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1 Practical information

1.1 Location

The workshop will take place in Pfaffenwaldring 5a on the campus
in 70569 Vaihingen. It can be reached by S1, S2, S3 from either
Stuttgart central station as well as the airport (use exit ”Univer-
sität”). From the S-Bahn stop, please follow the provided sketch
to gain the SimTech building (Pfaffenwaldring 5a). The workshop
takes place on the ground floor in room 0.009.

1.2 Welcome snack

We invite all participants to join us for a welcome snack at La Bruschetta on Monday from around 11:45. We
will meet at the venue beforehand and walk to the restaurant (around 5 min. walk). In case you want to join
us immediately ”sur place”, the address is Pfaffenwaldring 62, 70569.

1.3 Workshop dinner

The workshop dinner will take place in Carls Brauhaus, Stauffenbergstraße 1, 70173 Stuttgart. We will meet
there around 18:30 (or you join us on the S-Bahn to get there after the discussion of the first day of the
workshop).

1.4 Wifi access

Wireless network access is granted via eduroam.
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2 Scientific Program

Monday, March 20, 2023
11:45–12:50 welcome lunch
12:50–13:00 opening
13:00–13:25 Sanath Keshav

Composite Boxels with imperfect Interfaces (ComBI) with FFT-based solvers
13:25–13:50 Fadi Aldakheel

A combined EBSD and machine learning approach for efficient multi-scale modeling
13:50–14:15 Mohammad Shojaee

Multiscale study of functionally graded shell lattice structures using physics guided neural net-
works

14:15–14:40 Siva Teja Sala
Prediction and modification of deformation in thin Ti6Al4V sheets using artificial neural networks

14:40–15:05 Frederic Bock
Data-driven and physics-based modelling for friction surfacing to identify and utilize process-
structure relations under different environmental conditions

15:05–15:30 coffee break
15:30–15:55 Lena Dyckhoff

Data-Driven Modeling of Yield Surfaces of Nanoporous Metals in Multiaxial Stress Space
15:55–16:20 Balduin Katzer

Applying a query language to a graph database for detecting hidden propertiesin dislocation
based plasticity

16:20–16:45 Markus Kästner
Exploring structure-property linkages using descriptor-based microstructure reconstruction

16:45–17:10 Alexander Hartmaier
Data-oriented constitutive models for polycrystalline metals

17:10–17:30 discussion
18:30–? workshop dinner

Tuesday, March 21, 2023
09:00–09:25 Karl Kalina

Physics-augmented neural networks meet hyperelasticity
09:25–09:50 Fabian Roth

Parametrised polyconvex hyperelasticity with neural networks
09:50–10:15 Dominik Klein

Nonlinear electro-elastic finite element analysis with physics-augmented neural network constitu-
tive models

10:15–10:40 coffee break
10:40–11:05 Kevin Linka

Constitutive Artificial Neural Networks (CANNs) with applications to soft biological tissues
10:40–11:30 Patrick Weber

Energy conservation for ANN material models: Comparing a weak enforcement with the penalty
method to a strong enforcement utilizing a specific data loss function

11:30–11:55 Julien Stöcker
Neural network based computational homogenization of arbitrary heterogeneous elastic
mesostructures

11:55–12:20 Julian Lißner
Double U-Net: Microstructure modeling via convolutional neural networks

12:20–12:30 closing
12:30–13:30 farewell snack
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3 Participants

Local organizers

• Prof. Tim Ricken, Institute of Structural Mechanics and Dynamics in Aerospace Engineering (ISD),
University of Stuttgart, tim.ricken@isd.uni-stuttgart.de

• Mahmoud Ashour, ISD, University of Stuttgart, mahmoud.ashour@isd.uni-stuttgart.de

• André Mielke, ISD, University of Stuttgart, andre.mielke@isd.uni-stuttgart.de

• Dr. Karsten Keller, ISD, University of Stuttgart, karsten.keller@isd.uni-stuttgart.de

• Dr. Andrea Thom, ISD, University of Stuttgart, andrea.thom@isd.uni-stuttgart.de

• Prof. Felix Fritzen, Institute of Applied Mechanics (CE) & SC SimTech, Data Analytics in Engineering
(DAE), University of Stuttgart, fritzen@simtech.uni-stuttgart.de

• Amir Laadhar, Phd., DAE, University of Stuttgart, amir.laadhar@mib.uni-stuttgart.de

• Julian Lißner, DAE, University of Stuttgart, lissner@mib.uni-stuttgart.de

• Sanath Keshav DAE, University of Stuttgart, keshav@mib.uni-stuttgart.de

External participants

• Prof. Fadi Aldakheel, Leibniz Universitaet Hannover, Institute of Continuum Mechanics and Zienkiewicz
Centre for Computational Engineering, Swansea University, UK, aldakheel@ikm.uni-hannover.de

