This image shows Nikolaos Karadimitriou

Nikolaos Karadimitriou

Dr.

Research associate
Institute of Applied Mechanics (MIB)
Chair of Continuum Mechanics
[Photo: Max Kovalenko]

Contact

Pfaffenwaldring 7
70569 Stuttgart
Germany
Room: 3.105

Office Hours

Mo - Fri, working hours, preferably by appointment

Subject

  • Porous media
  • Flow, transport, and applications
  • Microscopy
  • Lithography
  • Microfabrication
  • Experimental methods
  1. Frey, S., Scheller, S., Karadimitriou, N., Lee, D., Reina, G., Steeb, H., & Ertl, T. (2022). Visual Analysis of Two-Phase Flow Displacement Processes in Porous Media. Computer Graphics Forum, 41(1), 243--256.
  2. Walczak, M. S., Erfani, H., Karadimitriou, N. K., Zarikos, I., Hassanizadeh, S. M., & Niasar, V. (2022). Experimental Analysis of Mass Exchange Across a Heterogeneity Interface: Role of Counter-Current Transport and Non-Linear Diffusion. Water Resources Research, 58(6), e2021WR030426.
  3. Valavanides, M. S., Karadimitriou, N., & Steeb, H. (2022). Flow Dependent Relative Permeability Scaling for Steady-State Two-Phase Flow in Porous Media: Laboratory Validation on a Microfluidic Network. In SPWLA Annual Logging Symposium: Vol. Day 5 Wed, June 15, 2022. https://doi.org/10.30632/SPWLA-2022-0054
  4. Lee, D., Karadimitriou, N., Ruf, M., & Steeb, H. (2022). Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods. Solid Earth, 13(9), 1475--1494. https://doi.org/10.5194/se-13-1475-2022
  5. Erfani, H., Karadimitriou, N., Nissan, A., Walczak, M. S., An, S., Berkowitz, B., & Niasar, V. (2021). Process-dependent solute transport in porous media. Transport in Porous Media, 140(1), 421--435.
  6. Chen, Y., Steeb, H., Erfani, H., Karadimitriou, N. K., Walczak, M. S., Ruf, M., Lee, D., An, S., Hasan, S., Connolley, T., & others. (2021). Nonuniqueness of hydrodynamic dispersion revealed using fast 4D synchrotron x-ray imaging. Science Advances, 7(52), eabj0960.
  7. Erfani, H., Karadimitriou, N., Nissan, A., Walczak, M. S., An, S., Berkowitz, B., & Niasar, V. (2021). Process-Dependent Solute Transport in Porous Media. Transport in Porous Media, 140(1), 421--435.
  8. Yiotis, A., Karadimitriou, N., Zarikos, I., & Steeb, H. (2021). Pore-scale effects during the transition from capillary-to viscosity-dominated flow dynamics within microfluidic porous-like domains. Scientific Reports, 11(1), 1--16.
  9. Gao, H., Tatomir, A. B., Karadimitriou, N. K., Steeb, H., & Sauter, M. (2021). A two-phase, pore-scale reactive transport model for the kinetic interface-sensitive tracer. Water Resources Research, 57(6), e2020WR028572.
  10. Gao, H., Tatomir, A., Karadimitriou, N., Steeb, H., & Sauter, M. (2021). Effects of surface roughness on the kinetic interface-sensitive tracer transport during drainage processes. Advances in Water Resources, 157, 104044.
  11. Weinhardt, F., Class, H., Dastjerdi, S. V., Karadimitriou, N., Lee, D., & Steeb, H. (2021). Experimental Methods and Imaging for Enzymatically Induced Calcite Precipitation in a Microfluidic Cell. Water Resources Research, 57(3), Article 3. https://doi.org/10.1029/2020wr029361
  12. Yiotis, A., Karadimitriou, N. K., Zarikos, I., & Steeb, H. (2021). Pore-scale effects during the transition from capillary- to viscosity-dominated flow dynamics within microfluidic porous-like domains. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-83065-8
