Publications of the Chair of Continuum Mechanics

An overview of the publications of the Chair of Continuum Mechanics can be found on this website.
[Photo: Tamara Gak (Unsplash)]

  1. 2021

    1. Lissa, S., Ruf, M., Steeb, H., & Quintal, B. (2021). Digital rock physics applied to squirt flow. Geophysics, 86(4), MR235--MR245. https://doi.org/10.1190/geo2020-0731.1
    2. Balcewicz, M., Siegert, M., Gurris, M., Ruf, M., Krach, D., Steeb, H., & Saenger, E. H. (2021). Digital Rock Physics: A Geological Driven Workflow for the Segmentation of Anisotropic Ruhr Sandstone. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.673753
    3. Taghizadeh, K., Steeb, H., Luding, S., & Magnanimo, V. (2021). Elastic waves in particulate glass-rubber mixtures. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477(2249), Article 2249. https://doi.org/10.1098/rspa.2020.0834
    4. Ghobadi, E., Shutov, A., & Steeb, H. (2021). Parameter Identification and Validation of Shape-Memory Polymers within the Framework of Finite Strain Viscoelasticity. Materials, 14(8), 2049. https://doi.org/10.3390/ma14082049
    5. Yiotis, A., Karadimitriou, N. K., Zarikos, I., & Steeb, H. (2021). Pore-scale effects during the transition from capillary- to viscosity-dominated flow dynamics within microfluidic porous-like domains. Scientific Reports, 11(1), 3891. https://doi.org/10.1038/s41598-021-83065-8
    6. Schmidt, P., & Steeb, H. (2021). Investigation of heterogeneous fracture aperture distributions in a hydro mechanical setting using hybrid-dimensional interface elements. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000030
    7. Gao, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., & Sauter, M. (2021). A Two-Phase, Pore-Scale Reactive Transport Model for the Kinetic Interface-Sensitive Tracer. Water Resources Research, 57(6), e2020WR028572. https://doi.org/10.1029/2020WR028572
    8. Schmidt, P., Steeb, H., & Renner, J. (2021). Investigations into the opening of fractures during hydraulic testing using a hybrid-dimensional flow formulation. Environmental Earth Sciences, 80, 497. https://doi.org/10.1007/s12665-021-09767-4
    9. Schuck, B., Teutsch, T., Alber, S., Ressel, W., Steeb, H., & Ruf, M. (2021). Study of air void topology of asphalt with focus on air void constrictions – a review and research approach. Road Materials and Pavement Design, 22(sup1), S425–S443. https://doi.org/10.1080/14680629.2021.1907215
    10. Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., Holm, C., Class, H., Steeb, H., & Rybak, I. (2021). Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods. Transport in Porous Media, 138, 1–23. https://doi.org/10.1007/s11242-021-01586-2
    11. Krach, D., & Steeb, H. (2021). Simulation of weak-inertia single-phase flow in porous materials using Smoothed Particle Hydrodynamics. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000289
    12. Kolditz, O., Görke, U.-J., Konietzky, H., Maßmann, J., Nest, M., Steeb, H., Wuttke, F., & Nagel, T. (2021). GeomInt–Mechanical Integrity of Host Rocks. Springer. https://doi.org/10.1007/978-3-030-61909-1
    13. Weinhardt, F., Class, H., Vahid Dastjerdi, S., Karadimitriou, N., Lee, D., & Steeb, H. (2021). Experimental Methods and Imaging for Enzymatically Induced Calcite Precipitation in a Microfluidic Cell. Water Resources Research, 57(3), e2020WR029361. https://doi.org/10.1029/2020WR029361
    14. Schmidt, P., Dutler, N., & Steeb, H. (2021). Importance of fracture deformation throughout hydraulic testing under in situ conditions. Geophysical Journal International, 228, 493–509. https://doi.org/10.1093/gji/ggab354
    15. Osorno, M., Schirwon, M., Kijanski, N., Sivanesapillai, R., Steeb, H., & Göddeke, D. (2021). A cross-platform, high-performance SPH toolkit for image-based flow simulations on the pore scale of porous media. Computer Physics Communications, 267, 108059. https://doi.org/10.1016/j.cpc.2021.108059
    16. Kocur, G. K., Harmanci, Y. E., Chatzi, E., Steeb, H., & Markert, B. (2021). Automated identification of the coefficient of restitution via bouncing ball measurement. Archive of Applied Mechanics, 91(1), 47–60. https://doi.org/10.1007/s00419-020-01751-x
    17. Dingler, C., Müller, H., Wieland, M., Fauser, D., Steeb, H., & Ludwigs, S. (2021). Actuators: From Understanding Mechanical Behavior to Curvature Prediction of Humidity-Triggered Bilayer Actuators (Adv. Mater. 9/2021). Advanced Materials, 33(9), 2170067. https://doi.org/10.1002/adma.202170067
  2. 2020

