This image shows Nikolaos Karadimitriou

Nikolaos Karadimitriou

Dr.

Research associate
Institute of Applied Mechanics (MIB)
Chair of Continuum Mechanics
[Photo: Max Kovalenko]

Contact

Pfaffenwaldring 7
70569 Stuttgart
Germany
Room: 3.105

Office Hours

Mo - Fri, working hours, preferably by appointment

Subject

  • Porous media
  • Flow, transport, and applications
  • Microscopy
  • Lithography
  • Microfabrication
  • Experimental methods
  1. Gao, H., Abdullah, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., Zhou, D., Liu, Q., & Sauter, M. (2024). Pore-scale study of the effects of grain size on the capillary-associated interfacial area during primary drainage. Journal of Hydrology, 632, 130865. https://doi.org/10.1016/j.jhydrol.2024.130865
  2. Karadimitriou, N., and Marios S. Valavanides, Mouravas, K., Steeb, H., & and. (2023). Flow-Dependent Relative Permeability Scaling for Steady-State Two-Phase Flow in Porous  Media: Laboratory Validation on a Microfluidic Network. Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description, 64(5), Article 5. https://doi.org/10.30632/pjv64n5-2023a4
  3. Vahid Dastjerdi, S., Karadimitriou, N., Hassanizadeh, S. M., & Steeb, H. (2023). Experimental evaluation of fluid connectivity in two-phase flow in porous media. Advances in Water Resources, 172, 104378. https://doi.org/10.1016/j.advwatres.2023.104378
  4. Gao, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., & Sauter, M. (2023). Reservoir characterization by push-pull tests employing kinetic interface sensitive tracers - a pore-scale study for understanding large-scale processes. Advances in Water Resources, 174, 104424. https://doi.org/10.1016/j.advwatres.2023.104424
  5. Karadimitriou, N., Lee, D., & Steeb, H. (2023). Visual characterization of displacement processes in porous media. DaRUS. https://doi.org/10.18419/DARUS-3615
  6. Straub, A., Karadimitriou, N., Reina, G., Frey, S., Steeb, H., & Ertl, T. (2023). Visual Analysis of Displacement Processes in Porous Media using Spatio-Temporal Flow Graphs. IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2023.3326931
  7. Frey, S., Scheller, S., Karadimitriou, N., Lee, D., Reina, G., Steeb, H., & Ertl, T. (2022). Visual Analysis of Two-Phase Flow Displacement Processes in Porous Media. Computer Graphics Forum, 41(1), Article 1.
  8. Karadimitriou, N., Steeb, H., & Valavanides, M. (2022). Pressure and volumetric flux measurements intended to scale relative permeability under steady state, co-flow conditions, in a PDMS micromodel. DaRUS. https://doi.org/10.18419/DARUS-2816
  9. Walczak, M. S., Erfani, H., Karadimitriou, N. K., Zarikos, I., Hassanizadeh, S. M., & Niasar, V. (2022). Experimental Analysis of Mass Exchange Across a Heterogeneity Interface: Role of Counter-Current Transport and Non-Linear Diffusion. Water Resources Research, 58(6), Article 6. https://doi.org/10.1029/2021wr030426
  10. Lee, D., Karadimitriou, N., Ruf, M., & Steeb, H. (2022). Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods. Solid Earth, 13, 1475--1494. https://doi.org/10.5194/se-13-1475-2022
  11. Valavanides, M. S., Karadimitriou, N., & Steeb, H. (2022). Flow Dependent Relative Permeability Scaling for Steady-State Two-Phase Flow in Porous Media: Laboratory Validation on a Microfluidic Network. In SPWLA Annual Logging Symposium: Vol. Day 5 Wed, June 15, 2022. https://doi.org/10.30632/SPWLA-2022-0054
  12. Lee, D., Karadimitriou, N., Ruf, M., & Steeb, H. (2022). Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods. Solid Earth, 13(9), Article 9. https://doi.org/10.5194/se-13-1475-2022
