariant)

• ai and aij define the cotangent space (contravariant)

• tangent and cotangent vectors are via (∗) dual (inverse) to each other

• Einstein’s summation convention can only be applied, when a double index appears in
opposite positions (co- and contravariant)

The special case of an orthonormal basis

For the special case of an orthonormal basis ei with |ei| = 1, the general parameter lines
θi are equal to the straight parameter lines xi. Thus,

e1

e2

e3
x (xi)

0

∗
0

θi = xiai

ai =
∂x(xi)

∂xi
= ei

aik = ai · ak = ei · ek = δik

aik a
kj = δji −→ akj = δkj

ak = akj aj = δkj ej = ek = ek and xi = xi
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Notes:

• It is easily concluded that the basis vectors ei and ek are perpendicular to each other
as far as i 6= k.

• In case of an orthonormal basis, tangent and cotangent space coincide yielding

ei = ei

A.2 Vector and tensor algebra in natural basis systems

Scalar or dot product

Note: The scalar or dot product between two objects, such as u and v, is also called
“inner product” as its result, a scalar, remains in terms of its metric coefficients in the
same tangent or cotangent space as the objects have been before.

Given two vectors u and v, for example, in a tangent and a cotangent basis system, the
scalar product can be computed in two ways

u · v = |u| |v| cos <) (u ; v)

=
√

(uiai) · (ukak)
√

(vnan) · (voao) cos <) (u ; v)

=
√
uiukaik

√
vnvoano cos <) (u ; v) =

√
uiui
√
vnvn cos <) (u ; v)

u · v = (ui ai) · (vk ak) = ui vk (ai · ak)

= ui vk δ
k
i = ui vi = u1 v1 + u2 v2 + u3 v3

= ui vk a
ik = ui vk aik

From both equations, the cosine of the angle between u and v can be computed as

cos <) (u ; v) =
u · v
|u| |v| =

ui vi
√
ujuj
√
vnvn

Physical coefficients of vector components

The coefficients vi of a vector v = vi ei describe the real value of the vector components
vi ei with i = 1, 2, 3. Coefficients with this property are called physical coefficients. In
general, this is only true in orthonormal basis systems ei where |ei| = 1. In case of natural
basis systems with co- and contravariant basis vectors given through ai and ai, this is
generally not the case meaning that both |ai| and |ai| are 6= 1.

Thus, physical coefficients are introduced via

v = vi ai = |ai| vi
ai

|ai|
=
√
aii v

i ai√
aii

=
∗
vi

∗
ai

with no summation over ( · )ii. From the above, physical coefficients
∗
vi are defined by

∗
vi = |ai| vi and |∗ai = 1|
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Identity tensor of 2nd order

Note: The identity I is the fundamental tensor of 2nd order. Fundamental tensors are
constructed only by basis vectors

I = gradx =
dx

dx
=
∂x

∂θi
⊗ ∂θi

∂x
= x,i
︸︷︷︸

ai

⊗ grad θi
︸ ︷︷ ︸

ai

= ai ⊗ ai

Control of the identical mapping using v = vn an

v
?
= I v = (ai ⊗ ai) vn an = vn δin ai = vn an q. e. d.

Representations of the identity tensor

Pulling the indices of I up and down by use of metric coefficients results in

I = ai ⊗ ai = ai ⊗ ai = aikai ⊗ ak = aika
i ⊗ ak

Note: From the cotangent basis defined as ai = ∂θi/∂x, one recognises that the dual or
cotangential basis is considered inverse to ai = ∂x/∂θi.

Furthermore, the second-order identity tensor I can be given in an arbitrary basis repre-
sented by gi and gk without changing its property, the identical map.

Transformation of basis systems

Consider a covariant natural basis system ai that should be given as a function of an
arbitrary covariant basis system gi. Then, the transformation tensor T can be constructed
as follows:

ai = I ai with I = (gj ⊗ gj) and δki = gi · gk

= (gj ⊗ gj) ai = (gj · ai) gj = (gj · δki ak) gj

= (gj · ak) (gi · gk) gj

= (gj · ak) (gj ⊗ gk) gi =: Tgi

with T = (gj · ak) (gj ⊗ gk)

Comments:

• As T does not only include gj and gk but also ai, both systems, ai and gi, must be
known in advance.

• From ai = Tgi, one concludes to gi = T−1 ai. As T displays ai as a function of gi in
the sense of a unique transformation, detT is non-zero, such that T−1 exists.

By use of the same procedure as before, one obtains

T−1 = (aj · gk) (aj ⊗ ak)
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such that

T−1 ai = (aj · gk) (aj ⊗ ak) ai = (aj · gk) (ai · ak) aj

= (aj · δki gk) aj = (aj ⊗ aj) gi = I gi = gi q. e. d.