  13. Konangi, S., Palakurthi, N. K., Karadimitriou, N. K., Comer, K., & Ghia, U. (2021). Comparison of pore-scale capillary pressure to macroscale capillary pressure using direct numerical simulations of drainage under dynamic and quasi-static conditions. Advances in Water Resources, 147, 103792. https://doi.org/10.1016/j.advwatres.2020.103792
  14. Hasan, S., Niasar, V., Karadimitriou, N. K., Godinho, J. R. A., Vo, N. T., An, S., Rabbani, A., & Steeb, H. (2020). Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography. Proceedings of the National Academy of Sciences, 117(38), 23443--23449. https://doi.org/10.1073/pnas.2011716117
  15. Karadimitriou, N. K., Mahani, H., Steeb, H., & Niasar, V. (2019). Nonmonotonic Effects of Salinity on Wettability Alteration and Two-Phase Flow Dynamics in PDMS Micromodels. Water Resources Research. https://doi.org/10.1029/2018wr024252
  16. Hasan, S. N., Joekar-Niasar, V., Karadimitriou, N., & Sahimi, M. (2019). Saturation-Dependence of Non-Fickian Transport in Porous Media. Water Resources Research. https://doi.org/10.1029/2018WR023554
  17. Yin, X., Zarikos, I., Karadimitriou, N. K., Raoof, A., & Hassanizadeh, S. M. (2019). Direct simulations of two-phase flow experiments of different geometry complexities using Volume-of-Fluid (VOF) method. Chemical Engineering Science, 195, 820–827. https://doi.org/10.1016/j.ces.2018.10.029
  18. Karadimitriou, N. K., Mahani, H., Steeb, H., & Niasar, V. (2019). Nonmonotonic Effects of Salinity on Wettability Alteration and Two-Phase Flow Dynamics in PDMS Micromodels. Water Resources Research, 55(11), 9826--9837. https://doi.org/10.1029/2018wr024252
  19. Hasan, S., Joekar-Niasar, V., Steeb, H., Karadimitriou, N., Godinho, J., Uribe, D., & Vo, N. (2018). MicroCT X-Ray Imaging of Hydrodynamic Dispersion under Steady-State Two-Phase Flow. , 2018, 1–5. https://www.earthdoc.org/content/papers/10.3997/2214-4609.201800778
  20. Santosh, K., Kumar, P. N., Nikolaos, K., Ken, C., & Urmila, G. (2018). An examination of pore-scale capillary pressure & impact of interfacial area under dynamic conditions using volume-of-fluid (vof) method.
  21. Konangi, S., Palakurthi, N. K., Karadimitriou, N., Fu, A., Comer, K., & Ghia, U. (2017). Analysis of Non-equilibrium Capillary Pressure-Saturation Relation using Direct Numerical Simulations with Volume-Of-Fluid (VOF) Method.
  22. Konangi, S., Palakurthi, N. K., Karadimitriou, N., Comer, K., & Ghia, U. (2017). Direct Numerical Simulations of Dynamic Drainage and Imbibition to Investigate Capillary Pressure-Saturation-Interfacial Area Relation.
  23. Alzahid, Y., Mostaghimi, P., Warkiani, M. E., Armstrong, R. T., Joekar-Niasar, V., & Karadimitriou, N. (2017). Alkaline Surfactant Polymer Flooding: What Happens at the Pore Scale? SPE Europec Featured at 79th EAGE Conference and Exhibition. https://doi.org/10.2118/185832-ms
  24. Godinez-Brizuela, O. E., Karadimitriou, N. K., Joekar-Niasar, V., Shore, C. A., & Oostrom, M. (2017). Role of corner interfacial area in uniqueness of capillary pressure-saturation- interfacial area relation under transient conditions. Advances in Water Resources, 107, 10–21. https://doi.org/10.1016/j.advwatres.2017.06.007
  25. Sweijen, T., Chareyre, B., Hassanizadeh, S. M., & Karadimitriou, N. K. (2017). Grain-scale modelling of swelling granular materials; application to super absorbent polymers. Powder Technology, 318, 411–422. https://doi.org/10.1016/j.powtec.2017.06.015
