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General Information

1 Scope

GAMM ACTIVITY GROUP DATA-DRIVEN MODELING AND NUMERICAL SIMULATION OF
MICROSTRUCTURED MATERIALS

The GAMM AG Data aims at coordinating the activities of the members of the International Association
of Applied Mathematics and Mechanics (GAMM) in the field of data-based modeling, simulation and
analysis in the context of microstructured materials.

In recent years, the field of imaging based experimental methods has experienced significant techno-
logical improvements. For instance, the quality and the speed of computed tomography based imaging
techniques have advanced considerably, while at the same, X-ray computed tomography devices are
now available in many research facilities. By virtue of the obtained three-dimensional voxel images,
microstrucutres of modern natural and artificial materials can be analyzed and used directly in numeri-
cal simulations. Incorporating three-dimensional microstructure data is, however, highly non-trivial from
a numerical point of view. Special data processing techniques that are able to operate on billions of
unknowns, are required. Developing algorithms and data processing techniques for processing three-
dimensional data sets constitute major topics of the GAMM AG Data. Innovative image processing
techniques for automatic phase segmentation and microstrucutre reconstructions are of equal impor-
tance.

2 Objectives

+ To discuss the state of the art and recent trends in computational and experimental research.
» To plan AG Data activities.

+ Explore possible collaborations with DGM.
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3 Practical information

Below you will find all relevant places conference activities taking place. The buses 11, 14, 21, 44,
350 and SB63 will bring you from main station to station Elisenbrunnen. In case you are attending the
conference directly, we recommend to take a train to Aachen Westbahnhof.

fa) Aachen Cathedral

Elisenbrunnen Restaurant

.’/ Friedrich-Wilhelm-Platz 14
; 52062 Aachen

* —> Conference Dinner
Elisengarten (=) sparkas

Friedrich-Wilhelm-Platz 1
52062 Aachen

Monday’s and Tuesday’s lunch will be at Restaurant "Auf der Hérn", which is less than 100 m from the
conference venue.

Restaurant Auf der H6rn
Mies-van-der-Rohe-Str.1
52074 Aachen

Aachen Westbahnhof
Train Station

Conference

Building 2130
Mies-van-der-Rohe-Str.1
52074 Aachen

Melatener Strafe
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5 Timetable

Monday, 06.05.2019

10:00 - 11:30

City tour Aachen (Elisenbrunnen - Tourist information)

12:00

Lunch ("Auf der Hérn" - Mies-van-der-Rohe-StraBe 10)

12:50 - 13:00

Opening (Mies-van-der-Rohe-StraBe 1 - Room 511)

13:00 - 13:25

Felix Ernesti, M. Schneider, T. Béhlke
Institute of Engineering Mechanics, KIT, Karlsruhe
An FFT based micro mechanics solver for brittle fracture.

13:25 - 13:50

Session 1

Johannes Goérthofer, M. Schneider, A. Hrymak, T. Béhlke

Institute of Engineering Mechanics, KIT, Karlsruhe

Computational homogenization of Sheet Molding Compound composites
based on generated unit cells.

13:50 - 14:15

Oliver Kunc, F. Fritzen
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Homogenization for large deformations based on silico data.
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Coffee break (Room 309a)
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pendencies across multiple scales in continuum materials mechanics
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Data-driven stress prediction for failure analysis.

15:30 - 15:55

Steffen Kastian, S. Reese

Institute of Applied Mechanics, RWTH Aachen

Usage of data to create efficient surrogate models and to train low-rank ap-
proximations.

15:55 - 16:20

Coffee break (Room 309a)

16:20 - 16:45

Steffen Freitag

Institute for Structural Mechanics, Ruhr University Bochum

Artificial neural networks for the modeling of the consitutive behavior of ma-
terials.

16:45-17:10

Session 3

Kevin Linka, M. Hillgartner, C. Cyron

Department of Continuum and Materials Mechanics, Hamburg University of
Technology

Deep learned (micromechanical) constitutive modeling of hyperleastic mate-
rials.

17:10 - 17:35

Marcus Hillgartner, K. Linka, M. liskov

Department of Continuum Mechanics, RWTH Aachen

Towards deep learned constitutive models based on two-dimensional strain
fields.

17:35 - 18:15

Discussion (e.g. NFDI, AG Data activities)

19:00

Conference Dinner




Tuesday, 07.05.2019

General Information

8:45- 9:10

Robert Eggersmann, T. Kirchdoerfer, S. Reese, L. Stainier, M. Ortiz
Institute of Applied Mechanics, RWTH Aachen
A general approach for model-free data-driven inelasticity.

9:10 - 9:35

Auriane Platzer, M. Ortiz, L. Stainier, A. Leygue

Institute de Recherce en Génie civil et Mécanique, Ecole Centrale Nantes,
France

Data-driven finite strain elasticity.

