This image shows Felix Fritzen

Felix Fritzen

Prof. Dr.-Ing. Dipl.-Math. techn.

Head of department
Institute of Applied Mechanics (MIB)
Data Analytics in Engineering
[Photo: Felix Fritzen]

Contact

+49 711 685 66283

Business card (VCF)

Universitätsstraße 32
70569 Stuttgart
Germany
Room: 2.332

Office Hours

on demand

Subject

The Heisenberg professorship for Data Analytics in Engineering is embedded into the Cluster of Excellence Data-Integrated Simulation Science (SimTech, EXC-2075 - DFG project number 390740016).

Scientific research topics include, but are not limited to:

  • data-driven surrogate models
  • uncertainty quantification for mechanical problems
  • image-based surrogate models
  • computational mechanics of materials
  • development of nonlinear model order reduction methods
  • high performance simulation of multiscale problems
  • microstructure modeling
  • material modeling
  1. 2024

    1. Langebeck, A., Bohlen, A., Seefeld, T., Zhang, X., Rebelo Kornmeier, J., Hofmann, M., Sharba, S., & Fritzen, F. (2024). Untersuchung und Vorhersage thermisch induzierter Eigenspannungen in MMC-Verschleißschutzschichten nach dem Laserstrahl-Dispergieren. Schneiden Und Schweißen, 76(9), Article 9. https://www.schweissenundschneiden.de/artikel/untersuchung-und-vorhersage-thermisch-induzierter-eigenspannungen-in-mmc-verschleissschutzschichten-nach-dem-laserstrahl-dispergieren
  2. 2023

    1. Sharba, S., Herb, J., & Fritzen, F. (2023). Reduced order homogenization of thermoelastic materials with strong temperature dependence and comparison to a machine-learned model. Archive of Applied Mechanics, 93(7), Article 7. https://doi.org/10.1007/s00419-023-02411-6
    2. Sack, H., Schrade, T., Bruns, O., Posthumus, E., Tietz, T., Norouzi, E., Waitelonis, J., Fliegl, H., Söhn, L., Tolksdorf, J., Jalle Steller, J., Az´ocar Guzm´an, A., Fathalla, S., Zainul Ihsan, A., Hofmann, V., Sandfeld, S., Fritzen, F., Laadhar, A., Schimmler, S., & Mutschke, P. (2023). Knowledge Graph Based RDM Solutions: NFDI4Culture - NFDI-MatWerk - NFDI4DataScience. Proceedings of the Conference on Research Data Infrastructure, 1. https://doi.org/10.52825/cordi.v1i.371
  3. 2022

    1. Fernández, M., Fritzen, F., & Weeger, O. (2022). Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials. International Journal for Numerical Methods in Engineering, 123(2), Article 2. https://doi.org/10.1002/nme.6869
  4. 2020

    1. Kunc, O., & Fritzen, F. (2020). Many-scale finite strain computational homogenization via Concentric Interpolation. International Journal for Numerical Methods in Engineering, 121(21), Article 21. https://doi.org/10.1002/nme.6454
    2. Fernández, M., & Fritzen, F. (2020). Construction of a class of sharp Löwner majorants for a set of symmetric matrices. Journal of Applied Mathematics, 2020, 1–18. https://doi.org/10.1155/2020/9091387
    3. Fernández, M., & Fritzen, F. (2020). On the generation of periodic discrete structures with identical two-point correlation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476(2242), Article 2242. https://doi.org/10.1098/rspa.2020.0568
    4. Fernández, M., Rezaei, S., Mianroodi, J. R., Fritzen, F., & Reese, S. (2020). Application of artificial neural networks for the prediction of interface mechanics: a study on grain boundary constitutive behavior. Advanced Modeling and Simulation in Engineering Sciences, 7(1), Article 1. https://doi.org/10.1186/s40323-019-0138-7
  5. 2019

    1. Kunc, O., & Fritzen, F. (2019). Generation of energy-minimizing point sets on spheres and their application in mesh-free interpolation and differentiation. Advances in Computational Mathematics, 45(5–6), Article 5–6. https://doi.org/10.1007/s10444-019-09726-5
    2. Lißner, J., & Fritzen, F. (2019). Data-driven microstructure property relations. Mathematical and Computational Applications, 24(2), Article 2. https://doi.org/10.3390/mca24020057
    3. Kunc, O., & Fritzen, F. (2019). Finite strain homogenization using a reduced basis and efficient sampling. Mathematical and Computational Applications, 24(2), Article 2. https://doi.org/10.3390/mca24020056
    4. Kunc, O., & Fritzen, F. (2019). Efficient assembly of linearized equations in nonlinear homogenization. Proceedings in Applied Mathematics and Mechanics, 4. https://doi.org/10.1002/pamm.201900322
    5. Fritzen, F., & Ryckelynck, D. (Eds.). (2019). Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics. MPDI. https://doi.org/10.3390/books978-3-03921-410-5
    6. Fritzen, F., Fernández, M., & Larsson, F. (2019). On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials, 6(75), Article 75. https://doi.org/10.3389/fmats.2019.00075
  6. 2018