From the above transformations to find T and T−1, the following relations hold:

ai = (ai · gj) gj gi = (gi · aj) aj

ai = (ai · gj) g
j gi = (gi · aj) a

j

This leads to the description of a vector v in two basis systems, ai and gi:

v = vi(a) ai = vi(g) gi

with the coefficients of the vector components reading

vj(g) = vi(a) (ai · gj) vj(a) = vi(g) (gi · aj)

vj(g) = vi(a) (ai · gj) vj(a) = vi(g) (gi · aj)

With the above equations, the validity of TT−1 = I can be proven:

TT−1 = [(gj · ak) (gj ⊗ gk)][(an · go) (an ⊗ ao)]

= (gj · ak)(an · go)(gj ⊗ gk)(an ⊗ ao)

= (gj · ak)(an · go)(g
k · an)(gj ⊗ ao)

With ao = (ao · gp) g
p, it follows that

TT−1 = (gj · ak) (an · go)(g
k · an)

︸ ︷︷ ︸

(∗)

(ao · gp)(gj ⊗ gp)

where (∗) = (go ⊗ gk) · (an ⊗ an) = (go ⊗ gk) · I
= (go ⊗ gk) · (gn ⊗ gn) = δno δ

k
n = δko

such that TT−1 = (gj · ak) δko (ao · gp)(gj ⊗ gp)

= (gj · ak)(ak · gp)
︸ ︷︷ ︸

(∗∗)

(gj ⊗ gp)

Now, with (∗∗) yielding

(gj · ak)(ak · gp) = (gj ⊗ gp) · (ak ⊗ ak) = (gj ⊗ gp) · I
= (gj ⊗ gp) · (gn ⊗ gn) = δjn δ

n
p = δjp

one finally obtains

TT−1 = δjp(gj ⊗ gp) = (gp ⊗ gp) = I q. e. d.
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In the special case, where the transformation of basis systems including a transition and a
rotation reduces to a pure rotation, the metric coefficients of both basis systems coincide
yielding

aik = ai · ak = Tgi · Tgk = gi · gk = gik

In this case, the transformation reduces to a pure rotation T ≡ R with R−1 = RT , compare
Section 2.4 (A).

Specific transformation for the determination of ai as a function of the orthonormal
basis ei = ei

ai = Tei with T = (en · ak)(en ⊗ ek)

such that

ai = [(en · ak)(en ⊗ ek)] ei = (ai · en) en = (an · ei) ei

Equivalently, the inverse of the above transformation yields

ei = T−1ai with T−1 = (an · ek)(an ⊗ ak)

−→ ei = (ei · an) an

A.3 Vector or cross product of tangent vectors

Note: The cross product is also called “outer product”.

By use of the Ricci permutation tensor
3

E, compare Section 2.6, one obtains

ai × aj =
3

E (ai ⊗ aj)

Remark: Gregorio Ricci-Curbastro (1853-1925) was an Italian mathematician. To-
gether with his scholar Tullio Levi-Civita (1873-1941), he is known as the father of tensor
calculus.

Ricci permutation tensor
3

E

Note: Ricci’s permutation tensor
3

E is the fundamental tensor of 3rd order.

3

E =

{

Eijk a
i ⊗ aj ⊗ ak

Eijk ai ⊗ aj ⊗ ak

with

{

Eijk = (ai × aj) · ak =:
√
a eijk

Eijk = (ai × aj) · ak =:
√
ā eijk

On the next page, it is shown that
√
a =

√

det |aik| and
√
ā =

√

det |aik| = (
√

det |aik|)−1.

Note: The products (ai × aj) · ak or (ai × aj) · ak also written as [ai aj ak] or [ai aj ak]
are known as triple scalar or parallelepipedial products of the tangent and cotangent basis
vectors. The permutation symbols eijk and eijk are known as Levi-Civita symbols.



Supplement to Continuum Mechanics Research 55

Permutation symbols and orthonormal basis

eijk = (ei × ej) · ek −→ eijk = eijk =







1 : even permutation
−1 : odd permutation

0 : else

where

{

e123 = (e1 × e2) · e3 = e231 = e312 : even permutation

e321 = (e3 × e2) · e1 = e213 = e132 : odd permutation

Therein, the specific form e123 of the general permutation symbol eijk represents the rect-
angular parallelepiped with side lengths 1 and volume 1.

Determinantion of a and ā with the relations between Eijk and Eijk

Eijk =:
√
a eijk −→ E123 =

√
a

Eijk =:
√
ā eijk −→ E123 =

√
ā

}

−→ E123

E123
=

√
a√
ā

By use of the metric coefficients, Eijk can be displayed as function of Eijk and vice versa:

Estu = ais ajt aku Eijk −→ E123 = ai1 aj2 ak3 Eijk

where

{
E123 = E231 = E312

E321 = E213 = E132
This yields

E123 = [a11 (a22a33 − a23a32)− a12 (a21a33 − a23a31) + a13 (a21a32 − a31a22)] E123

−→ E123 = det |aik|E123

The other way round shows that

Estu = ais ajt aku Eijk −→ E123 = ai1 aj2 ak3 Eijk

−→ E123 = det |aik|E123

Combining the above relations for E123 and E123, one easily concludes to

E123 = (det |aik|) E123 = (det |aik|) (det |aik|) E123 −→ det |aik| = (det |aik|)−1

and
E123

E123
=

√
a√
ā

= det |aik| −→ a = det |aik| , ā = det |aik|

Determination of a and ā with the cross product between basis vectors

a1 × a2 =
3

E (a1 ⊗ a2) = Eijk (ai ⊗ aj ⊗ ak)(a1 ⊗ a2)