9:35-10:00

Session 4

Tim Korzeniowski, K. Weinberg
Institute of Solid Mechanics, University Siegen
Towards data driven finite element analysis.

10:00 - 10:30

Michael Ortiz
Division of Engineering and Applied Science, Caltech, Pasadena, USA
Model-free Data-Driven Computing.

10:30 - 11:00

Coffee break (Room 309a)

11:00 - 11:25

Andre Mielke, T. Ricken

Institute of Mechanics, Structural Analysis, and Dynamics, University of
Stuttgart

Artificial Neural Networks as Surrogate Models.

11:25-11:50

Session 5

Julian LiBner, F. Fritzen
Univerity of Stuttgart
Data-Driven Microstructure Property Relations.

11:50 - 12:15

Oliver Weeger

Department of Mechanical Engineering, Technische Univeritat Darmstadt
Towards data-driven multi-scale modeling of soft, anisotropic lattice struc-
tures and meta-materials.

12:15

Lunch (Mies-van-der-Rohe-StraBBe 10)

13:30 - 13:55

Matthias Wieler, F. Wankmdiller, A. Weber, P.W. Hoffrogge, D. Schneider, B.
Nestler, P. Haremski, A. Maruscyzk, P. Lupetin

Corporate Sector Research and Advance Engineering, Robert Bosch GmbH
3D analysis of observed and simulated microstructure evolution in SOFC an-
odes.

13:55 - 14:20

Session 6

Selina Neuhaus, K. Srivastava, S. Scholl, S. Diebels

Applied Mechanics, Saarland University, Saarbriicken

Comparison between an anisotropic yield function and a crystal plasticity
model in modeling the mechanical behavior of single bicrystals.

14:20 - 15:00

Final discussion
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6 Abstracts

In the following, all abstracts are listed. All abstracts are provided in the order of appearance according
to the schedule (see Section 5, p. 8).

The session of the presentation is shown at the bottom of each page.
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F. Ernesti, M. Schneider, T. Bohlke

An FFT based micro mechanics solver for brittle fracture

F. Ernesti', M. Schneider’, T. Béhlke'

1. Institute of Engineering Mechanics (ITM), Karlsruhe Institute of Technology (KIT), Germany; mail:
{felix.ernesti, matti.schneider, thomas.boehlke}@kit.edu

The description of material failure as an energy minimization problem, i.e., the Francfort—Marigo model
[1], has been studied widely in recent years. The approximation of the crack surface as a phase field, i.e.,
smeared interface, enjoys great popularity, as it allows describing fracture as a set of partial differential
equations.

In numerical homogenization, FFT-based solution methods have been established over the past two
decades [2]. Their purpose is to compute the overall response of a heterogeneous microstruture wrt a
macroscopic loading and can be applied to a variety of nonlinear materials. The balance of momentum
is reformulated as a Lippmann-Schwinger fixed point equation and discretized on a regular voxel grid.
The benefits lie in a fast implementation and the possibility to use image data like CT-scans as input
without further need for meshing. The iterative solution methods do not require any linearization.

This talk presents the results of the masterthesis [3]. We investigate phase field crack propagation [4]
on heterogeneous microstructures using FFT-based [5] solvers. We derive the Lippmann—Schwinger
equations characterizing the critical points of the Ambrosio—Tortorelli functional. The equations are
discretized by a trigonometric collocation method. In addition to the conventional alternating minimization
algorithm we present accelerated methods.

With the introduced solver, we investigate the brittle behavior of different heterogeneous microstructures.
Numerical tensile experiments with 2D spherical inclusions show the convergence behavior of the solver.
A numerical investigation of the crack surface through a 3D fiber reinforced composite exhibits the
advantages of the former introduced methods.

Figure 1: Crack path through a fiber reinforced composite

References

[1] G. A. Francfort and J.-J. Marigo [1998]. “Reuvisiting brittle fracture as an energy minimization prob-
lem*, Journal of Mechanics Physics of Solids 46, 1319-1342

[2] H. Moulinec and P. Suquet [1998]. “A numerical method for computing the overall response of
nonlinear composites with complex microstructure®, Computer Methods in Applied Mechanics and
Engineering 157, 69-94

[3] F. Ernesti [2018] “An FFT-based solver for brittle fracture on heterogeneous microstructures”, MSc
thesis, Karlsruhe Institute of Technology (KIT), Institute of Engineering Mechanics

[4] B.Bourdin, G. A. Francfort and J.-J. Marigo [2000]. “Numerical experiments in revsited brittle frac-
ture®, Journal of the Mechanics and Physics of Solids 48, 797-826

[5] M. Schneider [2017] “An FFT-based fast gradient method for elastic and inelastic unit cell homoge-
nization problems’. Computer Methods in Applied Mechanics and Engineering 315, 846-866
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J. Gorthofer, M. Schneider, A. Hrymak, T. Béhlke

Computational homogenization of Sheet Molding Compound composites based
on generated unit cells