  13. Vahid Dastjerdi, S., Karadimitriou, N., & Steeb, H. (2022). Experimental Evaluation of Connectivity in Two-phase Flow in Porous Media during Drainage. DaRUS. https://doi.org/10.18419/DARUS-2250
  14. Vahid Dastjerdi, S., Karadimitriou, N., & Steeb, H. (2022). Experimental Evaluation of Connectivity in Two-phase Flow in Porous Media. DaRUS. https://doi.org/10.18419/DARUS-2841
  15. Walczak, M. S., Erfani, H., Karadimitriou, N. K., Zarikos, I., Hassanizadeh, S. M., & Niasar, V. (2022). Experimental Analysis of Mass Exchange Across a Heterogeneity Interface: Role of Counter-Current Transport and Non-Linear Diffusion. Water Resources Research, 58(6), Article 6.
  16. Gao, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., & Sauter, M. (2022). Effect of Pore Space Stagnant Zones on Interphase Mass Transfer in Porous Media, for Two-Phase Flow Conditions. Transport in Porous Media. https://doi.org/10.1007/s11242-022-01879-0
  17. Frey, S., Scheller, S., Karadimitriou, N., Lee, D., Reina, G., Steeb, H., & Ertl, T. (2022). Visual Analysis of Two-Phase Flow Displacement Processes in Porous Media. Computer Graphics Forum, 41(1), Article 1. https://doi.org/10.1111/cgf.14432
  18. Dastjerdi, S. V., Karadimitriou, N., Hassanizadeh, S. M., & Steeb, H. (2022). Experimental Evaluation of Fluid Connectivity in Two-Phase Flow in Porous Media During Drainage. Water Resources Research, 58(11), Article 11. https://doi.org/10.1029/2022wr033451
  19. Erfani, H., Karadimitriou, N., Nissan, A., Walczak, M. S., An, S., Berkowitz, B., & Niasar, V. (2021). Process-dependent solute transport in porous media. Transport in Porous Media, 140(1), Article 1.
  20. Lee, D., Nikolaos, K., & Steeb, H. (2021). Fracture network segmentation. DaRUS. https://doi.org/10.18419/DARUS-1847
  21. Konangi, S., Palakurthi, N. K., Karadimitriou, N. K., Comer, K., & Ghia, U. (2021). Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions. Advances in Water Resources, 147, 103792. https://doi.org/10.1016/j.advwatres.2020.103792
  22. Yiotis, A., Karadimitriou, N., Zarikos, I., & Steeb, H. (2021). Pore-scale effects during the transition from capillary-to viscosity-dominated flow dynamics within microfluidic porous-like domains. Scientific Reports, 11(1), Article 1.
  23. Yiotis, A., Karadimitriou, N. K., Zarikos, I., & Steeb, H. (2021). Pore-scale effects during the transition from capillary- to viscosity-dominated flow dynamics within microfluidic porous-like domains. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-83065-8
  24. Erfani, H., Karadimitriou, N., Nissan, A., Walczak, M. S., An, S., Berkowitz, B., & Niasar, V. (2021). Process-Dependent Solute Transport in Porous Media. Transport in Porous Media, 140(1), Article 1.
  25. Gao, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., & Sauter, M. (2021). A two-phase, pore-scale reactive transport model for the kinetic interface-sensitive tracer. Water Resources Research, 57(6), Article 6.
  26. Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., Holm, C., Class, H., Steeb, H., & Rybak, I. (2021). Permeability Estimation of Regular Porous Structures: A Benchmark for Comparison of Methods. Transport in Porous Media, 138(1), Article 1. https://doi.org/10.1007/s11242-021-01586-2
  27. Konangi, S., Palakurthi, N. K., Karadimitriou, N. K., Comer, K., & Ghia, U. (2021). Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions. Advances in Water Resources, 147, 103792. https://doi.org/10.1016/j.advwatres.2020.103792
  28. Gao, H., Tatomir, A., Karadimitriou, N., Steeb, H., & Sauter, M. (2021). Effects of surface roughness on the kinetic interface-sensitive tracer transport during drainage processes. Advances in Water Resources, 157, 104044.