    1. Fritzen, F., & Hassani, M. (2018). Space-time model order reduction for nonlinear viscoelastic systems subjected to long-term loading. Meccanica, 53(6), Article 6. https://doi.org/10.1007/s11012-017-0734-x
    2. Leuschner, M., & Fritzen, F. (2018). Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems. Computational Mechanics, 62(3), Article 3. https://doi.org/10.1007/s00466-017-1501-5
    3. Fritzen, F., Haasdonk, B., Schöps, S., & Ryckelynck, D. (2018). An Algorithmic Comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a Nonlinear Thermal Problem. Mathematical and Computational Applications, 23(8), Article 8. https://doi.org/10.3390/mca23010008
    4. Covezzi, F., de Miranda, S., Fritzen, F., Marfia, S., & Sacco, E. (2018). Comparison of reduced order homogenization techniques: pRBMOR, NUTFA and MxTFA. Meccanica, 53, 1291–1312. https://doi.org/10.1007/s11012-017-0814-y
    5. Wingender, D., Fritzen, F., & Jänicke, R. (2018). Reduced order modeling of viscoelastic properties of asphalt concrete. PAMM, 18(e201800240), Article e201800240. https://doi.org/10.1002/pamm.201800240
    6. Fritzen, F., & Kunc, O. (2018). Two-stage data-driven homogenization for nonlinear solids using a reduced order model. European Journal of Mechanics A / Solids, 69, 201–220. https://doi.org/10.1016/j.euromechsol.2017.11.007
  7. 2017

    1. Xia, L., Fritzen, F., & Breitkopf, P. (2017). Evolutionary topology optimization of elastoplastic structures. Structural and Multidisciplinary Optimization, 55(2), Article 2. https://doi.org/10.1007/s00158-016-1523-1
    2. Leuschner, M., & Fritzen, F. (2017). Reduced order homogenization for viscoplastic composite materials including dissipative imperfect interfaces. Mechanics of Materials, 104, 121–138. https://doi.org/10.1016/j.mechmat.2016.10.008
  8. 2016

    1. Fritzen, F., Xia, L., Leuschner, M., & Breitkopf, P. (2016). Topology optimization of multiscale elastoviscoplastic structures. International Journal for Numerical Methods in Engineering, 106(6), Article 6. https://doi.org/10.1002/nme.5122
    2. Fritzen, F., & Hodapp, M. (2016). The Finite Element Square Reduced (FE2R) method with GPU acceleration: towards three-dimensional two-scale simulations. International Journal for Numerical Methods in Engineering, 107(10), Article 10. https://doi.org/10.1002/nme.5188
  9. 2015

    1. Fritzen, F., & Leuschner, M. (2015). Nonlinear reduced order homogenization of materials including cohesive interfaces. Computational Mechanics, 56(1), Article 1. https://doi.org/10.1007/s00466-015-1163-0
    2. Fritzen, F., Marfia, S., & Sepe, V. (2015). Reduced order modeling in nonlinear homogenization: A comparative study. Computers & Structures, 157, 114--131. https://doi.org/10.1016/j.compstruc.2015.05.012
    3. Leuschner, M., Fritzen, F., van Dommelen, J. A. W., & Hoefnagels, J. P. M. (2015). Potential-based constitutive models for cohesive interfaces: Theory, implementation and examples. Composites Part B: Engineering, 68, 38--50. https://doi.org/10.1016/j.compositesb.2014.08.024
  10. 2014

    1. Fritzen, F., & Kochmann, D. (2014). Material instability-induced extreme damping in composites: a computational study. International Journal of Solids and Structures, 51(23--24), Article 23--24. https://doi.org/10.1016/j.ijsolstr.2014.07.028
    2. Fritzen, F., Hodapp, M., & Leuschner, M. (2014). GPU accelerated computational homogenization based on a variational approach in a reduced basis framework. Computer Methods in Applied Mechanics and Engineering, 278, 186--217. https://doi.org/10.1016/j.cma.2014.05.006
  11. 2013