J. Gorthofer', M. Schneider', A. Hrymak?, T. Béhlke'

. Institute of Engineering Mechanics, Karlsruhe Institute of Technology (KIT), Germany; mail:
johannes.goerthofer@kit.edu, matti.schneider@kit.edu, thomas.boehlke@kit.edu

2: Department of Chemical and Biochemical Engineering, University of Western Ontario (UWO),
Canada; mail: ahrymak@uwo.ca

Sheet Molding Compound (SMC) composites provide a good formability, low cycle times and a high
function integration potential. SMC composites are manufactured via compression molding based on
randomly distributed fibers within a pre-preg matrix, leading to a process dependent, heterogeneous
structure. During the process, fibers tend to remain within their rovings and form a layered bundle
structure. Therefore, SMC exhibits a three scale structure, namely fibers on the microscale, bundles on
the mesoscale and unit cells on the macroscale. To apply SMC composites as structural components,
their mechanical behavior needs to be understood and predicted precisely.

A glass-fiber SMC based on an unsaturated Polyester Polyurethane hybrid resin system (UPPH) is
investigated [1]. To better understand the effective mechanical behavior of this SMC composite, the
microstructure generator of Chen et al. [2] is extended and used as mutable input for fast Fourier
transform (FFT) based full-field simulations [3]. Fig. 1 shows a generated bundle structure and the
corresponding local stress field in z-direction due to a loading in z-direction, respectively.
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Figure 1: SMC composite mesostructure: (a) generated bundles in a unit cell, (b) computed stress in
x-direction via FFT

References

[1] D. Blcheler, F. Henning [2016]: “Hybrid resin improves position and alignment of continuously re-
inforced prepreg during compression co-molding with Sheet Molding Compound”, 17th European
Conference on Composite Materials, 6699—6703

[2] Z. Cheng, T. Huang, Y. Shao, Y. Li, H. Xu, K. Avery, D. Zeng, W, Chen, X. Su [2018]: “Multiscale
finite element modeling of sheet molding compound (SMC) composite structure based on stochastic
mesostructure reconstruction”, Composite Structures 188, 25-38

[3] H. Moulinec, P. Suquet [1998]: “A numerical method for computing the overall response of non-
linear composites with complex microstructure”, Computational Methods in Applied Mechanics and
Engineering 157, 69-94
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O. Kungc, F. Fritzen

Homogenization for large deformations based on in silico data

0. Kunc'?, F. Fritzen'

1. Efficient Methods for Mechanical Analysis, University of Stuttgart
2: mail: kunc@mechbau.uni-stuttgart.de

We address the task of mechanical two-scale homogenization by means of dedicated interpolation meth-
ods. In principle, hyperelastic solids allow for an iteration-free description of the material behavior, e.g.
oW o*w
B P=25 C= oror
with the deformation gradient F, the stored energy function W, the first Piola-Kirchhoff stress tensor P,
and the corresponding tangent modulus.

Since these relationships are conserved under the transition to the macro-scale, it is self-evident that, in
principle, one could overcome the burden of solving the microscopic boundary value problem at all.

This method is an extension of the RNEXP method from [1] to the regime of finite strains. It is based on
efficient sampling of the deformation gradient’s isochoric part F = J~'/3F and a separate treatment of
it's volumetric contribution J = det F.

The data necessary for the interpolation is provided by a reduced order model, which itself is based on
the same sampling strategy.

(MPa)

300
200
100
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Figure 1: Example of a deformation with pronounced geometric nonlinearity.
Fig. 2 exemplifies a scenario when geometric nonlinearities are of high importance. The correspond-

ing stiffening effect is accurately reproduced by our method. First realistic two-scale simulations are
anticipated.

References

[1] F. Fritzen, O. Kunc [2018]: “Two-stage data-driven homogenization for nonlinear solids using a
reduced order model”, European Journal of Mechanics / A Solids 69, 201-220
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F. Bock, R. Aydin, C. Cyron, N. Huber, S. Kalidindi, B. Klusemann

Machine learning and data mining applications for identification of key depen-
dencies across multiple scales in continuum materials mechanics

F. Bock', R. Aydin', C. Cyron™?, N. Huber'3, S. Kalidindi*, B. Klusemann®

! Institute of Materials Research, Materials Mechanics, Helmholtz-Zentrum Geesthacht, Geesthacht,
Germany; mail: frederic.bock@hzg.de

2: Institute of Continuum and Materials Mechanics, Hamburg University of Technology (TUHH),
Hamburg, Germany

3: Institute of Materials Physics and Technology, Hamburg University of Technology (TUHH), Hamburg,
Germany

4: School of Mechanical Engineering and School of Computational Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia, United States of America

5: Institute of Product and Process Innovation, Leuphana University of Liineburg, Liineburg, Germany

For enabling accelerated development of novel materials that are most suitable for their designated
purpose, data analytical methods, in particular machine learning approaches, represent powerful tools.
The identification of key dependencies along the process-microstructure-property-performance (p-s-p-p)
chain of materials often requires the coupling of multiple spatiotemporal scales involving multiphysics.
An overview of different common data structures of sources relevant for data analytics within continuum
materials mechanics is provided in Fig. 2. The particular machine learning approach most appropriate
for any use-case highly depends on involved data types, formats, spatiotemporal scales, affordable
computational costs as well as existing knowledge to be transferred and anticipated understanding to be
gained.