  29. Chen, Y., Steeb, H., Erfani, H., Karadimitriou, N. K., Walczak, M. S., Ruf, M., Lee, D., An, S., Hasan, S., Connolley, T., & others. (2021). Nonuniqueness of hydrodynamic dispersion revealed using fast 4D synchrotron x-ray imaging. Science Advances, 7(52), Article 52.
  30. Weinhardt, F., Class, H., Dastjerdi, S. V., Karadimitriou, N., Lee, D., & Steeb, H. (2021). Experimental Methods and Imaging for Enzymatically Induced Calcite Precipitation in a Microfluidic Cell. Water Resources Research, 57(3), Article 3. https://doi.org/10.1029/2020wr029361
  31. Weinhardt, F., Class, H., Vahid Dastjerdi, S., Karadimitriou, N., Lee, D., & Steeb, H. (2021). Optical Microscopy and pressure measurements of Enzymatically Induced Calcite Precipitation (EICP) in a microfluidic cell. DaRUS. https://doi.org/10.18419/DARUS-818
  32. Hasan, S., Niasar, V., Karadimitriou, N. K., Godinho, J. R., Vo, N. T., An, S., Rabbani, A., & Steeb, H. (2020). Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography. Proceedings of the National Academy of Sciences, 117(38), Article 38. https://doi.org/10.1073/pnas.2011716117
  33. Hasan, S., Niasar, V., Karadimitriou, N. K., Godinho, J. R. A., Vo, N. T., An, S., Rabbani, A., & Steeb, H. (2020). Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography. Proceedings of the National Academy of Sciences, 117(38), Article 38. https://doi.org/10.1073/pnas.2011716117
  34. Hasan, S. N., Joekar-Niasar, V., Karadimitriou, N., & Sahimi, M. (2019). Saturation-Dependence of Non-Fickian Transport in Porous Media. Water Resources Research. https://doi.org/10.1029/2018WR023554
  35. Yin, X., Zarikos, I., Karadimitriou, N. K., Raoof, A., & Hassanizadeh, S. M. (2019). Direct simulations of two-phase flow experiments of different geometry complexities using Volume-of-Fluid (VOF) method. Chemical Engineering Science, 195, 820–827. https://doi.org/10.1016/j.ces.2018.10.029
  36. Karadimitriou, N. K., Mahani, H., Steeb, H., & Niasar, V. (2019). Nonmonotonic Effects of Salinity on Wettability Alteration and Two-Phase Flow Dynamics in PDMS Micromodels. Water Resources Research, 55(11), Article 11. https://doi.org/10.1029/2018wr024252
  37. Karadimitriou, N. K., Mahani, H., Steeb, H., & Niasar, V. (2019). Nonmonotonic Effects of Salinity on Wettability Alteration and Two-Phase Flow Dynamics in PDMS Micromodels. Water Resources Research. https://doi.org/10.1029/2018wr024252
  38. Santosh, K., Kumar, P. N., Nikolaos, K., Ken, C., & Urmila, G. (2018). An examination of pore-scale capillary pressure & impact of interfacial area under dynamic conditions using volume-of-fluid (vof) method.
  39. Hasan, S., Joekar-Niasar, V., Steeb, H., Karadimitriou, N., Godinho, J., Uribe, D., & Vo, N. (2018). MicroCT X-Ray Imaging of Hydrodynamic Dispersion under Steady-State Two-Phase Flow. , 2018, 1–5. https://www.earthdoc.org/content/papers/10.3997/2214-4609.201800778
  40. Alzahid, Y., Mostaghimi, P., Warkiani, M. E., Armstrong, R. T., Joekar-Niasar, V., & Karadimitriou, N. (2017). Alkaline Surfactant Polymer Flooding: What Happens at the Pore Scale? SPE Europec Featured at 79th EAGE Conference and Exhibition. https://doi.org/10.2118/185832-ms
  41. Karadimitriou, N. K., Joekar-Niasar, V., & Brizuela, O. G. (2017). Hydro-dynamic Solute Transport under Two-Phase Flow Conditions. Scientific Reports, 7(1), Article 1. https://doi.org/10.1038/s41598-017-06748-1
  42. Godinez-Brizuela, O. E., Karadimitriou, N. K., Joekar-Niasar, V., Shore, C. A., & Oostrom, M. (2017). Role of corner interfacial area in uniqueness of capillary pressure-saturation- interfacial area relation under transient conditions. Advances in Water Resources, 107, 10–21. https://doi.org/10.1016/j.advwatres.2017.06.007