    1. Fritzen, F., & Böhlke, T. (2013). Reduced basis homogenization of viscoelastic composites. Composites Science and Technology, 76(4), Article 4. https://doi.org/10.1016/j.compscitech.2012.12.012
    2. Fritzen, F., & Leuschner, M. (2013). Reduced basis hybrid computational homogenization based on a mixed incremental formulation. Computer Methods in Applied Mechanics and Engineering, 260, 143--154. https://doi.org/10.1016/j.cma.2013.03.007
    3. Fritzen, F., Forest, S., Kondo, D., & Böhlke, T. (2013). Computational homogenization of porous materials of Green type. Computational Mechanics, 52(1), Article 1. https://doi.org/10.1007/s00466-012-0801-z
  12. 2012

    1. Fritzen, F., Forest, S., Böhlke, T., Kondo, D., & Kanit, T. (2012). Computational homogenization of elasto-plastic porous metals. International Journal of Plasticity, 29, 102--119. https://doi.org/10.1016/j.ijplas.2011.08.005
  13. 2011

    1. Fritzen, F., & Böhlke, T. (2011). Nonuniform transformation field analysis of materials with morphological anisotropy. Composites Science and Technology, 71(4), Article 4. https://doi.org/10.1016/j.compscitech.2010.12.013
    2. Fritzen, F., & Böhlke, T. (2011). Nonlinear homogenization using the nonuniform transformation field analysis. PAMM, 11(1), Article 1. https://doi.org/10.1002/pamm.201110250
    3. Wippler, J., Fünfschilling, S., Fritzen, F., Böhlke, T., & Hoffmann, M. J. (2011). Homogenization of the thermoelastic properties of silicon nitride. Acta Materialia, 59(15), Article 15. https://doi.org/10.1016/j.actamat.2011.06.011
    4. Fritzen, F. (2011). Microstructural modeling and computational homogenization of the physically linear and nonlinear constitutive behavior of micro-heterogeneous materials. In Schriftenreihe Kontinuumsmechanik im Maschinenbau, Band 1. KIT Scientific Publishing. https://doi.org/10.5445/KSP/1000023534
    5. Fritzen, F., & Böhlke, T. (2011). Periodic three-dimensional mesh generation for particle reinforced composites with application to metal matrix composites. International Journal of Solids and Structures, 48(5), Article 5. https://doi.org/10.1016/j.ijsolstr.2010.11.010
    6. Fritzen, F., & Böhlke, T. (2011). Homogenized elasto-plastic response of high volume fraction metal ceramic composites based on nonuniform transformation fields. In Verbundwerkstoffe und Werkstoffverbunde (pp. 606--615). Bernhard Wielage.
    7. Brylka, B., Fritzen, F., Böhlke, T., & Weidenmann, K. (2011). Influence of micro-structure on fibre push-out tests. PAMM, 11(1), Article 1. https://doi.org/10.1002/pamm.201110062
  14. 2010

    1. Brylka, B., Fritzen, F., Böhlke, T., & Weidenmann, K. (2010). Study of Experimental Methods for Interface Problems Based on Virtual Testing. PAMM, 10(1), Article 1. https://doi.org/10.1002/pamm.201010047
    2. Jöchen, K., Böhlke, T., & Fritzen, F. (2010). Influence of the crystallographic and the morphological texture on the elastic properties of fcc crystal aggregates. Solid State Phenomena, 160, 83--86. https://doi.org/10.4028/www.scientific.net/SSP.160.83
    3. Fritzen, F., & Böhlke, T. (2010). Three-dimensional finite element implementation of the nonuniform transformation field analysis. International Journal for Numerical Methods in Engineering, 84(7), Article 7. https://doi.org/10.1002/nme.2920
    4. Fritzen, F., & Böhlke, T. (2010). Influence of the type of boundary conditions on the numerical properties of unit cell problems. Technische Mechanik, 30(4), Article 4.
  15. 2009