  26. Karadimitriou, N. K., Joekar-Niasar, V., & Brizuela, O. G. (2017). Hydro-dynamic Solute Transport under Two-Phase Flow Conditions. Scientific Reports, 7(1), Article 1. https://doi.org/10.1038/s41598-017-06748-1
  27. Karadimitriou, N. K., Joekar-Niasar, V., Babaei, M., & Shore, C. A. (2016). Critical Role of the Immobile Zone in Non-Fickian Two-Phase Transport: A New Paradigm. Environ. Sci. Technol., 50(8), 4384--4392. https://doi.org/10.1021/acs.est.5b05947
  28. Kunz, P., Zarikos, I. M., Karadimitriou, N. K., Huber, M., Nieken, U., & Hassanizadeh, S. M. (2016). Study of Multi-phase Flow in Porous Media: Comparison of SPH Simulations with Micro-model Experiments. Transport in Porous Media, 114(2), 581–600. https://doi.org/10.1007/s11242-015-0599-1
  29. Hassanizadeh, S. M., Karadimitriou, N., Zhang, Q., & Nuske, P. (2015). Pore-scale studies of interphase mass and heat transfer during two-phase flow in porous media.
  30. Nuske, P., Ronneberger, O., Karadimitriou, N. K., Helmig, R., & Hassanizadeh, S. M. (2015). Modeling two-phase flow in a micro-model with local thermal non-equilibrium on the Darcy scale. International Journal of Heat and Mass Transfer, 88, 822–835. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.057
  31. Rodríguez de Castro, A., Shokri, N., Karadimitriou, N., Oostrom, M., & Joekar-Niasar, V. (2015). Experimental study on nonmonotonicity of Capillary Desaturation Curves in a 2-D pore network. Water Resources Research, 51, 8517–8528. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017727
  32. Zhang, Q., Hassanizadeh, S. M., Liu, B., Schijven, J. F., & Karadimitriou, N. K. (2014). Effect of hydrophobicity on colloid transport during two-phase flow in a micromodel. Water Resources Research, 50(10), 7677–7691. https://doi.org/10.1002/2013WR015198
  33. Karadimitriou, N. K., Nuske, P., Kleingeld, P. J., Hassanizadeh, S. M., & Helmig, R. (2014). Simultaneous thermal and optical imaging of two-phase flow in a micro-model. Lab Chip, 14(14), 2515–2524. https://doi.org/10.1039/C4LC00321G
  34. Karadimitriou, N. K., Hassanizadeh, S. M., Joekar-Niasar, V., & Kleingeld, P. J. (2014). Micromodel study of two-phase flow under transient conditions: Quantifying effects of specific interfacial area. Water Resources Research, 50(10), 8125–8140. https://doi.org/10.1002/2014WR015388
  35. Boukamp, B., Denisov, D., Hassanizadeh, M., Hessling, D., Huinink, H., Karadimitriou, N., Kuijpers, K., Ravensbergen, J., Sabater, C., Schoemaker, F., Tomozeiu, N., Verbeek, G., & Zocca, M. (2013). Analyzing liquid penetration in paper by electrical impedance spectroscopy (EIS). Proceedings Physics with Industry 2013, 4, 25–44.
  36. Karadimitriou, N. K. (2013). Two-phase flow experimental studies in micro-models (Vol. 34). Utrecht Studies in Earth Sciences.
  37. Zhang, Q., Hassanizadeh, S. M., Karadimitriou, N. K., Raoof, A., Liu, B., Kleingeld, P. J., & Imhof, A. (2013). Retention and remobilization of colloids during steady-state and transient two-phase flow. Water Resources Research, 49, 8005–8016. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013WR014345
  38. Zhang, Q., Karadimitriou, N. K., Hassanizadeh, S. M., Kleingeld, P. J., & Imhof, A. (2013). Study of colloids transport during two-phase flow using a novel polydimethylsiloxane micro-model. Journal of Colloid and Interface Science, 401, 141–147. https://doi.org/10.1016/j.jcis.2013.02.041
