2025
- Kazim, M., Pal, A., & Goswami, D. (2025). Mechanical Metamaterials for Bioengineering: In Vitro, Wearable, and Implantable Applications. Advanced Engineering Materials. https://doi.org/10.1002/adem.202401806
- Alu, A., Arrieta, A., Dottore, E. D., Dickey, M. D., Ferracin, S., Harne, R. L., Hauser, H., He, Q., Hopkins, J., Hyatt, L. P., Li, S., Mariani, S., Mazzolai, B., Mondini, A., Pal, A., Preston, D. J., Rajappan, A., Raney, J., Reis, P., et al. (2025). Roadmap on embodying mechano-intelligence and computing in functional materials and structures. Smart Materials and Structures. https://doi.org/10.1088/1361-665x/adb7aa
2024
- Byun, J., Pal, A., Ko, J., & Sitti, M. (2024). Integrated mechanical computing for autonomous soft machines. Nature Communications. https://doi.org/10.1038/s41467-024-47201-y
- Zhang, M., Pal, A., Lyu, X., Wu, Y., & Sitti, M. (2024). Artificial-goosebump-driven microactuation. Nature Materials, 23, Article 4. https://doi.org/10.1038/s41563-024-01810-6
2023
- Li, M., Pal, A., Byun, J., Gardi, G., & Sitti, M. (2023). Magnetic Putty as a Reconfigurable, Recyclable, and Accessible Soft Robotic Material. Advanced Materials, 35, Article 48. https://doi.org/10.1002/adma.202304825
- Zhang, M., Pal, A., Zheng, Z., Gardi, G., Yildiz, E., & Sitti, M. (2023). Hydrogel muscles powering reconfigurable micro-metastructures with wide-spectrum programmability. Nature Materials. https://doi.org/10.1038/s41563-023-01649-3
- Pal, A., & Sitti, M. (2023). Programmable mechanical devices through magnetically tunable bistable elements. Proceedings of the National Academy of Sciences, 120, Article 15. https://doi.org/10.1073/pnas.2212489120
- Feng, W., Pal, A., Wang, T., Ren, Z., Yan, Y., Lu, Y., Yang, H., & Sitti, M. (2023). Cholesteric Liquid Crystal Polymeric Coatings for Colorful Artificial Muscles and Motile Humidity Sensor Skin Integrated with Magnetic Composites. Advanced Functional Materials, 2300731. https://doi.org/10.1002/adfm.202300731
2022
- Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A., & Sitti, M. (2022). Soft actuators for real-world applications. Nature Reviews Materials, 7, Article 3. https://doi.org/10.1038/s41578-021-00389-7
- Martinez, R. V., & Pal, A. (2022). Waterproof electronic decals for wireless monitoring of biofluids. https://patents.google.com/patent/US20220061713A1/en
2021
- Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A., & Sitti, M. (2021). Soft actuators for real-world applications. Nature Reviews Materials. https://doi.org/10.1038/s41578-021-00389-7
- Pal, A., Restrepo, V., Goswami, D., & Martinez, R. V. (2021). Exploiting Mechanical Instabilities in Soft Robotics: Control, Sensing, and Actuation. Advanced Materials, 33, Article 19. https://doi.org/10.1002/adma.202006939
2020
- Pal, A., Bertoldi, K., Pham, M. Q., Schaenzer, M., & Gross, A. J. (2020). Optimal turbine blade design enabled by auxetic honeycomb. Smart Materials and Structures, 29, Article 12. https://doi.org/10.1088/1361-665x/abbd1d
- Pal, A., Nadiger, V. G., Goswami, D., & Martinez, R. V. (2020). Conformal, waterproof electronic decals for wireless monitoring of sweat and vaginal pH at the point-of-care. Biosensors and Bioelectronics, 160, Article January. https://doi.org/10.1016/j.bios.2020.112206
- Pal, A., Goswami, D., & Martinez, R. V. (2020). Elastic Energy Storage Enables Rapid and Programmable Actuation in Soft Machines. Advanced Functional Materials. https://doi.org/10.1002/adfm.201906603
- Martinez, R. V., & Pal, A. (2020). Omniphobic Paper-Based Smart Bandage Devices. https://patents.google.com/patent/US20200297255A1/en
- Pal, A. (2020). Design and Fabrication of Soft Biosensors and Actuators [Purdue University]. https://hammer.purdue.edu/articles/thesis/Design_and_Fabrication_of_Soft_Biosensors_and_Actuators/12401045/1
2019
- Pal, A., Goswami, D., & Martinez, R. V. (2019). Elastic Energy Storage Enables Rapid and Programmable Actuation in Soft Machines. Advanced Functional Materials, 47907, Article 1. https://doi.org/10.1002/adfm.201906603
- Goswami, D., Liu, S., Pal, A., Silva, L. G., & Martinez, R. V. (2019). 3D‐Architected Soft Machines with Topologically Encoded Motion. Advanced Functional Materials, 29, Article 24. https://doi.org/10.1002/adfm.201808713
2018
- Pal, A., Goswami, D., Cuellar, H. E., Castro, B., Kuang, S., & Martinez, R. V. (2018). Early detection and monitoring of chronic wounds using low-cost, omniphobic paper-based smart bandages. Biosensors and Bioelectronics, 117, 696–705. https://doi.org/10.1016/j.bios.2018.06.060
- Sadri, B., Goswami, D., Sala De Medeiros, M., Pal, A., Castro, B., Kuang, S., & Martinez, R. V. (2018). Wearable and Implantable Epidermal Paper-Based Electronics. ACS Applied Materials and Interfaces, 10, Article 37. https://doi.org/10.1021/acsami.8b11020
- Goswami, D., Munera, J. C., Pal, A., Sadri, B., Scarpetti, C. L. P. G., & Martinez, R. V. (2018). Roll-to-Roll Nanoforming of Metals Using Laser-Induced Superplasticity. Nano Letters, 18, Article 6. https://doi.org/10.1021/acs.nanolett.8b00714
2017
- Pal, A., Cuellar, H. E., Kuang, R., Caurin, H. F. N., Goswami, D., & Martinez, R. V. (2017). Self-Powered, Paper-Based Electrochemical Devices for Sensitive Point-of-Care Testing. Advanced Materials Technologies, 2, Article 10. https://doi.org/10.1002/admt.201700130