For our purposes, machine learning tasks broadly fall into at least one of these categories: descriptive,
predictive and prescriptive. Descriptive tasks, for example, include methods such as pattern recognition
and correlation, predictive tasks can involve classification or statistical inference and predictive tasks are
performed for implementing proposed optimization. Various variants of artificial neural networks, support
vector machines and random forests as well as Bayesian inference and principal component analysis can
be utilized for these tasks. With these methods, challenges that involve connecting process parameters
to microstructural classification and feature extraction as well as to mechanical properties and fatigue
performance behaviour can be faced. In this contribution, examples of machine learning methods for
the identification of relationships along the p-s-p-p chain will be reviewed.

Data Analytics

Data Collection Data Mining Data Compression

Process Parameters Microstructure N[.acrosc-ale ultiscale Analysis Sto i Pattern Recogniti
Simulation
Properties Performance ale Perf = fr L Un
P Simulation Prediction Component Analysis Quantification

Figure 1: Overview of different data sources and data processes relevant for data analytics within the
field of continuum materials mechanics. Own image based on the idea presented by [1].

References
[1] J. Smith et al. [2016]: “Linking process, structure, property, and performance for metal-based addi-

tive manufacturing: Computational approaches with experimental support”’, Computational Mechan-
ics 57 583 - 610.
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K. Schulz, S. Kreis, N. Magino, H. Trittenbach

Data-driven stress prediction for failure analysis

K. Schulz', S. Kreis', N. Magino', H. Trittenbach?

. Institute of Applied Materials (IAM-CMS), Karlsruhe Institute of Technology, Germany; mail: ka-
trin.schulz@kit.edu
2: Institute of Program Structures and Data Organization, Karlsruhe Institute of Technology, Germany.

Advanced data analysis is increasingly popular with materials engineering. There are many interesting
applications, e.g., to identify links between material properties and structural behavior. Most of these
applications also entail challenges like compliance with safety requirements for parts and components.
These challenges often are specific to the engineering domain, which sets them apart from many other
disciplines where data-science already is established. To successfully approach materials science prob-
lems with machine learning, one has to identify and address these specifics [1].

In this contribution, we pursue this question for the investigation of internal stress states in the context
of failure analysis. More specific, we first study whether the prediction of critical stress states is feasible
only based on surface measurements of a three-point bending structure. To this end, we pursue several
approaches to gain insights into crack initiation and material behavior. We compare different data sets
and machine-learning methods to identify variables, such as specific surface locations, that are relevant
for high prediction accuracy. Based on our analyses, we discuss the applicability and general principles
of machine learning for materials engineering. Finally, we extend the investigation to microscale con-
siderations of plastic deformation. We analyze discrete dislocation systems in order to find adequate
homogenization approaches to capture relevant mechanisms of microstructural evolution for continuum
plasticity models. The heterogeneity of internal stress states due to plastic evolution on different slip
systems is exemplarily shown in Fig. 2.
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Figure 1: Voxel-based stress evaluation of microstructure evolution of a tension test.

References
[1] Trittenbach, H., Gauch, M., B6hm, K., Schulz, K. [2018]: “Towards Simulation Data Science - A

Case Study on Material Failures”. Proceeding of 5th International Conference on Data Science and
Advanced Analytics (DSAA), pp. 450-459, |IEEE.
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S. Kastian, S. Reese

Usage of data to create efficient surrogate models and to train low-rank approx-
imations

S. Kastian', S. Reese'’

. Institute of Applied Mechanics, RWTH University Aachen, Germany; mail: {steffen kastian,
stefanie.reese}@rwth-aachen.de

In many cases a large amount of data is generated (e.g. experiments or numerical simulations). These
data can be used advantageously in various ways. Be it as a replacement for the constitutive law,
investigation of a certain quantity of interest (qoi) or for generating surrogate models. However, the
possibility must be considered that certain data can be disadvantageous for the respective area of
application. This may be caused by incorrect or irrelevant data.

The new adaptive proper orthogonal decomposition (APOD) [1] method is introduced in this contribution
to create surrogate models of certain simulations. Based on the proper orthogonal decomposition (POD)
[2], both, POD and APOD requires a certain database to create projection matrices. The same database
is used for both methods, but the APOD takes adaptively a certain selection of data into account and
thus neglects the data that are not relevant for the current situation. This can improve either accuracy or
speed.