• Frederic Bock, Helmholtz-Zentrum Hereon, Instutite of Materials Mechanics, Department of Solid-State
Materials Processing, frederic.bock@hereon.de

• Lena Dyckhoff, Institute of Materials Mechanics, Helmholtz-Zentrum Hereon, lena.dyckhoff@outlook.de

• Alexander Hartmaier, Lehrstuhl Werkstoffmechanik, Interdisciplinary Centre for Advanced Materials Sim-
ulation (ICAMS), Ruhr-Universität Bochum, Alexander.Hartmaier@icams.rub.de

• Dr. Karl Kalina, Technische Universität Dresden, Fakultät Maschinenwesen, Institut für Festkörperme-
chanik, karl.kalina@tu-dresden.de

• Prof. Markus Kästner, Technische Universität Dresden, Fakultät Maschinenwesen, Institut für Festkör-
permechanik, markus.kaestner@tu-dresden.de

• Balduin Katzer, Karlsruhe Institute of Technology (KIT), Institute of Applied Materials - Reliability and
Microstructure (IAM-ZM), balduin.katzer@kit.edu

• Dominik Klein, Technical University of Darmstadt, Cyber-Physical Simulation Group, klein@cps.tu-
darmstadt.de

• Lennart Linden, TU Dresden, Institute of Soild Mechanics, lennart.linden@tu-dresden.de

• Dr. Kevin Linka, Hamburg University of Technology Institute of Continuum and Materials Mechanics,
kevin.linka@tuhh.de

• Dr. Lukas Morand, Umformprozesse, Fraunhofer-Institut für Werkstoffmechanik IWM,
lukas.morand@iwm.fraunhofer.de

• Alexander Raßloff, Technische Universität Dresden, Fakultät Maschinenwesen, Institut für Festkörper-
mechanik, alexander.rassloff@tu-dresden.de

• Fabian Roth, Technical University of Darmstadt, Cyber-Physical Simulation Group

• Prof. Katrin Schulz, Karlsruhe Institute of Technology (KIT), Institute of Applied Materials - Reliability
and Microstructure (IAM-ZM), katrin.schulz@kit.edu
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• Paul Seibert, Technische Universität Dresden, Fakultät Maschinenwesen, Institut für Festkörperme-
chanik, paul.seibert@tu-dresden.de

• Mohammad Shojaee, Technical University of Darmstadt, Cyber-Physical Simulation Group,
shojaee@cps.tu-darmstadt.de

• Julien Stöcker, Technische Universität Dresden, Fakultät Bauingenieurwesen, Institut für Statik und
Dynamik der Tragwerke, julien.stoecker@tu-dresden.de

• Patrick Weber, Karlsruhe Institute of Technology Institute for Structural Analysis, patrick.weber@kit.edu

• Prof. Oliver Weeger, Technical University of Darmstadt, Cyber-Physical Simulation Group,
weeger@cps.tu-darmstadt.de

• Siva Teja Sala, Institut für Werkstoffmechanik, Laser-Materialbearbeitung und Strukturbewertung,
Helmholtz Zentrum Hereon, siva.sala@hereon.de

6

mailto:paul.seibert@tu-dresden.de
mailto:shojaee@cps.tu-darmstadt.de
mailto:julien.stoecker@tu-dresden.de
mailto:patrick.weber@kit.edu
mailto:weeger@cps.tu-darmstadt.de
mailto:siva.sala@hereon.de


9th Workshop GAMM AG Data, March 20/21, 2023 S. Keshav, F. Fritzen, M. Kabel

3.1 Composite Boxels with imperfect Interfaces (ComBI) with FFT-based solvers

Sanath Keshav1, Felix Fritzen1, Matthias Kabel2
1: Data Analytics in Engineering, Institute of Applied Mechanics (CE), University of Stuttgart, Germany;
mail: {keshav,fritzen}@mib.uni-stuttgart.de
2: Fraunhofer ITWM, Kaiserslautern, Germany; mail: matthias.kabel@itwm.fraunhofer.de

Cohesive zones were first introduced to simulate the production of cracks caused by interfacial damage.
However, the term is often used in a broader sense to refer to imperfect interfaces governed by constitutive
traction separation laws. In unstructured finite element simulations, cohesive zones are discretized by specific
interface conforming cohesive elements. The discretization of FFT-based methods is generally non-conforming
to the interfaces; hence the classical interface cohesive elements cannot be employed. In this work, we propose
a framework that is a generalization of composite boxels [Keshav, S. Fritzen, F. Kabel, M. 2022, Kabel, M
et al. 2015] for interfacial damage modeling in FFT-based solvers. The special focus is on gathering the
interface metadata from images using a novel image-based algorithm. An efficient implementation with a
particular emphasis on numerical robustness is proposed. Numerical examples along with traction and stress
field statistics comparing the proposed framework with unstructured finite element simulations are presented.