    1. Hasan, S., Niasar, V., Karadimitriou, N. K., Godinho, J. R. A., Vo, N. T., An, S., Rabbani, A., & Steeb, H. (2020). Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography. Proceedings of the National Academy of Sciences, September 22, 2020. https://doi.org/10.1073/pnas.2011716117
    2. Ruf, M., & Steeb, H. (2020). micro-XRCT data set of open-pored asphalt concrete. DaRUS. https://doi.org/10.18419/DARUS-639
    3. Hermann, S., Schneider, M., Flemisch, B., Frey, S., Iglezakis, D., Ruf, M., Schembera, B., Seeland, A., & Steeb, H. (2020). Datenmanagement im SFB 1313. https://doi.org/10.17192/BFDM.2020.1.8085
    4. Lissa, S., Ruf, M., Steeb, H., & Quintal, B. (2020). Effects of crack roughness on attenuation caused by squirt flow in Carrara marble. SEG Technical Program Expanded Abstracts 2020. https://doi.org/10.1190/segam2020-3427789.1
    5. Ruf, M., & Steeb, H. (2020). micro-XRCT data set of Carrara marble with artificially created crack network: fast cooling down from 600°C. DaRUS. https://doi.org/10.18419/DARUS-682
    6. Sauerwein, M., & Steeb, H. (2020). Modeling of dynamic hydrogel swelling within the pore space of a porous medium. International Journal of Engineering Science, 155, 103353. https://doi.org/10.1016/j.ijengsci.2020.103353
    7. Kocur, G. K., Harmanci, Y. E., Chatzi, E., Steeb, H., & Markert, B. (2020). Automated identification of the coefficient of restitution via bouncing ball measurement. Archive of Applied Mechanics. https://doi.org/10.1007/s00419-020-01751-x
    8. Kijanski, N., Krach, D., & Steeb, H. (2020). An SPH Approach for Non-Spherical Particles Immersed in Newtonian Fluids. Materials, 13(10), 2324. https://doi.org/10.3390/ma13102324
    9. Ruf, M., & Steeb, H. (2020). An open, modular, and flexible micro X-ray computed tomography system for research. Review of Scientific Instruments, 91(11), 113102. https://doi.org/10.1063/5.0019541
    10. Ruf, M., & Steeb, H. (2020). micro-XRCT data set of Carrara marble with artificially created crack network: slow cooling down from 600°C. DaRUS. https://doi.org/10.18419/DARUS-754
    11. Ruf, M., & Steeb, H. (2020). micro-XRCT data set of an in-situ flow experiment with an X-ray transparent flow cell. DaRUS. https://doi.org/10.18419/DARUS-691
    12. Schepp, L. L., Ahrens, B., Balcewicz, M., Duda, M., Nehler, M., Osorno, M., Uribe, D., Steeb, H., Nigon, B., Stöckhert, F., Swanson, D. A., Siegert, M., Gurris, M., Saenger, E. H., & Ruf, M. (2020). Digital rock physics and laboratory considerations on a high-porosity volcanic rock: micro-XRCT data sets. DaRUS. https://doi.org/10.18419/DARUS-680
  3. 2019

    1. Karadimitriou, N. K., Mahani, H., Steeb, H., & Niasar, V. (2019). Nonmonotonic Effects of Salinity on Wettability Alteration and Two-Phase Flow Dynamics in PDMS Micromodels. Water Resources Research, 55(11), 9826--9837. https://doi.org/10.1029/2018wr024252
    2. Schmidt, P., & Steeb, H. (2019). Numerical aspects of hydro-mechanical coupling of fluid-filled fractures using hybrid-dimensional element formulations and non-conformal meshes. GEM - International Journal on Geomathematics, 10(1), 14. https://doi.org/10.1007/s13137-019-0127-5
    3. Zhang, H., Frey, S., Steeb, H., Uribe, D., Ertl, T., & Wang, W. (2019). Visualization of Bubble Formation in Porous Media. IEEE Transactions on Visualization and Computer Graphics, 25(1), 1060–1069. https://doi.org/10.1109/TVCG.2018.2864506
    4. Quintal, B., Caspari, E., Holliger, K., & Steeb, H. (2019). Numerically quantifying energy loss caused by squirt flow. Geophysical Prospecting, 67(8), 2196–2212. https://doi.org/10.1111/1365-2478.12832
    5. Steeb, H., & Renner, J. (2019). Mechanics of Poro-Elastic Media: A Review with Emphasis on Foundational State Variables. Transport in Porous Media, 120(2), 437–461. https://doi.org/10.1007/s11242-019-01319-6
  4. 2018