    1. Fritzen, F., & Böhlke, T. (2009). Homogenization of the physically nonlinear properties of three-dimensional metal matrix composites using the nonuniform transformation field analysis. Proceedings of the 17th International Conference on Composite Materials, Edinburgh, UK, 10.
    2. Böhlke, T., Fritzen, F., Jöchen, K., & Tsotsova, R. (2009). Numerical methods for the quantification of the mechanical properties of crystal aggregates with morphologic and crystallographic texture. International Journal for Material Forming, 2, 915--917. https://doi.org/10.1007/s12289-009-0470-4
    3. Fritzen, F., & Böhlke, T. (2009). Analytical inversion of the Jacobian for a class of generalized standard materials. PAMM, 9(1), Article 1. https://doi.org/10.1002/pamm.200910177
    4. Fritzen, F., & Böhlke, T. (2009). Homogenization Of Three-Dimensional Micro-Heterogeneous Materials Using Nonuniform Transformation Fields. In J. Ambrosio (Ed.), Proceedings of 7th EUROMECH Solid Mechanics Conference, Lisbon, Portugal.
    5. Fritzen, F., Böhlke, T., & Schnack, E. (2009). Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations. Computational Mechanics, 43(5), Article 5. https://doi.org/10.1007/s00466-008-0339-2
  16. 2008

    1. Jöchen, K., Böhlke, T., & Fritzen, F. (2008). On estimates for the effective shear modulus of cubic crystal aggregates. PAMM, 8, 10551--10552. https://doi.org/10.1002/pamm.200810551
    2. Fritzen, F., Böhlke, T., & Schnack, E. (2008). Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations. PAMM, 8(4), Article 4. https://doi.org/10.1002/pamm.200810545
  17. 2007

    1. Piat, R., Fritzen, F., Roser, M., & Schnack, E. (2007). Numerische Modellierung des Rissfortschritts in porösen CVI-CFC Verbundwerkstoffen. MP Materialprüfung, 49(4), Article 4.
    2. Fritzen, F., Böhlke, T., & Schnack, E. (2007). Modeling of latent energy storage effects in thermoplasticity of metals. PAMM, 7, 4080017--4080018. https://doi.org/10.1002/pamm.200700449

Winter term
Data processing for engineers and scientists (see C@MPUS, module 100040) - since 2019

Summer term
Introduction to model order reduction of mechanical systems (see C@MPUS, module 67150) - since 2015
SimTech-Seminar (BSc.) (see C@MPUS, module 40640) - starting 2020.

Previous academic positions

since 01.2020
Heisenberg Professor (W3) for Data Analytics in Engineering, Institute of Applied Mechanics (CE), University of Stuttgart (www)

03.2015 - 01.2020
head of DFG Emmy Noether group EMMA - Efficient Methods for Mechanical Analysis - project number 257987586, grant DFG FR2702/6, Institute of Applied Mechanics (CE), University of Stuttgart (www)

01-02.2014
research stay at the Kochmann research group at California Institute of Technology (CALTECH), USA

03.2012 - 02.2015
head of KIT Young Investigator Group Computer Aided Material Modeling (YIG CAMM) in the scope of the Excellence Initiative

06-10.2010 and 02-04.2012
research stays at Centre des Matériaux, Mines ParisTech, Evry, France

05.2011 - 02.2012
Postdoctoral researcher at the Institute of Engineering Mechanics, Continuum Mechanics of KIT

Academic training

09.2006 - 05.2011
Phd.  at KIT, thesis title: Microstructural modelling and homogenization of the physically linear and nonlinear constitutive behaviour of micro-heterogenous materials - degree: Dr.-Ing. (summa cum laude/with distinction)
reviewers: Prof. T. Böhlke (KIT), Prof. S. Forest (Ecole des Marines, Paris), Prof. M.Geers (TU Eindhoven)

04.2004 - 03.2007
study of Mathematics of Technology at KIT - degree: Dipl.-Math.techn. (1,5)

10.2001 - 08.2006
study of Mechanical Engineering at KIT - degree: Dipl.-Ing. (with distinction 1,0)

2014 nomination for and participation at the Global Young Scentist Summit (GYSS@one-north), Singapore

2012
nomination for the ECCOMAS Phd Award, participation at the YIC Phd Olympiad 2012 in Aveiro (Portugal)

2012-2014
nomination as GAMM Junior; spokesperson 2012

2012
KIT Phd. Award "Materie und Materialien"

2006
Carl-Benz-Award, Mechanical Engineering, KIT

0000-0003-4926-0068 (open in new window)

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC-2075 - project number 390740016. (link)

The Heisenberg Professorship for Data Analytics in Engineering is funded by the German Research Foundation (DFG) - project number 406068690, grant FR2702/8. (link)

The Emmy Noether group EMMA - Efficient Methods for Mechanical Analysis is funded by the German Research Foundation (DFG) - project number 257987586, grant FR2702/6. (link)

Information regarding previous projects and related funding by DFG is available on GEPRIS. (link)

To the top of the page