References

[1] Keshav, S., Fritzen, F., Kabel, M. [2023]: “ FFT-based homogenization at finite strains using composite
boxels (ComBo)”, Journal of Computational Mechanics 71, 191–212

[2] M. Kabel, D. Merkert, M. Schneider [2015]: “ Use of composite voxels in FFT-based homogenization”,
Computer Methods in Applied Mechanics and Engineering 294, 168–188

[3] M. Leuschner, F. Fritzen [2018]: “Fourier-accelerated Nodal Solvers (FANS) for homogenization prob-
lems”, Journal of Computational Mechanics 62,3, 359–392
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3.2 A combined EBSD and machine learning approach for efficient multi-scale
modeling

F. Aldakheel
Leibniz Universität Hannover; mail: aldakheel@ikm.uni-hannover.de
Computational material modeling using advanced numerical techniques speeds up the design process and
reduces the costs of developing new products. In the field of multiscale modeling, huge computation costs
are expected for modeling heterogeneous materials while trying to reach high accuracy levels. In this work,
a machine learning approach, namely the Convolutional Neural Network (CNN), is developed as a solution
providing a high level of accuracy, while being computationally efficient.
The data set for training and testing the CNNs consists of images of real microstructures (input) and the
homogenized stiffness components of the RVE (output). So far, research in this area has mainly focused
on two-phase microstructures with isotropic components. Imaging techniques such as Electron Backscatter
Diffraction (EBSD), allow the visualization of complex crystalline structures, with their orientation in space,
and motivate an extension of these CNNs to more complex microstructures.
In this work, a machine learning approach is proposed for anisotropic crystalline RVEs randomly oriented
in space. Hereby, the 21 independent components of the stiffness matrix are predicted. Furthermore, the
applicability of data augmentation in this talk will be discussed. The model efficiency is demonstrated by the
means of some representative examples.

Figure 1: EBSD and CNN for fast prediction of effective material properties.

References

[1] F. Aldakheel, C. Soyarslan, H. S. Palanisamy, E. S. Elsayed [2023]: “Machine Learning Aided Multiscale
Magnetostatics”, arXiv preprint arXiv:2301.12782
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9th Workshop GAMM AG Data, March 20/21, 2023 M. Shojaee, I. Valizadeh, D.K. Klein, O. Weeger

3.3 Multiscale study of functionally graded shell lattice structures using physics-
guided neural networks

M. Shojaee1, I. Valizadeh1, D.K. Klein1, O. Weeger1
1: Cyber Physical Simulation, Technical University of Darmstadt, Germany; mail: weeger@cps.tu-darmstadt.de

Additive manufacturing techniques have allowed for the production of functionally graded lattices with cus-
tomized mechanical properties. Among lattice geometries, triply periodic minimal surfaces (TPMS) are of
particular interest due to their geometric and mechanical properties, making them applicable in various fields
with efficient design. However, uncertainties remain regarding the mechanical behavior of shell lattices, in-
cluding their stability, deformability, and response to external forces.
In this regard, a theoretical and experimental study on the nonlinear microscale mechanical behavior of the
Schwarz primitive TPMS is conducted using physics-guided neural networks [1]. The study includes a sys-
tematic procedure that covers micro-scale to full-scale modeling and simulation. Specifically, the nonlinear
microscale behavior of the parameterized Schwarz primitive through theoretical and experimental methods is
investigated. The microstructure framework involves simulating representative volume elements (RVEs) with
different repeat unit cells to evaluate the RVE convergence and the size dependency of the effective behavior.
A parametric material model based on a physics-guided feed-forward neural network is employed to predict
the constitutive model of graded elastic solid structures at any arbitrary material point. Furthermore, the
linear static behavior of graded lattices made of Schwarz primitives is also examined on the macroscale level
to confirm the reliability and efficiency of the method. Then they are demonstrated through the examination
of homogeneous and graded lattice models on a macroscale level. Three different models are used: a full-scale
model, a homogenized finite element model using Abaqus, and a linear 3D elastic theory using the differential
quadrature method.
Finally, the convergence and accuracy of these methods for the static mechanical behavior at the finite defor-
mation continuum level are discussed. In conclusion, this study provides valuable insights into the nonlinear
microscale mechanical behavior of TPMS and the linear static behavior of graded lattices made of Schwarz
primitives on a macroscale level. The proposed multiscale approach is expected to enhance the understanding
of the mechanical behavior of functionally graded lattice structures and support their design and fabrication
for a wide range of applications.