    1. Sauerwein, M., & Steeb, H. (2018). A modified effective stress principle for chemical active multiphase materials with internal mass exchange. Geomechanics for Energy and the Environment, 15, 19--34. https://doi.org/10.1016/j.gete.2018.02.001
    2. Ghobadi, E., Elsayed, M., Krause-Rehberg, R., & Steeb, H. (2018). Demonstrating the Influence of Physical Aging on the Functional Properties of Shape-Memory Polymers. Polymers, 10(2), 107. https://doi.org/10.3390/polym10020107
    3. Ghobadi, E., Marquardt, A., Zirdehi, E. M., Neuking, K., Varnik, F., Eggeler, G., & Steeb, H. (2018). The Influence of Water and Solvent Uptake on Functional Properties of Shape-Memory Polymers. International Journal of Polymer Science, 2018, 7819353. https://doi.org/10.1155/2018/7819353
    4. Schneider, M., Hofmann, T., Andrä, H., Lechner, P., Ettemeyer, F., Volk, W., & Steeb, H. (2018). Modelling the microstructure and computing effective elastic properties of sand core materials. International Journal of Solids and Structures, 143, 1--17. https://doi.org/10.1016/j.ijsolstr.2018.02.008
  5. 2014

    1. Renner, J., & Steeb, H. (2014). Modeling of Fluid Transport in Geothermal Research. In W. Freeden, M. Z. Nashed, & T. Sonar (Eds.), Handbook of Geomathematics (pp. 1443–1505). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27793-1_81-2
  6. 2012

    1. Gueven, I., Kurzeja, P., Luding, S., & Steeb, H. (2012). Experimental evaluation of phase velocities and tortuosity in fluid saturated highly porous media. PAMM, 12(1), 401--402. https://doi.org/10.1002/pamm.201210189
  7. 2007

    1. Ebinger, T., Diebels, S., & Steeb, H. (2007). Numerical Homogenization Techniques Applied to Growth and Remodelling Phenomena. Computational Mechanics, 39(6), 815--830. https://doi.org/10.1007/s00466-006-0071-8
    2. Diebels, S., Johlitz, M., Steeb, H., Chatzouridou, A., Batal, J., & Possart, W. (2007). A continuum-based model capturing size effects in polymer bonds. Journal of Physics: Conference Series, 62(1), 34. http://stacks.iop.org/1742-6596/62/i=1/a=003
  8. 2006

    1. Chen, Z., Steeb, H., & Diebels, S. (2006). A time-discontinuous Galerkin method for the dynamical analysis of porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 30(11), 1113--1134. https://doi.org/10.1002/nag.516
  9. 2005

    1. Diebels, S., Ebinger, T., & Steeb, H. (2005). An anisotropic damage model of foams on the basis of a micromechanical description. Journal of Materials Science, 40(22), 5919--5924. https://doi.org/10.1007/s10853-005-5043-4
    2. Ebinger, T., Steeb, H., & Diebels, S. (2005). Modeling macroscopic extended continua with the aid of numerical homogenization schemes. Computational Materials Science, 32(3–4), 337--347. https://doi.org/10.1016/j.commatsci.2004.09.034
    3. Ebinger, T., Steeb, H., & Diebels, S. (2005). Modeling and homogenization of foams. Comp. Assisted Mechanics and Engineering Sciences, 12, 49–63.
  10. 2004

    1. Steeb, H., & Diebels, S. (2004). Modeling thin films applying an extended continuum theory based on a scalar-valued order parameter. International Journal of Solids and Structures, 41(18–19), 5071--5085. https://doi.org/10.1016/j.ijsolstr.2004.03.013
  11. 2003

    1. Diebels, S., & Steeb, H. (2003). Stress and couple stress in foams. Computational Materials Science, 28(3–4), 714–722. https://doi.org/10.1016/j.commatsci.2003.08.025
    2. Steeb, H., & Diebels, S. (2003). A thermodynamic-consistent model describing growth and remodeling phenomena. Computational Materials Science, 28(3–4), 597--607. https://doi.org/10.1016/j.commatsci.2003.08.016
  12. 2002

    1. Diebels, S., & Steeb, H. (2002). The size effect in foams and its theoretical and numerical investigation. Proceedings of the Royal Society A, 458(2028), 2869–2883. https://doi.org/10.1098/rspa.2002.0991
To the top of the page