=
√
a eijk δ

j
1 δ

k
2 a

i =
√
a ei12 a

i =
√
a e312 a

3

=
√
a a3

Note: The vector or cross product between two objects, such as a1 and a2, is also called
“outer product” as its result, a vector, is mapped into the respective dual space meaning
that covariant objects yield a contravariant result and vice versa.
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One obtains a vector in the direction of a3 with the value of |a1 × a2|:

|a1 × a2| = |a1| |a2| sinϕ12 =
√

a11 a22 sin2 ϕ12

=
√

a11 a22 (1− cos2 ϕ12)

where sin2 ϕ12 = 1 − cos2 ϕ12 has been used. The value of the cosine function has been
computed on p. 50, such that

cosϕ12 =
a12√
a11 a22

−→ a12 =
√
a11 a22 cosϕ12

This leads to

|a1 × a2| =
√

a11 a22 − a11 a22 cos2 ϕ12 =
√

a11 a22 − (a12)2

From a matrix A = |aik| with determinant

detA = det |aik| = det





a11 a12 a13
a21 a22 a23
a31 a32 a33





it is seen that a11 a22 − (a12)
2 is the upper left subdeterminant of det aik and the entry

cof a33 = (cof a33)
T of the cofactor cof A of A at the position ( · )33. With this information,

the cross product of a1 and a2 reads

a1 × a2 = |a1 × a2|
a3

|a3| =

√

a11 a22 − (a12)2√
a33

a3 =

√
cof a33√
a33

a3

In the next step, a33 has to be found. Assume a33 as an entry of A−1 = |aik| inverse to
A = |aik|, such that one obtains A−1 via

A−1 =
(cofA)T

detA
−→ a33 =

cof a33
detA

Now, it follows from the above that

a1 × a2 = E123 a
3 =

√

cof a33
det |aik|
cof a33

a3 =
√

det |aik| a3 =
√

detA a3

−→ E123 =
√

detA =
√

det |aik| =
√
a

Analogously, one finds

a1 × a2 = E123 a3 =
√

det |aik| a3 =
√

detA−1 a3 =
√

(detA)−1 a3

−→ E123 =
√

(detA)−1 =
√

(det |aik|)−1 =
1√
a

with ā = a−1, where a = det |aik| and a−1 = (det |aik|)−1 = det |aik| = ā.



Supplement to Continuum Mechanics Research 57

Note: As Ricci’s permutation tensor
3

E is a fundamental tensor only formed by basis

vectors, the products of
3

E are identical whatever basis is chosen, compare Section 2.6:

3

E ·
3

E = 6 , (
3

E
3

E)2 = 2 I , (
3

E
3

E)4 = (I ⊗ I)
23

T − (I ⊗ I)
24

T

To prove this feature by use of the natural basis system, the first identity reads

3

E ·
3

E = Eijk (ai ⊗ aj ⊗ ak) · Esto (as ⊗ at ⊗ ao)

= Eijk Esto a
is ajt ako = Eijk Eijk

=
√
a eijk (

√
a)−1eijk = eijk eijk = 6

From the above result, an additional relation for the determinant a = detA of metric
coefficients can be seen:

6 = Eijk Esto a
is ajt ako =

√
a eijk

√
a esto a

is ajt ako

= detA eijk esto a
is ajt ako −→ (detA)−1 = 1

6
eijk esto a

is ajt ako

Equivalently, one also obtains detA = 1
6

eijk esto ais ajt ako

The second identity reads

(
3

E
3

E)2 = Eijk Esto [ (ai ⊗ aj ⊗ ak) (as ⊗ at ⊗ ao) ]2

= Eijk Esto a
js akt (ai ⊗ ao) = Eijk Esto a

js akt (ai ⊗ aopap)

= Eijk Ejkp (ai ⊗ ap) = eijk ejkp (ai ⊗ ap) = 2 I

The final identity is obtained via

(
3

E
3

E)4 = Eijk Esto [ (ai ⊗ aj ⊗ ak) (as ⊗ at ⊗ ao) ]4

= Eijk Esto a
ks (ai ⊗ aj ⊗ at ⊗ ao )

= Eijk Esto a
ks atp aor (ai ⊗ aj ⊗ ap ⊗ ar )

= Eijk Ekpr (ai ⊗ aj ⊗ ap ⊗ ar ) = eijk ekpr (ai ⊗ aj ⊗ ap ⊗ ar ) = ...

= (I ⊗ I)
23

T − (I ⊗ I)
24

T

Determinant of an arbitrary tensor T

From the basic rules of tensor calculus, the determinant of T = tik(ai ⊗ ak) is defined by
the outer tensor product of tensors, compare Section 2.8, via

detT = 1
6
(T

�

�

@

@

�

�

@

@ T) · T
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This rule will be computed step by step:

T
�

�

@

@

�

�

@

@ T = tik tno (ai ⊗ ak)
�

�

@

@

�

�

@

@ (an ⊗ ao)

= tik tno (ai × an)⊗ (ak × ao)

With (ai× an) = Eins a
s =
√
a eins a

s and (ak × ao) =
√
a ekop a

p, the above equation reads

T
�

�

@

@

�

�

@

@ T = tik tno(
√
a eins a

s)⊗ (
√
a ekop a

p)

= a tik tnoeinsekop (as ⊗ ap)

By use of the matrix A = |aik| with detA = a, the next step yields the determinant of T
reading

detT = detA 1
6

[ tik tnoeinsekop (as ⊗ ap) · trm (ar ⊗ am) ]

= detA 1
6

[ tik tno trmeinsekop δ
s
r δ

p
m ]