Figure 1: Illustration of the multiscale simulation framework for functionally graded shell lattice structures

References

[1] M. Shojaee, I. Valizadeh, D.K. Klein, P. Sharifi, O. Weeger [2023]: “Multiscale simulation of additively
manufactured shell lattice metamaterials with physics-guided neural networks”, to be submitted
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3.4 Prediction and modification of deformation in thin Ti6Al4V sheets using arti-
ficial neural networks

S. T. Sala1, F. E. Bock1, D. Pöltl2, B. Klusemann1,2, N. Huber1,3, N. Kashaev1
1: Institute of Materials Mechanics, Helmholtz-Zentrum Hereon, Max-Planck Str. 1, 21502 Geesthacht,
Germany.
2: Institute for Production Technology and Systems, Leuphana University of Lüneburg, Universitätsallee 1,
21335 Lüneburg, Germany.
3: Institute of Materials Physics and Technology, Hamburg University of Technology, Eißendorfer Straße 42,
21073 Hamburg, Germany.
The accurate bending of sheet metal structures is critical in a variety of industrial and scientific contexts,
whether it is to modify existing components or achieve specific shapes. Laser peen forming (LPF) (see Fig. 2)
is an advanced process for sheet metal applications that involves using mechanical shock waves to deform a
specific area to a desired radius of curvature. The degree of deformation achieved through LPF is affected by
various experimental factors such as laser energy, the number of peening sequences, and specimen thickness.
Therefore, it is important to understand the complex dependencies and select the appropriate LPF process
parameters for forming or correction purposes. This study aims to develop a data-driven approach to predict
the deformation obtained from LPF for different process parameters. The experimental data is used to train,
validate, and test an artificial neural network (ANN). The trained ANN successfully predicted the deformation
obtained from LPF. A innovative process planning approach is developed to demonstrate the usability of
ANN predictions in achieving the desired deformation in a treated area. The effectiveness of this approach
is demonstrated on three benchmark cases involving thin Ti-6Al-4V sheets: deformation in one direction,
bi-directional deformation, and modification of an existing deformation in pre-bent specimens via LPF.

Figure 2: Experimental setup of LPF process where the LPF specimen is covered with a sacrificial overlay and
with a laminar flow of water as a transparent overlay. One edge of the specimen is clamped and the specimen
moves relative to the laser beam generating, a zig-zag peening pattern.
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9th Workshop GAMM AG Data, March 20/21, 2023 F.E. Bock, Z. Kallien, N. Huber, B. Klusemann

3.5 Data-driven and physics-based modelling for friction surfacing to identify and
utilize process-structure relations under different environmental conditions

F.E. Bock1, Z. Kallien1, N. Huber1, B. Klusemann1,2
1: Institute of Materials Mechanics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht,
Germany ; mail: frederic.bock@hereon.de
2: Institute for Production Technology and Systems, Leuphana University of Lüneburg, Universitätsallee 1,
21335 Lüneburg, Germany
In the last decade, there has been a surge in successful applications of machine learning models serving as a key
to unlock relationships along the process-structure-property-performance chain for vastly different problems
within the fields of materials mechanics. The consideration of physical laws in data-driven modelling has
recently been shown to enable enhanced prediction performances and increased generalization while required
amounts of data can be reduced, in comparison to solely using either one of these modelling approaches.
In this presentation, a simulation-assisted machine-learning (ML) framework is discussed on the example of
friction surfacing, a solid-state layer deposition process that can be used for repair or coating applications. The
aim is to use ML methods to foresee and understand the influence of process parameters and environmental
conditions on resulting deposit geometry and process behavior. Special attention is given to influences of the
maximum temperature on prediction targets during the process provided by a numerical heat transfer model.
To exploit the diverse potential of different ML algorithms and select the best for the particular problem
and available data, various machine-learning algorithms are evaluated. In addition, feature dependencies
of predicted targets are identified. For the generation of an experimental data set with as few samples as
possible, two separate designs of experiments are conducted, one for variation of process parameters as well as
another for the variation of substrate and backing material properties. The aim is to also represent the cross
parameter space between both individual spaces, which was achieved and enabled a reduction of experiments
by approximately 45 % in comparison to performing a similar design of experiments that comprises both
subspaces.