Many engineering relevant problems can be attributed to a certain number of quanitity of interest. If
data already exist for the problem under investigation, they can be used to train low rank approximation,
which can approximate the qoi for non-existent data. These data can also be generated from previously
mentioned surrogate models. Therefore, the hierarchical tensor approximation (HTA) [3] is combined
with (A)POD to generate required training data efficiently. Further the results of HTA are compared with
the results of the full model.

References

[1] S. Kastian, S. Reese [2018]: “An adaptive way of choosing significant snapshots for the Proper
Orthogonal Decomposition“, IUTAM bookseries, accepted (December 03, 2018)

[2] A. Radermacher, S. Reese [2013]: “Proper orthogonal decomposition-based model reduction for
nonlinear biomechanical analysis®, International Journal of Materials Engineering Innovation, Special
Issue on Computational Mechanics and Methods in Applied Materials Engineering;

[3] D. Pivovarov, K. Willner, P. Steinmann, S. Brumme, M. Mdller, T. Srisupattarawanit, G.-P. Oster-
meyer, C. Henning, T. Ricken, S. Kastian, S. Reese, D. Moser, L. Grasedyck, J. Biehler, M. Pfaller,
W. Wall, T. Kolsche, O. v. Estorff, R. Gruhlke, M. Eigel, M. Ehre, I. Papaioannou, D. Straub, S.
Leyendecker [2019]: “Challenges of order reduction techniques for problems involving polymorphic
uncertainty”, GAMM Mitteilungen, accepted (January 24, 2019)

16 Session 2, Monday 14:40-15:55



S. Freitag

Artificial neural networks for the modeling of the constitutive behavior of mate-
rials

S. Freitag'
1: Institute for Structural Mechanics, Ruhr University Bochum, Germany; mail: steffen.freitag@sd.rub.de

Artificial neural networks are powerful tools to identify dependencies between input and output data
in the framework of data-driven modeling. They can be trained with data obtained from experiments
(measurements of lab experiments or in situ monitoring) or with results of numerical simulations, i.e. as
surrogate models to replace time consuming simulation models. Some applications of artificial neural
networks in structural mechanics are presented in [1]. This contribution is focused on artificial neural
networks for the modeling of stress-strain-dependencies to be applied as constitutive material models
within structural simulations, e.g. by means of the finite element method, see e.g. [2]. Special network
architectures for anisotropic, orthotropic and isotropic material behavior are discussed. Exempilified in
Fig. 2, a sub structured artificial neural network with symmetric synaptic connections is shown, which
can be used for the modeling of isotropic elastic material behavior. It should be noted, that at least
six hidden neurons are required, but the number of hidden neurons can be increased to capture more
complicated material nonlinearities. The modeling of time dependent behavior (e.g. viscoelasticity) can
be solved with recurrent neural networks [3]. In [4], a recurrent neural network is trained to approximate
fractional rheological models, which require to take the whole strain history into account to predict the
current stress state.
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Figure 1: Artificial neural network with feed forward architecture for isotropic elastic material behavior
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Deep learned (micromechanical) constitutive modeling of hyperelastic materials

K. Linka', M. Hillgartner?, C. Cyron'

. Department of Continuum and Materials Mechanics, Hamburg University of Technology, Germany;
mail: kevin.linka@tuhh.de
2: Department of Continuum Mechanics, RWTH Aachen University, Germany

Modern material measurement techniques have developed rapidly over the last decades and evolved
from purely one-dimensional macroscopic to multi-dimensional techniques manageable of linking the
microstructural kinematics to macroscopical material responses. Accordingly, the opportunities of ad-
vanced data-driven modeling strategies increased as well as the chances to tune the material behavior
towards its optimum for a particular boundary-value problem. To this end, we propose a modeling ap-
proach based on the principles of invariant hyperelasticity in conjunction with micromechnical material
information incorporated into a feedforward fully connected artificial neural network (ANN). Moreover, the
ANN architecture was specifically designed to be robust against the chosen hyperparameters, while still
being numerically efficient. We evaluate the predictive capabilities of trained ANNs against analytical and
numerical examples. In addition, a computational homogenization analysis of an representative volume
element by varying the micromechanical properties and comparing the macroscopic stress responses
against the ones learned by ANNs, was performed. Hence, the present study provides considerable
insights for the possibility of a material data-driven methodology of developing constitutive laws based
on measured material information.
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Towards deep learned constitutive models based on two-dimensional strain
fields

M. Hillgartner', K. Linka2, M. Itskov'

1 Department of Continuum Mechanics, RWTH Aachen University, Germany; mail:
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In order to calibrate material models, experimental stress-strain curves are usually compared with model
predictions under the same loading conditions. While this approach guarantees good results for one
specific loading type, the resulting model is not generally able to properly predict other loading scenarios.
Therefore, a variety of mechanical tests can be conducted, amongst which uniaxial tension, uniaxial
compression, pure-shear and equibiaxial tension tests are the most commonly used ones. Multi-axial
loading often cannot be adequately predicted solely based on test data of one such idealized test.
Therefore, the material model can be fitted against several mechanical test data sets simultaneously in
order to increase the prediction quality, which requires a considerable amount of experiment work.

