This image shows David Krach

David Krach

M. Sc.

Doctoral Researcher
Institute of Applied Mechanics (MIB)
Chair of Continuum Mechanics
[Photo: SimTech/Max Kovalenko]

Contact

Pfaffenwaldring 7
70569 Stuttgart
Germany
Room: 3.112

Office Hours

by appointment

Subject

 
  • Non-Darcian Fluid Flow in Porous Media: effective physical properties of porous material the weak-inertia/non-linear regime and two-phase flow in porous media
  • Smoothed Particle Hydrodynamics (SPH) code development, scalability of particle codes on HPC 
  • MPI parallelized finite difference methods for solving the Stokes equation in porous rock
All publications:
  1. 2025

    1. Krach, D., Weinhardt, F., Wang, M., Schneider, M., Class, H., & Steeb, H. (2025). A novel geometry-informed drag term formulation for pseudo-3D Stokes simulations with varying apertures. Advances in Water Resources, 195, 104860. https://doi.org/10.1016/j.advwatres.2024.104860
  2. 2024

    1. Krach, D., Weinhardt, F., Wang, M., Schneider, M., Class, H., & Steeb, H. (2024). Results for pseudo-3D Stokes simulations with a geometry-informed drag term formulation for porous media with varying apertures. https://doi.org/10.18419/darus-4347
    2. Krach, D., Ruf, M., & Steeb, H. (2024). POREMAPS 1.0.0: Code, Benchmarks, Applications. DaRUS. https://doi.org/10.18419/darus-3676
    3. Krach, D., Weinhardt, F., Wang, M., Schneider, M., Class, H., & Steeb, H. (2024). Code and benchmarks for geometry-informed drag term computation for pseudo-3D Stokes simulations with varying apertures. https://doi.org/10.18419/darus-4313
  3. 2023

    1. Krach, D., & Steeb, H. (2023). Comparing methods for permeability computation of porous materials and their limitations. In M. Kaliske (Ed.), 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) (Nos. 23, 1; Issues 23, 1, p. e202200225). Wiley-VCH. https://doi.org/10.1002/pamm.202200225
  4. 2021

    1. Krach, D., & Steeb, H. (2021). Simulation of weak-inertia single-phase flow in porous materials using Smoothed Particle Hydrodynamics. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000289
    2. Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z. M., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., Holm, C., Class, H., Steeb, H., & Rybak, I. (2021). Permeability Estimation of Regular Porous Structures : A Benchmark for Comparison of Methods. Transport in Porous Media, 138(1), Article 1. https://doi.org/10.1007/s11242-021-01586-2
    3. Balcewicz, M., Siegert, M., Gurris, M., Ruf, M., Krach, D., Steeb, H., & Saenger, E. H. (2021). Digital Rock Physics : A Geological Driven Workflow for the Segmentation of Anisotropic Ruhr Sandstone. Frontiers in Earth Science, 9, 673753. https://doi.org/10.3389/feart.2021.673753
    4. Yoshioka, K., Nest, M., Pötschke, D., Sattari, A. S., Schmidt, P., & Krach, D. (2021). Numerical Platform. GeomInt--Mechanical Integrity of Host Rocks, 63--95.
  5. 2020

    1. Kijanski, N., Krach, D., & Steeb, H. (2020). An SPH Approach for Non-Spherical Particles Immersed in Newtonian Fluids. Materials, 13(10), Article 10. https://doi.org/10.3390/ma13102324
07/2012 Abitur at Albrecht-Ernst Gymnasium 
10/2012-11/2018

Bachelor - and Master studies at University of Stuttgart

11/2018 Graduation: M.Sc. Environmental Protection Engineering
since 01/2019 Research Assistant at the University of Stuttgart, Institute of Applied Mechanics (CE), Chair of Continuum Mechanics
 
  1. Implementation and Validation of Regularized Non-Newtonian Fluid Models in Smoothed-Particle Hydrodynamics, 2021; Araz, Firat.
  2. Investigation of particle mobilization using Smoothed Particle Hydrodynamics, 2021; Gerhäusser, Steffen.

poremaps: Finite Difference based Porous Media Anisotropic Permeability Solver for Stokes flow.

To the top of the page