Figure 3: Schematic of the data workflow, originating from either process parameter space (PP) or substrate
and backing material property space (SBMP), including or excluding the numerically determined maximum
temperature Tmax to be processed by machine learning regression to predict the targets: process deposit
geometry and process behavior, respectively.
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9th Workshop GAMM AG Data, March 20/21, 2023 L. Dyckhoff, N. Huber

3.6 Data-Driven Modeling of Yield Surfaces of Nanoporous Metals in Multiaxial
Stress Space

L. Dyckhoff1, N. Huber1,2
1: Institute of Materials Mechanics, Helmholtz-Zentrum Hereon, Geesthacht, Germany; mail:
lena.dyckhoff@outlook.de
2: Institute of Materials Physics and Technology, Hamburg University of Technology, Hamburg, Germany;
mail: norbert.huber@hereon.de
Nanoporous metals, built out of complex ligament networks, can be produced with an additional level of
hierarchy [1]. The resulting complexity of the structure makes modeling of the mechanical behaviour compu-
tationally highly expensive and time consuming. In addition, multiaxial stresses occur in the higher hierarchy
ligaments. Therefore, knowledge of the multiaxial material behaviour, including the 6D yield surface, is re-
quired. For finite element (FE) modeling, we separate the hierar-chical nanoporous structure into the upper
and lower level of hierarchy. This allows independent adjustment of structural parameters on both hierarchy
levels and therefore an efficient analysis of structure-property-relationships. Furthermore, a promising ap-
proach to significantly reduce com-putational cost is to use surrogate models and FE-beam models to predict
the mechanical behav-iour of the lower level of hierarchy. As a first step towards such a model, we studied
the elastic behaviour and yield surfaces of ideal-ized diamond and Kelvin beam models using FE simulations.
The yield surfaces exhibit pronounced anisotropy, which could not be described properly by models like the
Deshpande-Fleck model for isotropic solid foams [1]. For this reason, we used data-driven and hybrid artificial
neural networks, as well as data-driven support vector machines and compared them regarding their potential
for the prediction of these yield surfaces. All considered methods turned out to be well suited and resulted in
relative errors < 4.5. Of the considered methods, support vector machines exhibit the highest generalization
and accuracy in 6D stress space and outside the range of the used training data.

Figure 1: Schematic of the workflow to integrate data-driven prediction of yield surfaces by machine learning
algorithms into hierarchical FE modeling of nanoporous metals.

References

[1] S. Shi et al. [2021]: “Scaling behavior of stiffness and strength of hierarchical network nanomaterials”,
Science 371, 1026-1033

12



9th Workshop GAMM AG Data, March 20/21, 2023 B. Katzer, D. Betsche, K. Schulz

3.7 Applying a query language to a graph database for detecting hidden proper-
tiesin dislocation based plasticity

B. Katzer1,2, D. Betsche3, K. Schulz1,2
1: Institute of Applied Materials - Reliability and Microstructure (IAM-ZM), Karlsruhe Institute of Technology,
Germany; mail: balduin.katzer@kit.edu, katrin.schulz@kit.edu
2: Institute of Applied Research (IAF), Karlsruhe University of Applied Science, Germany
3: Institute of Program Structures and Data Organization (IPD), Karlsruhe Institute of Technology, Germany
Graph analytics has been an emerging form of data analysis in the recent years. The method is usually appliedto
understand complex relationships between linked entitiy data in a network, e.g. shortest path solution,finding
connected components or predicting missing links. Graphs are mathematical structures used to modeldifferent
types of relationships. In this contribution we use graph analysis to detect hidden properties indislocation based
plasticity. We set a graph database with the management system ”Neo4J”, connecting themicrostructure data
in a graph structure. This leads to the possibility to query within the microstructure graphdata with the query
language ”Cypher”. We create a method to systematically extract physical informationabout the investigated
material microstructures. This enables the extraction of features in a way that yield anew approach for
homogenization based on physical mechanisms.
We demonstrate the application of the graph database query language as well as extracted features of dislo-
cationnetworks, which pave the way to a more naturally handling of complex data. We compare the analy-
sismethod and results from the graph databases with results from relational database analysis [1,2]. Finally,
wegive an outlook in several procedures, which are naturally applicable to the graph database, like the cre-
ationof hyper graphs for slimming the data, graph property predictions or the application of graph neural
networksfor the prediction of future graph states.