= detA 1
6

[ tik tno tspeinsekop ] =: (det T ) (detA)

with det T = det |tik| and detA = det |aik|. By a lengthy computation resulting in

1
6

[ tik tno tspeinsekop ] = 1
6
{ t11 6 [ (t22t33 − t23t32) + t12 6 [ (t23t31 − t21t33) ]

+ t13 6 [ (t21t32 − t22t31) ] }
one obtains the following rule

detT = det [ tik(ai ⊗ ak) ] = (det T ) (detA)

with

{

det T = det |tik| = 1
6

[ tik tno tsp einsekop ]

detA = det |aik| = 1
6
[ aik ano asp einsekop ]

In addition to the above, one obtains for contra- and mixedvariant T that

detT = det [ tik(ai ⊗ ak) ]

= (det T̄ ) (det Ā)
with

{

det T̄ = det |tik|
det Ā = det |aik| = det |ai · ak|

detT = det [ ti
k(ai ⊗ ak) ]

= (det T̃ ) (det Ã)
with

{

det T̃ = det |tik|
det Ã = det |δik| = det |ai · ak| = 1

From the above rule, it obvious that the determinant of a tensor T = tik(ei ⊗ ek) given
in an orthonormal basis (ei ⊗ ek) is equivalent to the determinant of its coefficient matrix
yielding detT = det |tik| as detA = det |δik| = 1.

Examples: Vector product of arbitrary vectors u and v

u× v = |u| |v| sin <) (u ; v)n



Supplement to Continuum Mechanics Research 59

with sin <) (u ; v) = cos (1/2 π− <) (u ; v)) and n: unit vector ⊥{u , v}, following the
corkscrew or right-hand rule on page 7.

Norm of the vector product

|u× v| = |u| |v| sin <) (u ; v)

By use of
3

E, the vector product between u and v can be obtained as

u× v = ui ai × vk ak = uivk
3

E (ai ⊗ ak) = uivk Enop (an ⊗ ao ⊗ ap)(ai ⊗ ak)

= uivk
√
a enop δ

o
i δ

p
ka

n = uivp
√
a enip a

n

=
√
a [(u2 v3 − u3 v2) a1 + (u3 v1 − u1 v3) a2 + (u1 v2 − u2 v1) a3 ]

Scalar triple product (parallelepipedial product)

(u× v) ·w = (v ×w) · u = (w× u) · v

= (ui ai × vj aj) · wk ak = ui vj wk (ai × aj) · ak

= Eijk u
i vj wk =

√
a eijk u

i vj wk

= u1 (v2w3 − v3w2) + u2 (v3w1 − v1w3)
︸ ︷︷ ︸

−u2 (v1 w3−v3 w1)

+ u3 (v1w2 − v2w1)

A.4 Spatial derivative of natural basis systems

Given curved parameter lines θi, the natural basis vectors ai change their values and
directions along θi. This makes it necessary to include spatial derivatives of tangent and
cotangent basis vectors.

(a) Derivatives of tangent vectors ai and Christoffel symbols of the 2nd kind

Procedure: One forms spatial derivatives ai,k and applies them with the help of Christof-
fel symbols to the tangent basis ak

ai,k :=
∂ai

∂θj
=: Γij

kak

with Γij
k: Christoffel symbols of the 2nd kind

Elwin Bruno Christoffel (1829-1900) was a German mathematician and physicist. He
introduced fundamental concepts of differential geometry, thus opening the way for the
development of tensor calculus.

Christoffel symbols of the 2nd kind

ai,j · as = Γij
kak · as =: Γij

k δsk = Γij
s −→ Γij

s = ai,j · as
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Transformation of Christoffel symbols

δis =

{
1
0
−→ (δis),j = 0 with δis = ai · as

−→ 0 = (ai · as),j = ai,j · as + ai · as,j

Thus, it follows that

as,j · ai

︸ ︷︷ ︸

Γsj i

= − ai,j · as
︸ ︷︷ ︸

Γijs

−→ Γsj
i = −Γi

js

(b) Derivatives of cotangent vectors ai and Christoffel symbols of the 1st kind

Procedure: One forms spatial derivatives ai,j and applies them with the help of Christof-
fel symbols to the cotangent basis ak

ai,j :=
∂ai

∂θj
=: Γi

jk a
k = −Γkj

iak

with Γi
jk = ai,j · ak = −Γkj

i = ak,j · ai.

Christoffel symbols of the 1st kind

ai,j := Γij
k ak = Γij

k aks a
s = Γijs a

s

with Γijs : Christoffel symbols of the 1st kind

Determination of Γijs

ai,j · ak = Γijs a
s · ak = Γijs δ

s
k = Γijk −→ Γijk = ai,j · ak

Note: The super- and subscripts of Christoffel symbols can only be pulled up and
down by metric coefficients as far as they are not in connection with spatial derivatives.