  39. Karadimitriou, N. K., Musterd, M., Kleingeld, P. J., Kreutzer, M. T., Hassanizadeh, S. M., & Joekar-Niasar, V. (2013). On the fabrication of PDMS micromodels by rapid prototyping, and their use in two-phase flow studies. Water Resources Research, 49(4), 2056–2067. https://doi.org/10.1002/wrcr.20196
  40. Karadimitriou, N., Joekar-Niasar, V., Hassanizadeh, S. M., & Kleingeld, P. J. (2012). On the inclusion of interfacial area as a separate variable in quasi-static, two-phase, flow studies.
  41. Karadimitriou, N. K., Joekar-Niasar, V., Hassanizadeh, S. M., Kleingeld, P. J., & Pyrak-Nolte, L. J. (2012). A novel deep reactive ion etched (DRIE) glass micro-model for two-phase flow experiments. Lab Chip, 12(18), 3413–3418. https://doi.org/10.1039/C2LC40530J
  42. Karadimitriou, N. K., & Hassanizadeh, S. M. (2012). A Review of Micromodels and Their Use in Two-Phase Flow Studies. Vadose Zone Journal, 11. http://dx.doi.org/10.2136/vzj2011.0072
  43. Karadimitriou, N. K., Hassanizadeh, S. M., & Kleingeld, P. J. (2011). Two-phase flow experimental studies using micro-models; Comparison between experiment and numerical model.
  44. Kumar Gunda, N. S., Bera, B., Karadimitriou, N. K., Mitra, S. K., & Hassanizadeh, S. M. (2011). Reservoir-on-a-Chip (ROC): A new paradigm in reservoir engineering. Lab Chip, 11(22), 3785–3792. https://doi.org/10.1039/C1LC20556K
  45. Karadimitriou, N. K., Hassanizadeh, S. M., & Kleingeld, P. (2010). Visualization setup for the investigation of interfacial area for two-phase flow in a micro-model. ,. https://www.earthdoc.org/content/papers/10.3997/2214-4609-pdb.150.P05
  46. Karadimitriou, N., Klinkenberg, B., Papadopoulos, D. N., & Serafetinides, A. A. (2007). Development and performance characteristics of flash lamp pumped Yb:YAG, Cr:Tm:Ho:YAG, Er:Tm:Ho:YLF laser sources and investigation of their potential biological applications. In J. Popp & G. von Bally (Eds.), Biophotonics 2007: Optics in Life Science (Vol. 6633, pp. 301-- 307). SPIE. https://doi.org/10.1117/12.726870
  47. Karadimitriou, N. K., Bacharis, C., Makropoulou, M., Serafetinides, A. A., & Georgaras, S. (2006). Comparative studies on UV laser ablation of intraocular lenses and porcine cornea.

Experimental characterization of transport and flow processes in porous media (106460)

  • 1997 - 2003: B.Sc. in Physics, University of Patras, Department of Physics, Patras, Greece.
  • 2003 - 2005: M.Sc. in atomic Physics, National Technical University of Athens, School of Applied Mathematical and Physical Sciences, Department of Physics, Athens, Greece. 
  • 2005 - 2008: Research Assistant, National Technical University of Athens, School of Applied Mathematical and Physical Sciences, Department of Physics, Athens, Greece.
  • 2008 - 2013: Ph.D. in Environmental Hydrogeology, Utrecht University, Department of Earth Sciences, Faculty of Geosciences, Environmental Hydrogeology Group, The Netherlands.
  • 2013 - 2014: Post-Doctoral researcher, Utrecht University, Department of Earth Sciences, Faculty of Geosciences, Environmental Hydrogeology Group, The Netherlands.

  • 2014 - 2017: Post-Doctoral Research Associate, School of Chemical Engineering and Analytical Science, The University of Manchester, UK.

  • 2018 - :Post-Doctoral Research Associate, Institute of Applied Mechanics (CE), University of Stuttgart, Germany.
 
To the top of the page