  43. Sweijen, T., Chareyre, B., Hassanizadeh, S. M., & Karadimitriou, N. K. (2017). Grain-scale modelling of swelling granular materials; application to super absorbent polymers. Powder Technology, 318, 411–422. https://doi.org/10.1016/j.powtec.2017.06.015
  44. Konangi, S., Palakurthi, N. K., Karadimitriou, N., Fu, A., Comer, K., & Ghia, U. (2017). Analysis of Non-equilibrium Capillary Pressure-Saturation Relation using Direct Numerical Simulations with Volume-Of-Fluid (VOF) Method.
  45. Konangi, S., Palakurthi, N. K., Karadimitriou, N., Comer, K., & Ghia, U. (2017). Direct Numerical Simulations of Dynamic Drainage and Imbibition to Investigate Capillary Pressure-Saturation-Interfacial Area Relation.
  46. Karadimitriou, N. K., Joekar-Niasar, V., Babaei, M., & Shore, C. A. (2016). Critical Role of the Immobile Zone in Non-Fickian Two-Phase Transport: A New Paradigm. Environ. Sci. Technol., 50(8), Article 8. https://doi.org/10.1021/acs.est.5b05947
  47. Kunz, P., Zarikos, I. M., Karadimitriou, N. K., Huber, M., Nieken, U., & Hassanizadeh, S. M. (2016). Study of Multi-phase Flow in Porous Media: Comparison of SPH Simulations with Micro-model Experiments. Transport in Porous Media, 114(2), Article 2. https://doi.org/10.1007/s11242-015-0599-1
  48. Hassanizadeh, S. M., Karadimitriou, N., Zhang, Q., & Nuske, P. (2015). Pore-scale studies of interphase mass and heat transfer during two-phase flow in porous media.
  49. Rodríguez de Castro, A., Shokri, N., Karadimitriou, N., Oostrom, M., & Joekar-Niasar, V. (2015). Experimental study on nonmonotonicity of Capillary Desaturation Curves in a 2-D pore network. Water Resources Research, 51, 8517–8528. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017727
  50. Nuske, P., Ronneberger, O., Karadimitriou, N. K., Helmig, R., & Hassanizadeh, S. M. (2015). Modeling two-phase flow in a micro-model with local thermal non-equilibrium on the Darcy scale. International Journal of Heat and Mass Transfer, 88, 822–835. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.057
  51. Karadimitriou, N. K., Nuske, P., Kleingeld, P. J., Hassanizadeh, S. M., & Helmig, R. (2014). Simultaneous thermal and optical imaging of two-phase flow in a micro-model. Lab Chip, 14(14), Article 14. https://doi.org/10.1039/C4LC00321G
  52. Zhang, Q., Hassanizadeh, S. M., Liu, B., Schijven, J. F., & Karadimitriou, N. K. (2014). Effect of hydrophobicity on colloid transport during two-phase flow in a micromodel. Water Resources Research, 50(10), Article 10. https://doi.org/10.1002/2013WR015198
  53. Karadimitriou, N. K., Hassanizadeh, S. M., Joekar-Niasar, V., & Kleingeld, P. J. (2014). Micromodel study of two-phase flow under transient conditions: Quantifying effects of specific interfacial area. Water Resources Research, 50(10), Article 10. https://doi.org/10.1002/2014WR015388
  54. Boukamp, B., Denisov, D., Hassanizadeh, M., Hessling, D., Huinink, H., Karadimitriou, N., Kuijpers, K., Ravensbergen, J., Sabater, C., Schoemaker, F., Tomozeiu, N., Verbeek, G., & Zocca, M. (2013). Analyzing liquid penetration in paper by electrical impedance spectroscopy (EIS). Proceedings Physics with Industry 2013, 4, 25–44.
  55. Karadimitriou, N. K. (2013). Two-phase flow experimental studies in micro-models (Vol. 34). Utrecht Studies in Earth Sciences.
  56. Zhang, Q., Hassanizadeh, S. M., Karadimitriou, N. K., Raoof, A., Liu, B., Kleingeld, P. J., & Imhof, A. (2013). Retention and remobilization of colloids during steady-state and transient two-phase flow. Water Resources Research, 49, 8005–8016. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013WR014345