A.5 Gradient and divergence operators

Gradient of a scalar-valued function φ(x)

gradφ(x) =
dφ

dx
=
∂φ

∂θi
∂θi

∂x
= φ,i a

i

Gradient of a vector-valued function v(x)

gradv(x) =
dv

dx
=
∂v

∂θi
⊗ ∂θi

∂x
= v,i ⊗ ai
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Given v in a covariant basis, one obtains with the Christoffel symbols of the 2nd kind

v,i = (vn an),i = vn,i an + vn an,i = vn,i an + vn Γni
s as = vn,i an + vs Γsi

n an

Note that the last term has been obtained by renaming the indices s to n and n to s. Thus,

v,i = (vn,i + vs Γsi
n) an =: vn

∣
∣
i
an

with vn
∣
∣
i

: covariant derivative

Gradients of vector-valued functions v(x)

gradv

{

= vn
∣
∣
i
an ⊗ ai

= vn
∣
∣
i
an ⊗ ai

Divergence of a vector-valued function v(x)

divv = gradv · I
= vn

∣
∣
i
(an ⊗ ai) · (aj ⊗ aj)

= vn
∣
∣
i
δjn δ

i
j = vi

∣
∣
i

Gradient of a tensor-valued function T(x)

gradT =
∂T

∂θi
⊗ ∂θi

∂x
= T,n ⊗ an

Given a covariant basis of T, one obtains with the Christoffel symbols of the 2nd kind

T,n = (tijai ⊗ aj),n

= tij ,n ai ⊗ aj + tij( ai,n
︸︷︷︸

Γins as

⊗ aj + ai ⊗ aj,n)
︸︷︷︸

Γjns as

= tij ,n ai ⊗ aj + tsjΓsn
i ai ⊗ aj + tisΓsn

j ai ⊗ aj

Note that in the last line of T,n use has been made of renaming i to s and s to i in the 2nd
term and renaming j to s and s to j in the 3rd term. Thus, one obtains

T,n = (tij ,n + tsjΓsn
i + tisΓsn

j)
︸ ︷︷ ︸

tij
∣
∣
n

(ai ⊗ aj) = tij
∣
∣
n
ai ⊗ aj
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In case of a contravariant basis of T, the same procedure as above yields

T,n = (tij,n − tsjΓin
s − tisΓjn

s)
︸ ︷︷ ︸

tij

∣
∣
n

(ai ⊗ aj) = tij
∣
∣
n
ai ⊗ aj

With the above information, the gradient of T results in

gradT =

{

tij
∣
∣
n
ai ⊗ aj ⊗ an

tij
∣
∣
n
ai ⊗ aj ⊗ an

Divergence of a tensor-valued function T(x)

divT = (gradT) I

= tij
∣
∣
n
(ai ⊗ aj ⊗ an) (as ⊗ as) = tij

∣
∣
n
δsj δ

n
s ai

−→ divT = tij
∣
∣
j
ai

B Geometric measures of solid mechanics

B.1 Deformation gradient and deformation tensors

In solid mechanics, the motion of a body resulting from external forces and temperature
changes is described in a Lagrangean setting, where the deformation gradient F relates
the motion function χ(x0, t) of material points of the current position x at time t > t0 to
their reference position x0 at time t0.

Joseph-Louis Lagrange (1736–1813) was an Italian-French mathematician and astronomer,
who later became a naturalized French. He made significant contributions to the fields of
analysis, number theory, and both classical and celestial mechanics.

Based on arbitrary parameter lines θi, F is governed by

F =
dx

dx0

=
∂x

∂θi
⊗ ∂θi

∂x0

=: ai ⊗ hi

Therein, ai is the tangential natural basis vector in terms of the current configuration at
t, while hi is the cotangential dual basis vector at the reference configuration at t0. Thus,
F is a two-field tensor with one basis system in the current and the other basis system in
the reference configuration.

Given F, one computes F−1 as

F−1 =
dx0

dx
=
∂x0

∂θi
⊗ ∂θi

∂x
=: hi ⊗ ai
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Note that F and F−1 can also be understood as transport mechanisms by the property

Fhi = ai and F−1ai = hi : covariant push forward and pull back

FT−1hi = ai and FTai = hi : contravariant push forward and pull back

With F, one computes the right and left Cauchy-Green deformation tensors as

C = FTF = (hi ⊗ ai)(aj ⊗ hj) = aij(h
i ⊗ hj) : right Cauchy-Green

B = FFT = (ai ⊗ hi)(hj ⊗ aj) = hij(ai ⊗ aj) : left Cauchy-Green

Remark: Augustin-Louis Cauchy (1789-1857) was a French mathematician and professor
at the École polytechnique at Paris, while George Green (1793-1841) was an English miller
and self-taught mathematician. His work was only found important by William Thomson
(Lord Kelvin) four years after his death.

As C is contravariant while B is covariant, B−1 and C−1 enter the stage as further defor-
mation tensors with inverse variances compared to C and B:

C−1 = F−1FT−1 = (hi ⊗ ai) (aj ⊗ hj) = aij hi ⊗ hj

B−1 = FT−1F−1 = (ai ⊗ hi) (hj ⊗ aj) = hij a
i ⊗ aj

B.2 Co- and contravariant strain tensors

Based on the terms above, the basic strain tensors (contravariant strains) yield

E = 1
2
(C− I ) = 1

2
(aij − hij)(hi ⊗ hj) : Green-Lagrange

A = 1
2
( I −B−1) = 1

2
(aij − hij)(ai ⊗ aj) : Almansi

Emilio Almansi (1869-1948) was an Italian mathematician.

Note that E is based on the reference configuration with contravariant basis vectors hi that
are constant over time, while A depends on contravariant basis vectors ai of the current
configuration that change over time. Thus, the strain is basically stored in the difference
between aij and hij, while A has a further contribution through the basis ai.