This contribution aims to create phenomenological material models which are directly fitted against an
experimental force response and the corresponding two-dimensional strain field obtained from arbitrary
loading. To this end, a deep learning framework based on a multilayer-perceptron (MLP) approach [1] is
proposed which identifies suitable strain-energy functions and its corresponding derivatives. These can
be utilized in a commercial finite element code via a user defined material subroutine in order to compare
the quality of the approximation with the reference data. This approach skips idealized experiments
and simplifies the process of phenomenological modeling by exploiting the capabilities of deep neural
networks.
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A general approach for model-free data-driven inelasticity
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To motivate a data-driven reformulation of the initial boundary value problem, we just have to consider
that the world we live in today is a data-rich one. Measurement techniques are improving as well as the
amount of data we can deal with. We extend the data-driven formulation introduced by Kirchdoerfer and
Ortiz [1] to any kind of inelastic material behavior in theory [2]. We make use of the fact, that material
behavior can always be described by its entire deformation history o (t) = &({e(s)}s<:), where o(t) is
the stress at time t and & (e) is a general function of the whole deformation history. Besides, the effect
of fading memory properties gives more power to this formulation. Where fading memory properties
mean that for many materials the shorter history of deformation is of higher importance to the actual
material behavior. To include this theoretical procedure into the data-driven algorithm, we adapt the
double minimum problem by history-matching

L min {yk};:f}}eHd({ykvyk—H}a{zk’vzk-i-l})- (1)
Here, y;,, and z,4, are pairs of stress and strain at a discretized time step £ + 1, E}, is the according
constraint set, H the history data set and d a distance measure. The formulation above shows the
history-matching formulation for materials with short memories. Already this simple formulation is able
to deal with several material effects which are of a first order differential relation, like certain types of
visco-elasticity, ideal visco-plasticity, or plasticity with kinematic hardening.

To verify the above formulation, we performed several computations at truss structures, where each
truss can only be loaded in the normal direction (1D problem). The problem shows convergence with an
increasing number of data points towards the reference solution. Multi-dimensional problems will also
be discussed in the presentation.
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Figure 1: Visco-elastic problem for loading 10 sec. and unloading after 50 sec. again within 10 sec.
Convergence towards a displacement response at a certain node with an increasing number of data
points.
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Data-driven finite strain elasticity
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The unknowns of a boundary value problem (BVP) in mechanical engineering are (i) the displacement
field, (ii) the strain field, and (iii) the stress field. The corresponding governing equations are of two types:
first, both equilibrium and compatibility equations, which derive from universal laws; second, mechanical
constitutive equations, generally subject to various modeling assumptions, which inevitably introduces a
bias in the solution. To overcome this issue, Kirchdoerfer and Ortiz (2016) proposed a new paradigm,
called data-driven computational mechanics, which consists in substituting the constitutive model with
a database of strain-stress couples [1]. They demonstrate the relevance of this approach with linear
elastic manufactured data.

Nguyen and Keip (2018) proposed an extension of this framework to large strain elasticity [2]. In their
work, the material database is constituted of Green-Lagrange strain - second Piola-Kirchhoff stress
couples, referred to as material states. The solution of the BVP is a set of mechanical states, which
collects strain-stress couples both (i) verifying universal laws and (ii) closest to the material dataset.
Practically, the resolution consists in minimizing the distance between the mechanical state of all material
points in the body and the material database, under equilibrium and compatibility constraints. In the
Lagrangian framework, the non-linearity of these constraints yields a nonlinear and coupled system for
the displacements and the Lagrangian multipliers enforcing equilibrium [2]. The impact of this non-
linearity and the question of convergence with respect to dataset has not yet been explored.

We therefore here propose to formulate data-driven finite strain elasticity in the phase-space of the de-
formation gradient - first Piola-Kirchhoff stress tensor: the compatibility and equilibrium, and thus the
optimization constraints, are now linear functions of the displacements. The method is assessed on 2D
elastic finite strain problems. As a discussion, the results are compared to the Lagrangian approach,
modified with some enhancements to the original algorithm. Together with the influence of some param-
eters of the algorithm, the robustness of the method with regard to the richness of the database is also
investigated.
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Towards data driven finite element analysis

T. Korzeniowski', K. Weinberg'
'Institute of Solid Mechanics, University of Siegen, Germany; mail: tim.korzeniowski@uni-siegen.de