References

[1] B. Katzer, K. Zoller, D. Weygand, K. Schulz. [2022]: ”Identification of dislocation reaction kinetics
in complex dislocation networks for continuum modeling using data-driven methods”, Journal of the
Mechanics and Physics of Solids, 105042

[2] B. Katzer, K. Zoller, J. Bermuth, D. Weygand, K. Schulz. [2023]: ”Characterization of Lomer junctions
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3.8 Exploring structure-property linkages using descriptor-based microstructure re-
construction
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Establishing and inverting structure-property-linkages is a central topic in inverse computational materials engi-
neering and offers great potential for acceleration by data-driven techniques. For this purpose a microstructure
reconstruction approach is presented and used in an automatic exploration and inversion framework.
Recently developed algorithms allow for generating RVEs of complex microstructures given a set of microstruc-
ture descriptors [1, 2]. The central idea is to formulate microstructure reconstruction as a differentiable op-
timization problem, allowing for highly efficient gradient-based quasi-Newton optimizers. The approach is
implemented in MCRpy [3] and an extension by a suitable post-processing as well as a validation are presented
in [4]. An overview over this method is given and current extensions are highlighted.
A promising application of descriptor-based reconstruction lies in the exploration and inversion of structure-
property linkages. For this purpose, a large data set of structure-property pairs is needed due to the complex
and nonlinear nature of the underlying relation. Therefore, computational augmentation promises to allow
for data-driven approaches even on the basis of a small data set. For this purpose, microstructure images in
the data-base are characterized by translation-invariant descriptors by MCRpy [3]. Then, three-dimensional
microstructures are reconstructed from the descriptors and the effective properties are determined by numerical
simulations. Finally, all descriptor-property pairs in the data base are used to predict potentially improved
microstructures in terms of their associated descriptors. These descriptors can be passed to the reconstruction
and simulation tools to repeat the same process in an automated data-driven materials design loop.
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3.9 Data-oriented constitutive models for polycrystalline metals
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In classical constitutive modeling, the response of a material to mechanical loads is described by explicit
mathematical expressions for the relations between stress and strain or strain-rates. Such mathematical
formulations can become rather intricate, e.g., when describing history-dependent plasticity on the level of
single-crystalline regions, as it is done in crystal plasticity. Yet, typically, such closed-form constitutive models
do not take into account microstructural features, as grain size and shape or the crystallographic texture. This
situation is rather unsatisfactory from a materials science point-of-view, as it is known that such microstructural
features do not only control the mechanical behavior of a material but, moreover, they can be subject to
change during plastic deformation. In this work, two approaches are highlighted how microstructure-sensitive
data on plastic deformation of polycrystals are used to train numerically efficient machine learning models as
constitutive relations that can directly be applied in finite-element models of engineering structures.
In the first approach, the anisotropic yield function Barlat Yld2004-18p is parametrized from micromechanical
simulations for different textures. The structure-property relationship between the crystallographic texture and
the material parameters is then identified by applying supervised Machine Learning (ML) methods on that
data set. As part of this identification process, different descriptors for the crystallographic texture are tested
in their capability to relate unimodal and also fibre textures to a unique set of anisotropic parameters.
In the second approach, it is investigated how an optimal data-generation strategy for the training of a ML
model can be established that produces reliable and accurate ML yield functions with the least possible effort.
It is shown that even for materials with a significant plastic anisotropy, as polycrystals with a pronounced Goss
texture, 300 data points representing the yield locus of the material in stress space, are sufficient to train
the ML yield function successfully. Furthermore, the formulation of a full ML flow rule is discussed, including
strain hardening captured from micromechanical data.
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3.10 Physics-augmented neural networks meet hyperelasticity
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Within this contribution, we present a hyperelastic constitutive model based on physics-augmented neural
networks (PANNs) which fulfills all common physical requirements on this model class by construction and, in
particular, is applicable for compressible material behavior [1]. The model combines the theory of hyperelasticity
developed in the last decades with the up-to-date techniques of machine learning, by formulating a hyperelastic
potential as an input-convex neural network (ICNN). This potential fulfills conditions such as compatibility
with the balance of angular momentum, objectivity, material symmetry, polyconvexity, and thermodynamic
consistency. Analytical growth terms and normalization terms, formulated for both isotropic and transversely
isotropic material behavior, are used to ensure a physically sensible stress behavior of the model and to
guarantee that the undeformed state is stress free and with zero energy. The non-negativity of the hyperelastic
potential is numerically verified by sampling the space of admissible deformations states. The applicability
of the model is demonstrated by calibrating it on data generated with a neo-Hooke potential. Furthermore,
its extrapolation capability is compared to models with reduced physical background, showing excellent and
physically meaningful predictions with the proposed PANN approach, see the Finite Element simulations given
in Figure 1. Finally, the application of NNs enriched with a well-founded physical background is shown in the
data-driven multiscale scheme FEANN [2].
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Figure 1: Finite Element simulation of a torsional sample: (a) loading conditions, (b) stress field P nh
31

calculated with a neo-Hooke model by specifying a distortion of ϕ̂ = 45◦, and (c) relative error of the stress
field PPANN