The Green-Lagrange and Almansi strains are connected to each other by contravariant
push-forward and pull-back transformations reading

A = FT−1EF−1 = 1
2
(aij − hij)FT−1(hi ⊗ hj)F−1

︸ ︷︷ ︸

FT−1hi⊗FT−1hj

= 1
2
(aij − hij) ai ⊗ aj

E = FTAF = 1
2
(aij − hij)FT (ai ⊗ aj)F

︸ ︷︷ ︸

FT ai⊗FTaj

= 1
2
(aij − hij)hi ⊗ hj
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In addition to the above, there is a further set of strain tensors, the covariant Karni-
Reiner strains, yielding

KR = 1
2
( I −C−1) = 1

2
(hij − aij)(hi ⊗ hj) : reference-configuration-based

KC = 1
2
(B− I ) = 1

2
(hij − aij)(ai ⊗ aj) : current-configuration-based

Zvi Karni and Markus Reiner have been working at the Israel Institute of Technology,
Haifa, Israel. They published serveral papers in the 50th and 60th of the last century.

Here, the Karni-Reiner strains are connected to each other by covariant push-forward
and pull-back transformations yielding

KC = FKRF
T = 1

2
(hij − aij)F(hi ⊗ hj)F

T

︸ ︷︷ ︸

Fhi⊗Fhj

= 1
2
(hij − aij) ai ⊗ aj

KR = F−1KCF
T−1 = 1

2
(hij − aij)F−1(ai ⊗ aj)F

T−1

︸ ︷︷ ︸

F−1 ai⊗F−1 aj

= 1
2
(hij − aij)hi ⊗ hj

B.3 Deformation and strain velocities

Material velocity gradient Ḟ: Based on the deformation gradient F, the material
velocity gradient reads

Ḟ =
d

dt

( ∂x

∂x0

)

=
d

dt
(ai ⊗ hi) = ȧi ⊗ hi

Spatial velocity gradient L: Once the material deformation velocity Ḟ is given, one
forms the spatial deformation velocity L via

Ḟ =
d

dt

( ∂x

∂x0

)

=
∂ẋ

∂x0
=
∂ẋ

∂x

∂x

∂x0
=: LF = (ȧi ⊗ ai)(aj ⊗ hj)

with L =
∂ẋ

∂x
= Ḟ F−1 = (ȧi ⊗ hi)F−1 = ȧi ⊗ FT−1hi = ȧi ⊗ ai

−→ F = ai ⊗ hi , Ḟ = ȧi ⊗ hi , L = ȧi ⊗ ai

As F is always invertible as a result of detF > 0, this is not necessarily the case for Ḟ, for
example, under simple shear conditions, where det Ḟ = 0. This leads to

İ = (FF−1)˙= ḞF−1

︸ ︷︷ ︸

L

+F(F−1)˙
︸ ︷︷ ︸

−L

= 0

Following the above, one observes two possibilities to describe L

L = ḞF−1 and L = −F(F−1)˙
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Describing these terms by use of the natural basis system yields

F = ai ⊗ hi −→ Ḟ = ȧi ⊗ hi

F−1 = hi ⊗ ai −→ (F−1)˙ = hi ⊗ ȧi

such that

L =

{

ḞF−1 = (ȧi ⊗ ai)

−F(F−1)˙ = −(ai ⊗ ȧi)
and LT =

{

FT−1ḞT = (ai ⊗ ȧi)

−(FT−1)˙FT = −(ȧi ⊗ ai)

With L and LT , the rates of ai and ai can be given as

ȧi = Lai = (ȧn ⊗ an) ai = ȧnδ
n
i = ȧi

ȧi = −LTai = (ȧn ⊗ an) ai = ȧnδin = ȧi

Deformation velocity D and spin tensor W: By splitting the spatial velocity gradient
L in a symmetric and a skew-symmetric part, one obtains

L = D + W

where

{

D = 1
2

(L + LT ) with D = DT

W = 1
2

(L− LT ) with W = −WT

and

D = 1
2

(L + LT ) =

{
1
2

(ȧi ⊗ ai + ai ⊗ ȧi)

−1
2

(ai ⊗ ȧi + ȧi ⊗ ai)

This leads to the following conclusions

0 = İ = (aik a
i ⊗ ak)˙= ȧik(ai ⊗ ak)

︸ ︷︷ ︸

2D

+ aik(ȧi ⊗ ak)
︸ ︷︷ ︸

ȧi⊗ai=−LT

+ aik(a
i ⊗ ȧk)

︸ ︷︷ ︸

ai⊗ ȧi=−L

0 = İ = (aik ai ⊗ ak)˙= ȧik(ai ⊗ ak)
︸ ︷︷ ︸

−2D

+ aik(ȧi ⊗ ak)
︸ ︷︷ ︸

ȧi⊗ ai=L

+ aik(ai ⊗ ȧk)
︸ ︷︷ ︸

ai⊗ ȧi=LT

Thus, there are two further possibilities to describe D

D =

{
1
2
ȧik(ai ⊗ ak)

−1
2
ȧik(ai ⊗ ak)



66 Supplement to Continuum Mechanics Research

Green-Lagrange strain rates:

Ė = 1
2
(Ċ− I ) = 1

2
ȧik(hi ⊗ hk)