The data driven finite element formulation of Kirchdoerfer and Ortiz [1] is a promising approach to
reduce uncertainties in the material modeling step. In the data driven finite element analysis the consti-
tutive material modeling is eluded and instead experimental data are directly employed as an input for
computational analysis. Our contribution discusses the implementation of material uncertainties by this
method. We therefore compare this approach to more traditional finite element methods. The point of
departure is a given set of noisy material data which requires simplification and / or uncertainty modeling
of the material. We illustrate the methodology of data driven solutions, stochastic finite element solutions
and analytic solutions under such material uncertainties. Numerical examples are used to show the pros
and cons of the given methods. Furthermore we explore the usage of the data driven modeling within
different applications and also take a look on the acquisition of the multi-dimensional data fields needed.
Furthermore the data driven problem is expressed by a distance minimizing problem; we search for the
data point which is closest to satisfying the conservation laws. To reduce computational cost in this
search we introduce a multi-level data set approach to encounter this problem. We provide several ex-
amples where we investigated the behavior of the data driven approach with respect to the previously
named problems.
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Model-Free Data-Driven Computing

M. Ortiz'-2

1: Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125,
USA; mail: ortiz@aero.caltech.edu
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We develop a new computing paradigm, which we refer to as Data-Driven Computing, according to which
calculations are carried out directly from experimental material data and pertinent kinematic constraints
and conservation laws, such as compatibility and equilibrium, thus bypassing the empirical material
modeling step of conventional computing altogether. Data-driven solvers seek to assign to each material
point the state from a prespecified data set that is closest to satisfying the conservation laws. Equiva-
lently, data-driven solvers aim to find the state satisfying the conservation laws that is closest to the data
set. The resulting data-driven problem thus consists of the minimization of a distance function to the
data set in phase space subject to constraints introduced by the conservation laws. We demonstrate
the data-driven paradigm and investigate the performance of data-driven solvers by means of several
examples of application, including statics and dynamics of nonlinear three-dimensional trusses, and lin-
ear and nonlinear elasticity. In these tests, the data-driven solvers exhibit good convergence properties
both with respect to the number of data points and with regard to local data assignment, including noisy
material data sets containing outliers. The variational structure of the data-driven problem also renders
it amenable to analysis. We find that the classical solutions are recovered in the case of linear elas-
ticity. We identify conditions for convergence of Data-Driven solutions corresponding to sequences of
approximating material data sets. Specialization to constant material data set sequences in turn estab-
lishes an appropriate notion of relaxation. We find that relaxation within the Data-Driven framework is
fundamentally different from the classical relaxation of energy functions. For instance, we show that in
the Data-Driven framework the relaxation of a bistable material leads to effective material data sets that
are not graphs. | will finish my presentation with highlights on work in progress, including closed-loop
Data-Driven analysis and experiments, Data-Driven molecular dynamics, Data-Driven inelasticity and
publicly-editable material data repositories and data management from a Data-Driven perspective.

Session 4, Tuesday 8:45-10:30 23



A. Mielke, T. Ricken

Artificial Neural Networks as Surrogate Models
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Machine learning techniques have found many applications in various fields. Their role in the
mechanics community is still subject to ongoing debate and research. Of these techniques artificial
neural networks (ANN) gained a lot of traction in recent years thanks to overwhelming and unexpected
success in practical as well as previously thought unsolvable problems [1].

One use case for ANN is to create surrogate models for differential equations. Instead of time-
consuming full simulations, approximations can be made with in principal arbitrarily small error, given
the solution of the differential equation is continuous [2]. Such a network would be trained by simulation
data spanning the whole solution space.

We trained a simple ANN as a surrogate for a nonlinear coupled biomechanical model of a liver lobule
[3] using the final fat volume fraction n' as the output parameter. As an error quantifier, we averaged
the relative approximation error on the test set for each node and derived the cumulative error for the
whole system as the average and standard deviation of the averaged errors (cf. Fig. 1). To improve
results, more complex network topologies and hyperparameter tweaking have to be employed alongside
gaining more data.

Open questions are the possibility of using adaptive sampling techniques to reduce bias towards
lumped solution data (cf. Fig. 2) and a priori error estimates for approximating unknown functions.
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Data-Driven Microstructure Property Relations
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Effective material properties of highly heterogeneous materials are induced by their microscale, being
defined on a length scale of around 10~ relative to the macroscopic domain size [1]. The concept
of the representative volume element (RVE), which describes the microscale with one representative
frame, is usually deployed. Nevertheless, computations on this frame are still quite costly and an
efficient method to accurately predict the material property is sought-after.

The microstructures deployed in this study are randomly generated. Each generated RVE is influenced
by various parameters, the phase volume fraction of the inclusions, the shape and size of the inclusions,
as well as the overlap of the inclusions. The randomly assigned overlap allows for a model of soft and
hard inclusions in each RVE. The goal is an image based prediction for the heat conductivity, i.e. a
method that gets away without micsrostructural parameters such as the number and shape of inclusions
etc.

