Proceeding Volumes

Articles of Members of our Chair in Proceeding Volumes.

2018

M. Rambausek & M.-A. Keip. Strain-mediated magneto-electric coupling in soft composites. Proceedings of the Third Seminar on the Mechanics of Multifunctional Materials (2018), 97–100.


D. KienleC. GräserO. Sander & M.-A. Keip. Efficient and reliable phase‐field simulation of brittle fracture using a nonsmooth multigrid solution scheme. Proceedings in Applied Mathematics and Mechanics 18 (2018).


M.-A. Keip & E. Polukhov. Computational stability analysis of magnetorheological elastomers across scales. Proceedings in Applied Mathematics and Mechanics 18 (2018).


M.-A. Keip & E. Polukhov. Multiscale computational stability analysis of magnetorheological elastomers. Proceedings of the Third Seminar on the Mechanics of Multifunctional Materials (2018), 53–56.


2017

M. Rambausek & M.-A. Keip. Micro- and Macrostructural magneto-electric coupling in soft composites. Proceedings of the 7th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry (2017), 600–604.


D. KienleF. AldakheelS. Teichtmeister & C. Miehe. A phase field model for porous plastic solids at ductile fracture. Proceedings of the 7th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry (2017), 326–329.


S. TeichtmeisterD. KienleF. Aldakheel & M.-A. Keip. A Phase Field Approach to Fracture in Anisotropic Brittle Solids. Proceedings of the 7th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry (2017), 288–291.


A. NateghiH. DalM.-A. Keip & C. Miehe. Affine Full Network Model for Strain-Induced Crystallization in Rubbery Polymers. Proceedings of the 7th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry (2017).


M. Rambausek & M.-A. Keip. Magneto‐electro‐active polymers: material properties and structural effects. Proceedings in Applied Mathematics and Mechanics 17 (2017), 545–546.


F. AldakheelD. KienleM.-A. Keip & C. Miehe. Phase Field Modeling of Ductile Fracture in Soil Mechanics. Proceedings in Applied Mathematics and Mechanics 17 (2017), 383–384.


A. SridharM.-A. Keip & C. Miehe. A Large‐Deformation Phase‐Field Approach for the Modeling of Magneto‐Sensitive Elastomers. Proceedings in Applied Mathematics and Mechanics 17 (2017), 569–570.


D. VallicottiA. Sridhar & M.-A. Keip. A Variational Homogenization Approach on Large Strain Micro‐Electro‐Mechanics. Proceedings in Applied Mathematics and Mechanics 17 (2017), 571–572.


E. PolukhovD. Vallicotti & M.-A. Keip. Computational Multi‐Scale Stability Analysis of Periodic Electroactive Polymer Composites at Finite Strains. Proceedings in Applied Mathematics and Mechanics 17 (2017), 543–544.


F. Göküzüm & M.-A. Keip. Consistent macroscopic tangent computation for FFT‐based computational homogenization at finite strains. Proceedings in Applied Mathematics and Mechanics 17 (2017), 589–590.


M.-A. Keip & O. Nadgir. A large‐strain phase‐field model for nematic elastomers based on Landau‐de‐Gennes theory. Proceedings in Applied Mathematics and Mechanics 17 (2017), 437–438.


A. NateghiM.-A. Keip & C. Miehe. An Affine Micro‐Sphere Model for Strain‐Induced Crystallization in Rubbery Polymers. Proceedings in Applied Mathematics and Mechanics 17 (2017), 439–440.


S. TeichtmeisterD. KienleF. Aldakheel & C. Miehe. Variational framework for phase field modeling of ductile fracture in porous solids at finite strains. Proceedings in Applied Mathematics and Mechanics 17 (2017), 279–280.


2016

S. TeichtmeisterF. Aldakheel & C. Miehe. A Phase-Field Model of Ductile Fracture at Finite Strains. Proceedings in Applied Mathematics and Mechanics 16 (2016), 181–182.


D. KienleS. Mauthe & C. Miehe. Poiseuille‐Type Fluid Transport in Poro‐Elastic Solids at Fracture. Proceedings in Applied Mathematics and Mechanics 16 (2016), 149–150.


L. BögerA. Nateghi & C. Miehe. Minimization‐and Saddle‐Point‐Based Modeling of Diffusion‐Deformation‐Processes in Hydrogels. Proceedings in Applied Mathematics and Mechanics 16 (2016), 307–308.


M. RambausekM.-A. Keip & C. Miehe. A multiscale view on shape effects in the computational characterization of magnetorheological elastomers. Proceedings in Applied Mathematics and Mechanics 16 (2016), 383–384.