Ȧ = 1
2
[ I − (B−1)̇ ] = 1

2
ȧij(a

i ⊗ ak) + 1
2
(aik − hik)[ (ȧi ⊗ ak) + (ai ⊗ ȧk) ]

= 1
2
ȧij(a

i ⊗ ak) + 1
2
(aik − hik)[−LT (ai ⊗ ak)− (ai ⊗ ak)LT ]

︸ ︷︷ ︸

−LTA−AL

Based on the above, it is obvious that the push-forward and pull-back relations between
E and A do not hold for Ė and Ȧ. To overcome this feature, one introduces the so-called
contravariant “upper Oldroyd or Lie derivative” yielding

△
A := Ȧ + LTA + AL = D = 1

2
ȧik(a

i ⊗ ak) −→







△
A = FT−1 Ė F−1

Ė = FT
△
AF

James Gardner Oldroyd (1921–1982) was a British mathematician and rheologist.

Marius Sophus Lie (1842-1899) wa a Norwegian mathematician.

Karni-Reiner strain rates:

K̇R = 1
2
( I − Ċ−1) = −1

2
ȧik(hi ⊗ hk)

K̇C = 1
2
(Ḃ− I ) = −1

2
ȧik(ai ⊗ ak) + 1

2
(hik − aik)[ (ȧi ⊗ ak) + (ai ⊗ ȧk) ]

= −1
2
ȧik(ai ⊗ ak) + 1

2
(hik − aik)[L (ai ⊗ ak) + (ai ⊗ ak)LT ]

︸ ︷︷ ︸

LKC+KCL
T

As for the Green-Lagrange and the Almansi strains, there is no push-forward and
pull-back relation between K̇R and K̇C as it is for KR and KC . This leads to the so-called
covariant “lower Oldroyd or Lie derivative” for KC yielding

▽
KC := K̇C − LKC −KCL

T = D = −1
2
ȧik(ai ⊗ ak) −→







▽
KC = FK̇R FT

K̇R = F−1
▽
KC FT−1

B.4 Transport theorems

In this section, the transport theorems for line, area and volume elements will be presented
with respect to a natural basis system.

(1) Line elements in the reference configuration at time t0 and in the current configuration
at time t:

dx0 (t0) = dθ1h1 (t0) , dx (t) = dθ1a1(t)

ai = Fhi −→ dx = dθ1Fh1 = dθ1a1

}

−→ dx = F dx0
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(2) Volume elements in the reference configuration at time t0 and in the current config-
uration at time t:

dv0 (t0) = dθ1dθ2dθ3 (h1 × h2)
︸ ︷︷ ︸√

hh3

·h3 = dθ1dθ2dθ3
√
h

dv (t) = dθ1dθ2dθ3 (a1 × a2)
︸ ︷︷ ︸√

aa3

· a3 = dθ1dθ2dθ3
√
a

−→ dv =

√
a√
h

dv0

with a = det |aik| and h = det |hik|. To find the meaning of
√
a/
√
h, one proceeds with the

determinant of the right Cauchy-Green deformation tensor C:

detC = det (FTF) = (detF)2

From the above computation of the determinant of an arbitrary tensor, compare p. 58, one
concludes to

detC = det [ aik(h
i ⊗ hk) ] = (det |aik|) (det |hik|) = (det |aik|) (det |hik|)−1 =

a

h

−→ detF =

√
a√
h
−→ dv = detF dv0

(3) Area elements in the reference configuration at time t0 and in the current configuration
at time t with, for example, directions h3 at t0 and a3 at t:

da0 (t0) = dθ1dθ2(h1 × h2) = dθ1dθ2
√
hh3

da (t) = dθ1dθ2(a1 × a2) = dθ1dθ2
√
a a3

where, for example, a3 can be given as

a3 = FT−1 h3 =
cof F

detF
h3 =

√
h√
a

(cof F)h3

−→ da = dθ1dθ2
√
h (cof F)h3 −→ da = (cof F) da0
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C Stress and stress power

C.1 Cauchy, Kirchhoff and Piola-Kirchhoff stresses

Stresses t are exerted to a material body B by external forces acting at the surface S
yielding

∫

S
t da =

∫

S
Tn da =

∫

S
T da =

∫

B
divT dv

Therein, the scalar surface element da of the current configuration is transformed into
a vector-valued surface element da = n da with n as the outward-oriented unit surface
normal. Furthermore, use has been made of the Cauchy theorem t = Tn with T as the
Cauchy stress, also called true stress. Finally, an integral theorem transfers the tensor-
valued function T at the oriented surface with surface element da towards a vector-valued
function divT in the body B with volume element dv, compare Section 3.4.(d).

Surface element, for example da3, surface normal and volume element:

da3 = dx1 × dx2 = dθ1a1 × dθ2a2 = dθ1dθ2
√
a a3 −→ n3 = da3/|da3| = a3/

√
a33

dv = (dx1 × dx2) · dx3 = dθ1dθ2
√
aa3 · dθ3a3 = dθ1dθ2dθ3

√
a

with
√
a33 = cof a33/(detA) and detA = det |aik| = a, compare p. 56

Stress vector and stress tensor:

For the present example, the normal of the surface under consideration is again oriented
towards the a3 direction. Thus, with

T = tik(ai ⊗ ak)

where t = Tn3 = tik(ai ⊗ ak)
a3

√
a33

=
ti3√
a33

ai

Cauchy, Kirchhoff and Piola-Kirchhoff stresses

T da = T (cof F) da0 = (detF)TFT−1da0

where

{

τ = (detF)T : Kirchhoff stress

P = (detF)TFT−1 : 1st Piola-Kirchhoff stress

in addition: S = (detF)F−1TFT−1 : 2nd Piola-Kirchhoff stress

Gabriel Piola (1794-1850) was an Italian mathematician, who did not accept a professorial
offer of a university. Instead, he preferred to live as private tutor.