31 predicted with the PANN. The model was trained with only uniaxial stress-strain data and
contains only 4 neurons in one hidden layer [1].
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3.11 Parametrised polyconvex hyperelasticity with neural networks
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Convexity is a convenient property of mathematical functions in many applications. In the framework of
hyperelastic constitutive modeling, the polyconvexity condition is widely used as it implies ellipticity and thus
ensures well-behaving numerics [1]. On the other side, assuming convexity constrains the function space a
model can represent. While for some applications, this constraint is well motivated, it is too restrictive for
other use cases. And, finally, there are applications where a function can be motivated to be convex in some
of its arguments, while it should not necessarily be convex in its other arguments.
In this work [2], partially input-convex neural network (pICNN) architectures are applied for the modeling of
parametrised polyconvex hyperelastic potentials. Receiving two different sets of input arguments, pICNNs are
convex in one of them, while for the other they represent arbitrary relationships which are not necessarily convex.
Three different pICNN architectures are investigated, which are all based on feed-forward neural networks.
Extending the work of [3], the proposed model fulfills all common constitutive conditions of hyperelasticity
by construction. The applicability of the model is demonstrated by calibrating it on data generated with an
analytical parametrized potential.
Combining a sound mechanical basis with the extraordinary flexibility that neural networks offer, the model
will be able to represent the behavior of materials with parametrized microstructures, allowing for efficient
multiscale simulations and optimization of microstructures. Furthermore, the extension towards multi-physical
behavior is straightforward.
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3.12 Nonlinear electro-elastic finite element analysis with physics-augmented neu-
ral network constitutive models
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In the last decades, a vast amount of highly specialized metamaterials has been developed and, with advancing
requirements in engineering applications, the trend is growing. Often comprised of complex multiphysical
microstructures, these materials can be tailored for each specific application. At the same time, this sets a
challenge for the mechanical description of such materials, as they behave highly nonlinear. Thus, we envision
the use of physics-augmented neural networks, circumventing the current limitations of analytically formulated
material models.
In [2], the concept of polyconvex hyperelastic neural network constitutive models [1] was extended towards
electro-mechanically coupled material behavior at finite deformations. Using electro-mechanically coupled
invariants as inputs for convex neural networks, a polyconvex internal energy is constructed. In this way, the
model fulfills common constitutive conditions such as objectivity and ellipticity by construction. Augmenting
the neural network with constitutive conditions is not only important to arrive at reliable, i.e., physically
sensible model predictions. More than that, it allows for model calibration with small datasets, which are
usually only available in engineering applications, e.g., from experimental material characterization tests.
Finally, the model is applied for the finite-element analysis of microstructured electro-active materials [3]. In
this way, it is demonstrated how highly flexible neural network constitutive models can be applied for efficient
multiscale simulations. Furthermore, the straightforward applicability of the neural network constitutive model
in a finite element framework is shown.
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3.13 Constitutive Artificial Neural Networks (CANNs) with applications to soft
biological tissues
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The classical, theory-driven approach to describe the deformation of a material body relies on the formulation
of constitutive equations relating strains and stresses. A drawback of this approach are the efforts typically
required to develop appropriate functional relations and identify material parameters .

These efforts are not required in data-driven approaches to constitutive modeling. To combine the advantages
and overcome the disadvantages of both theory- and data-driven constitutive modeling, we have developed
the novel concept of Constitutive Artificial Neural Networks (CANNs). This machine learning approach to
data-driven constitutive modeling does not require any major a priori assumptions about the constitutive
law but yet incorporates substantial theoretical knowledge about continuum mechanics and constitutive
theory. This way, CANNs are able to learn the constitutive law of a material from relatively small amounts
of stress-strain data. Moreover, by their ability to incorporate also non-mechanical data, they cannot only
describe the constitutive behavior of known materials but also predict the one of new materials, making them
the ideal tool for computational biomechanics. Using data from mechanical tests, histological analyses and
advanced imaging, this architecture is trained to predict the nonlinear macroscopic mechanical properties of
e.g. arterial and brain tissue.