D. VallicottiS. TeichtmeiserM.-A. Keip & C. Miehe. Variational Treatment and Stability Analysis of Coupled Electro-Mechanics. Proceedings in Applied Mathematics and Mechanics 16 (2016), 401–402.


O. NadgirM.-A. Keip & C. Miehe. An anisotropic phase-field model for transversely isotropic barium titanate with bounded moduli. Proceedings in Applied Mathematics and Mechanics 16 (2016), 467–468.


A. SridharM.-A. Keip & C. Miehe. A Magneto‐Mechanically Coupled Phase‐Field Model at Large Deformation. Proceedings in Applied Mathematics and Mechanics 16 (2016), 489–490.


2015


S. Teichtmeister & C. Miehe. Phase-Field Modeling of Fracture in Anisotropic Media. Proceedings in Applied Mathematics and Mechanics 15 (2015), 159–160.


A. SridharA. Keip & C. Miehe. Computational Homogenization in Micro-Magneto-Elasticity. Proceedings in Applied Mathematics and Mechanics 15 (2015), 363–364.


H. N. M. ThaiM.-A. KeipJ. SchröderH.-Y. Amanieu & D. Rosato. Simulation of Atomic Force Microscopy for investigating BaTiO3 and LiMn2O4 nanostructures. Proceedings in Applied Mathematics and Mechanics 15 (2015), 719–722.


M. LabuschM.-A. KeipD. C. Lupascu & J. Schröder. Computational characterization of magneto-electric composites: the role of ferroelectric prepolarization. Proceedings in Applied Mathematics and Mechanics 15 (2015), 457–459.


M.-A. Keip & M. Rambausek. On the generation of soft magneto-electric effects through Maxwell interactions. Proceedings in Applied Mathematics and Mechanics 15 (2015), 309–311.


A. NateghiS. Mauthe & C. Miehe. Variational Formulation and Numerical Implementation of Diffusion in Hydrogels at Finite Strains. Proceedings in Applied Mathematics and Mechanics 15 (2015), 411–412.


2014


G. EthirajA. Sridhar & C. Miehe. A Magneto-Visco-Elastic Model for Magnetorheological Elastomers. Proceedings in Applied Mathematics and Mechanics 14 (2014), 515–516.


H. N. M. ThaiM.-A. Keip & J. Schröder. Phase-field simulation of piezoresponse force microscopy in consideration of different environmental conditions. Proceedings in Applied Mathematics and Mechanics 14 (2014), 385–386.


M. LabuschM.-A. KeipB. Kiefer & J. Schröder. Computation of effective non-linear inelastic properties of magnetostrictive composites. Proceedings in Applied Mathematics and Mechanics 14 (2014), 559–560.


M.-A. Keip & K. Bhattacharya. A phase-field approach for the modeling of nematic liquid crystal elastomers. Proceedings in Applied Mathematics and Mechanics 14 (2014), 577–578.


M. LabuschM.-A. KeipB. Kiefer & J. Schröder. Computation of the effective magnetostrictive coefficient of magneto-mechanically coupled composites . In: E. Onate, J. Oliver & A. Huerta (Eds.): Proceedings of the 11th World Congress of Computational Mechanics (2014), 1–12.


M. LabuschM.-A. KeipJ. Schröder & D. C. Lupascu. Strain-induced product properties of two phase magneto-electric composites . In: Schroeder, J., Lupascu, D. C., Keip, M.-A. & Brands, D. (Eds.): Proceedings of the Second Seminar on The Mechanics of Multifunctional Materials (2014), 69–72.


M.-A. Keip & K. Bhattacharya. A phase field model for nematic elastomers: continuum mechanical formulation and finite element implementation. In: Schröder, J., Lupascu, D. C., Keip, M.-A. & Brands, D. (Eds.): Proceedings of the Second Seminar on The Mechanics of Multifunctional Materials (2014), 45–48.


2013


M.-A. KeipM. Labusch & J. Schröder. Numerical analysis of two-phase magneto-electric composites. Proceedings in Applied Mathematics and Mechanics 13 (2013), 261–262.


H. N. M. ThaiM.-A. Keip & J. Schröder. Phase-field simulation of the electro-mechanical response of ferroelectrics during piezoresponse force microscopy. Proceedings in Applied Mathematics and Mechanics 13 (2013), 131–132.


M.-A. KeipM. Labusch & J. Schröder. Two-scale computational homogenization of magneto-electric composites. Proceedings in Applied Mathematics and Mechanics 13 (2013), 529–532.

 

To the top of the page