Gustav Robert Kirchhoff (1824-1887) was a German physicist working on electricity
problems. He held professorships at Breslau (nowadays Wroc law), Heidelberg and Berlin.
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Concerning the above stresses, the Kirchhoff stress τ is the volumetrically weighted
Cauchy stress what can be seen by the inclusion of detF = dv/dv0 =

√
a/
√
h. Thus,

τ =

√
a√
h
tik(ai ⊗ ak) =: τ ik (ai ⊗ ak)

While Cauchy and Kirchhoff stresses are symmetric acting at the current configuration,
the 1st Piola-Kirchhoff stress P = τ FT−1, also called nominal stress, is non-symmetric
as a result of its two-field character with the first basis in the current and the second in
the reference configuration:

P =

√
a√
h
tik (ai ⊗ ak) (an ⊗ hn) =

√
a√
h
tik (ai ⊗ hk) = τ ik (ai ⊗ hk)

and







T da3 = tik (ai ⊗ ak) dθ1dθ2
√
a a3 = ti3 dθ1dθ2

√
aai

P da3
0 =

√
a√
h
tik (ai ⊗ hk) dθ1dθ2

√
hh3 = ti3 dθ1dθ2

√
aai

From the above equations, it is seen that the stress vector t = T da3 exerted on the current
surface element is identical compared with the same values and the same directions of the
stress P da3

0 exerted on the reference surface element both proceeding from the current
directions ai.

However, concerning the load vector p = Pn3
0, things are different resulting in

p = Pn3
0 =

√
a√
h

ti3√
h33

ai −→ p =

(√
a√
h

√
a33√
h33

)

ti3√
a33

ai =

(√
a√
h

√
a33√
h33

)

t

where da3
0 = dθ1dθ2

√
hh3 together with n3

0 = h3/
√
h33 has been used.

Finally, writing the 2nd Piola-Kirchhoff stress in a natural basis system yields

S = F−1
τ FT−1 = (hj ⊗ aj)τ ik (ai ⊗ ak) (al ⊗ hl) = τ ik (hi ⊗ hk)

Thus, the 2nd Piola-Kirchhoff stress S can be understood as a formal pull back of
the Kirchhoff stress towards the reference configuration. However, S is not directly
connected with the load vector p but with an artficial load vector

p̄ = F−1p =

(√
a√
h

√
a33√
h33

)

ti3√
a33

hi

where the basis vectors ai have been exchanged by hi.
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C.2 Stress power

Mechanical energy is exerted onto a body by

∫

S
t · ẋ da =

∫

S
Tn · ẋ da =

∫

S
TT ẋ · da

=

∫

B
( divT · ẋ + T · grad ẋ ) dv =

∫

B
T · L dv

Therein, static equilibrium without body forces through divT = 0 has been assumed. The
stress power T · L can now be displayed in various forms, where the symmetry of T can
be used:

T · L = T · D = detF (τ · D) = detF (τ ·
△
A)

Here, the equivalence of D and
△
A has been taken into consideration. Proceeding from the

pull-back and push-forward operations of stresses and strain rates, one obtains

τ · D = FSFT · FT−1Ė F−1 = S · Ė
τ · L = PFT · ḞF−1 = P · Ḟ

}

−→ S · Ė = P · Ḟ

With respect to a natural basis system, the above relations yield

τ · D = τ ik (ai ⊗ ak) · 1
2

ȧno (an ⊗ ao) = 1
2
τ ik ȧik

S · Ė = τ ik (hi ⊗ hk) · 1
2

ȧno (hn ⊗ ho) = 1
2
τ ik ȧik

Using D = 1
2
(ȧi ⊗ ai + ai ⊗ ȧi), τ · D reads

τ · D = τ ik (ai ⊗ ak) · 1
2
(ȧs ⊗ as + as ⊗ ȧs)

= 1
2
τ ik[ (ai · ȧs)δ

s
k + δsi (ak · ȧs) ] = 1

2
τ ik[ (ai · ȧk) + (ak · ȧi) ]

To prove that this result is equivalent with τ · L, use is made of the symmetry of τ . Thus,

τ · L = 1
2
(τ + τ

T ) · L = 1
2
(τ ik + τki) (ai ⊗ ak) · (ȧs ⊗ as)

= 1
2
(τ ik + τki) (ai · ȧs)δ

s
k = 1

2
(τ ik + τki) (ai · ȧk)

= 1
2
(τ ik + τki) (ai · ȧk) = 1

2
τ ik[ (ai · ȧk) + (ak · ȧi) ] q. e. d.

Without using the symmetry of the Kirchhoff stress, τ · L yields the same result as
P · Ḟ, what can easily be seen from

τ · L = τ ik (ai ⊗ ak) · (ȧs ⊗ as) = τ ik (ai · ȧk)

P · Ḟ = τ ik (ai ⊗ hk) · (ȧs ⊗ hs) = τ ik (ai · ȧk)