Moreover, we demonstrate that our machine learning architecture is not limited to predictions but can also help
to understand the mechanics of soft tissue. Using concepts of explainable artificial intelligence, we demonstrate
that it enables the automatic, systematic and largely unbiased quantification of the importance of different
microstructural features for the macroscopic mechanical properties.
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3.14 Energy conservation for ANN material models: Comparing a weak enforce-
ment with the penalty method to a strong enforcement utilizing a specific
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In phenomenological material modeling, macroscopic constitutive equations are based on experimental obser-
vations and properly defined physical laws. For more than thirty years, these classical methods are accompanied
by data-based approaches in order to circumvent the traditional definition of analytical material functions and
the subsequent fitting of their material parameters. In this contribution, we follow the method of training a
feedforward artificial neural network (ANN) as constitutive model, directly from given strain and stress data.
A major drawback of this and other data-based methods is the fact, that the corresponding material models
lack physical properties. Such algorithms have to learn them implicitly from the given data. This problem
becomes worse if only a small amount of data is available. Therefore, current developments in ANN material
modeling aim for the incorporation of physical laws. For example, in Weber et al. [1], constrained
optimization techniques are used to enforce physical constraints, e.g. energy conservation, weakly during the
training process. In Klein et al. [2], input convex neural networks are used to approximate hyperelastic
material behavior. The specific ANN definition enforces energy conservation in a strong sense, but needs
additional derivatives of the ANN output. An overview is given in Fig. 1.

Figure 1: Comparison between weak enforcement of energy conservation via error term extension (left) and
strong enforcement with a specific ANN output and stress definition (right)

In this contribution, we compare these two methods of enforcing energy conservation for ANN material mod-
eling. Different sizes of synthetic data sets are gathered from an analytical hyperelastic material model at
a plain stress state. With both approaches, corresponding ANN material models are generated. They are
compared with respect to training time, training data error, their performance on unknown data on material
level and their performance within finite element calculations of plain stress structures.
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3.15 Neural network based computational homogenization of arbitrary heteroge-
neous elastic mesostructures
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Direct numerical analysis of advanced composite materials with heterogeneous mesostructures by means of
homogenization-based multiscale modeling poses a computationally expensive challenge in large-scale engineer-
ing applications. The required computational effort can be reduced by employing Machine Learning methods
for computational homogenization. Typically, one unit cell with representative characteristics of the hetero-
geneous structure is numerically investigated for this method. This limitation to a singular representation
presents a simplification of the real composition.
However, previous contributions have shown that Convolutional Neural Networks (CNN) exhibit high accuracy
when utilized for homogenization of arbitrary heterogeneous structures employing Statistical Volume Elements
(SVE) [1,2]. The SVE allow for the consideration of the naturally occurring fluctuations within the composite
material.
This contribution investigates the applicability of the former findings to multiscale analysis. Therefore, dif-
ferently constituted SVE and their respective constitutive response under arbitrary loading within the elastic
regime are evaluated. Those are utilized to obtain a generalized Neural Network constitutive model which
can be applied in Finite Element (FE) Analysis as a substitute for direct evaluation of the SVE within an
FE2 framework. Primarily, two different approaches for the consideration of the mesoscale composition are
investigated. They are compared to a multiscale reference solution with respect to accuracy in the homog-
enization task and required computational effort. Within the first approach, a CNN is utilized to extract
a one-dimensional representation from the mesostructure, while in the second approach, this is replaced by
the Feed Forward Neural Network with scalar-valued volume fraction as an input. Both approaches employ
the constitutive relation of the macroscopic strains together with the respective representation of arbitrary
mesostructures to compute the macroscopic stresses.
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3.16 Double U-Net: Microstructure modeling via convolutional neural networks
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High performance materials are tuned by optimizing the material on its microscale. Manufacturing processes
as well as the required tests during development lead to exorbitant costs and time investments. To improve the
efficiency of the design loop, intermediate processes can be substituted by numerical simulations. Nevertheless,
due to the representation of the microstructured material via (usually high resolution) images, direct simulations
remain computationally costly [1]. One approach to reduce the computational cost is via machine learning.
In microstructure modeling, convolutional neural networks (Conv Nets) have recently gained popularity. One
major advantage of Conv Nets is that they operate directly on the image data with no further information
required for the prediction. The rise in popularity was amongst others due to the development of the so called
U-net [2], which is a Conv Net layout designed for image predictions based on image inputs, well suited to
predict the full field solution of a microstructured image, e.g. the thermal flux. If the data is available, the
Conv Net can be expanded to predict any physical behaviour of the microstructured material.
Improvements of the U-net were found by an elaborate extension of the original design and the implemen-
tation of a multilevel optimization scheme. Our new model is applied to predict the thermal behaviour of
the microstructured material for near arbitrary microstructure input, i.e. by allowing for highly variable mi-
crostructure characteristics, input resolutions as well different material phase contrasts, i.e. conducting as well
as insulating inclusions.
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