  57. Karadimitriou, N. K., Musterd, M., Kleingeld, P. J., Kreutzer, M. T., Hassanizadeh, S. M., & Joekar-Niasar, V. (2013). On the fabrication of PDMS micromodels by rapid prototyping, and their use in two-phase flow studies. Water Resources Research, 49(4), Article 4. https://doi.org/10.1002/wrcr.20196
  58. Zhang, Q., Karadimitriou, N. K., Hassanizadeh, S. M., Kleingeld, P. J., & Imhof, A. (2013). Study of colloids transport during two-phase flow using a novel polydimethylsiloxane micro-model. Journal of Colloid and Interface Science, 401, 141–147. https://doi.org/10.1016/j.jcis.2013.02.041
  59. Karadimitriou, N., Joekar-Niasar, V., Hassanizadeh, S. M., & Kleingeld, P. J. (2012). On the inclusion of interfacial area as a separate variable in quasi-static, two-phase, flow studies.
  60. Karadimitriou, N. K., & Hassanizadeh, S. M. (2012). A Review of Micromodels and Their Use in Two-Phase Flow Studies. Vadose Zone Journal, 11. http://dx.doi.org/10.2136/vzj2011.0072
  61. Karadimitriou, N. K., Joekar-Niasar, V., Hassanizadeh, S. M., Kleingeld, P. J., & Pyrak-Nolte, L. J. (2012). A novel deep reactive ion etched (DRIE) glass micro-model for two-phase flow experiments. Lab Chip, 12(18), Article 18. https://doi.org/10.1039/C2LC40530J
  62. Kumar Gunda, N. S., Bera, B., Karadimitriou, N. K., Mitra, S. K., & Hassanizadeh, S. M. (2011). Reservoir-on-a-Chip (ROC): A new paradigm in reservoir engineering. Lab Chip, 11(22), Article 22. https://doi.org/10.1039/C1LC20556K
  63. Karadimitriou, N. K., Hassanizadeh, S. M., & Kleingeld, P. J. (2011). Two-phase flow experimental studies using micro-models; Comparison between experiment and numerical model.
  64. Karadimitriou, N. K., Hassanizadeh, S. M., & Kleingeld, P. (2010). Visualization setup for the investigation of interfacial area for two-phase flow in a micro-model. ,. https://www.earthdoc.org/content/papers/10.3997/2214-4609-pdb.150.P05
  65. Karadimitriou, N., Klinkenberg, B., Papadopoulos, D. N., & Serafetinides, A. A. (2007). Development and performance characteristics of flash lamp pumped Yb:YAG, Cr:Tm:Ho:YAG, Er:Tm:Ho:YLF laser sources and investigation of their potential biological applications. In J. Popp & G. von Bally (Eds.), Biophotonics 2007: Optics in Life Science (Vol. 6633, pp. 301-- 307). SPIE. https://doi.org/10.1117/12.726870
  66. Karadimitriou, N. K., Bacharis, C., Makropoulou, M., Serafetinides, A. A., & Georgaras, S. (2006). Comparative studies on UV laser ablation of intraocular lenses and porcine cornea.

Experimental characterization of transport and flow processes in porous media (106460)

  • 1997 - 2003: B.Sc. in Physics, University of Patras, Department of Physics, Patras, Greece.
  • 2003 - 2005: M.Sc. in atomic Physics, National Technical University of Athens, School of Applied Mathematical and Physical Sciences, Department of Physics, Athens, Greece. 
  • 2005 - 2008: Research Assistant, National Technical University of Athens, School of Applied Mathematical and Physical Sciences, Department of Physics, Athens, Greece.
  • 2008 - 2013: Ph.D. in Environmental Hydrogeology, Utrecht University, Department of Earth Sciences, Faculty of Geosciences, Environmental Hydrogeology Group, The Netherlands.
  • 2013 - 2014: Post-Doctoral researcher, Utrecht University, Department of Earth Sciences, Faculty of Geosciences, Environmental Hydrogeology Group, The Netherlands.

  • 2014 - 2017: Post-Doctoral Research Associate, School of Chemical Engineering and Analytical Science, The University of Manchester, UK.

  • 2018 - :Post-Doctoral Research Associate, Institute of Applied Mechanics (CE), University of Stuttgart, Germany.
 
To the top of the page