Using machine learning [2], patterns and characteristic properties of the RVEs are identified during
unsupervised learning. The outcome of the unsupervised learning is the definition of a feature vector
that is used for the subsequent supervised learning. During feature identification we make use of the
two point spatial correlation function which describes a probability distribution of the RVE, which is
governed by randomness. This property of the two point spatial correlation function is exploited with a
shapshot proper orthogonal decomposition (POD) which is deployed in order to identify patterns within
the various snapshots. With the sheer number of snapshots required to compute a salient reduced
basis (RB) adequately representing the parameter range, the necessity for an incremental scheme
arises. Three different methods are introduced for the incremental computation of the RB. After training
of the RB, it is used to extract salient features of the RVE written into the feature vector.

With the feature vector at hand, an artificial neural network (ANN) is deployed as a regression model.
Therefore, a dense feed forward ANN is trained to predict the heat conductivity for the given feature
vector, which is obtainable with just the image of the RVE.
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Towards data-driven multi-scale modeling of soft, anisotropic lattice structures
and metamaterials
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Additive manufacturing now enables the fabrication of architectured cellular materials such as soft, func-
tionalized, multi-material lattice structures and heterogeneous metamaterials. This provides completely
new dimensions of design freedom to be explored, such as large-deformations, instabilities, functional
grading, anisotropy, and multi-functional behavior. To maintain precise control of structural behavior
through tailoring of micro-structural design and process parameters, efficient multi-scale modeling and
simulation methods are essential. However, multi-scale simulation is particularly challenging for func-
tional structures that are characterized by large deformations, anisotropy, nonlinear, inelastic, and multi-
functional material behavior, since homogenized constitutive properties of the micro-structure and their
dependence on design parameters need to be captured and represented for sequential approaches.

Based on our previous work on full-scale simulation of nonlinear, conformal and graded lattice struc-
tures [1], see Fig. 1, we are developing a multi-scale simulation and design framework for nonlinear
lattice structures and metamaterials. Particular challenges to be addressed include nonlinearity (stem-
ing from large deformation of the microstructure), anisotropy (grading of lattice struts) and non-periodicity
(due to conformity of macroscopic geometry and morphing of unit cells). Thus, we want to explore the
use of data-driven and machine learning methods for computational homogenization and reduced-order
or surrogate modeling of the microscopic constitutive behavior [2],[3].

The objective of this talk is to introduce the general topic and idea, present the current progress, and
discuss challenges faced and to be adressed in future research.
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Figure 1: Full-scale simulation and 3D printing of a soft lattice structure [1]
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3D analysis of observed and simulated microstructure evolution in SOFC anodes
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Many functional composite materials have a complex microstructure that is crucial for the material’s
performance. We investigate porous composites of nickel and YSZ (yttria stabilized zirconia) that are
used as anodes in full-ceramic solid oxide fuel cells (SOFC) [1]. An important degradation mechanism
of SOFC anodes is the diffusional transport of nickel under operating conditions (post-sintering). The
resulting microstructural changes have been analyzed with 3D FIB-SEM reconstructions, and simulated
with large-scale multi-phase field simulations.

We present the results of 3D analyses of several data sets from FIB-SEM reconstructions and from
phase field simulations. We calculate standard microstructural features of SOFC anodes such as volume
fractions, active and inactive three-phase-boundary (3PB) length, and tortuosity, which we use to predict
the performance of these anodes based on the transmission line model.

The main factor of degradation is loss of connectivity of the nickel phase. To investigate this, we carry
out a bottleneck analysis to quantify the gradual tightening of the nickel bottlenecks. In addition, we
calculate several shape descriptors such as interface areas and local structure size, which confirms
quantitatively that nickel relocates from small pores to larger pores within the YSZ skeleton.
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Figure 2: Electrical potential for calculation of tortuosity
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Comparison between an anisotropic yield function and a crystal plasticity model
in modeling the mechanical behavior of single and bicrystals
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The microstructure of dual- and complex-phase steels, which is formed during the production processes
of the metal plate, highly influences the mechanical properties. The preferred crystallographic orienta-
tions in the polycrystalline aggregate of the rolling textures causes an elastic-plastic anisotropy in these
materials. The aim of the present work is to integrate plastic anisotropy in an already existing microstruc-
ture based model for the elasto-plastic deformation of dual-phase steels and thereby to widen the scope
of such a model to a broader range of rolled steels.

The following contribution discusses the results of simulations on single- and bicrystals in the commer-
cial finite element software ABAQUS® by using two different approaches, namely the Hill model [1] as
a phenomenological yield function and a crystal plasticity model, to describe the anisotropic plastic be-
havior. The Hill model [1] is already implemented in ABAQUS® and was used to accomplish a deeper
understanding of the behavior and applicability of an analytical, anisotropic yield function in describing
anisotropically deforming metals. The simulation results with this model were compared to the results
of simulations with the user-material subroutine of Huang [2] for a single crystal plasticity model, which
was modified by Kysar [3].
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