Dr.-Ing.

Mauricio Fernández

PostDoc
Institute of Applied Mechanics (CE)
Data Analytics in Engineering

Contact

+49 711 685-66341

Website

Pfaffenwaldring 7
70569 Stuttgart
Deutschland
Room: 3.137

  1. 2020

    1. Fernández, M., Rezaei, S., Mianroodi, J. R., Fritzen, F., & Reese, S. (2020). Application of artificial neural networks for the prediction of interface mechanics: a study on grain boundary constitutive behavior. Advanced Modeling and Simulation in Engineering Sciences, 7(1), Article 1. https://doi.org/10.1186/s40323-019-0138-7
  2. 2019

    1. Fernández, M., & Fritzen, F. (2019). Construction of a class of sharp Löwner majorants for a set of symmetric matrices. https://doi.org/10.13140/RG.2.2.20086.55361
    2. Fritzen, F., Fernández, M., & Larsson, F. (2019). On-the-Fly Adaptivity for Nonlinear Twoscale Simulations Using Artificial Neural Networks and Reduced Order Modeling. Frontiers in Materials, 6. https://doi.org/10.3389/fmats.2019.00075
    3. Lobos Fernández, M., & Böhlke, T. (2019). Representation of Hashin--Shtrikman Bounds in Terms of Texture Coefficients for Arbitrarily Anisotropic Polycrystalline Materials. Journal of Elasticity, 134(1), 1--38. https://doi.org/10.1007/s10659-018-9679-0
    4. Fernández, M. (2019). On the Orientation Average Based on Central Orientation Density Functions for Polycrystalline Materials. Journal of Elasticity. https://doi.org/10.1007/s10659-019-09754-8
    5. Fernández, M., & Böhlke, T. (2019). Hashin-Shtrikman bounds with eigenfields in terms of texture coefficients for polycrystalline materials. Acta Materialia, 165, 686--697. https://doi.org/10.1016/j.actamat.2018.05.073
  3. 2018

    1. Lobos Fernández, M. (2018). Homogenization and materials design of mechanical properties of textured materials based on zeroth-, first- and second-order bounds of linear behavior [Karlsruhe Institute of Technology (KIT)]. https://doi.org/10.5445/KSP/1000080683
  4. 2017

    1. Lobos, M., Yuzbasioglu, T., & Böhlke, T. (2017). Homogenization and Materials Design of Anisotropic Multiphase Linear Elastic Materials Using Central Model Functions. Journal of Elasticity, 128(1), 17--60. https://doi.org/10.1007/s10659-016-9615-0
  5. 2016

    1. Lobos, M., & Böhlke, T. (2016). On optimal zeroth-order bounds of linear elastic properties of multiphase materials and application in materials design. International Journal of Solids and Structures, 84, 40--48. https://doi.org/10.1016/j.ijsolstr.2015.12.015
    2. Noels, L., Wu, L., Adam, L., Seyfarth, J., Soni, G., Segurado, J., Laschet, G., Chen, G., Lesueur, M., Lobos, M., Böhlke, T., Reiter, T., Oberpeilsteiner, S., Salaberger, D., Weichert, D., & Broeckmann, C. (2016). Handbook of Software Solutions for ICME (G. J. Schmitz & U. Prahl, Eds.; pp. 433–485). Wiley-VCH Verlag GmbH & Co. https://doi.org/10.1002/9783527693566.ch6
  6. 2015

    1. Lobos, M., & Böhlke, T. (2015). Materials design for the anisotropic linear elastic properties of textured cubic crystal aggregates using zeroth-, first- and second-order bounds. International Journal of Mechanics and Materials in Design, 11(1), 59--78. https://doi.org/10.1007/s10999-014-9272-z
    2. Lobos, M., Yuzbasioglu, T., & Böhlke, T. (2015). Materials design of elastic properties of multiphase polycrystalline composites using model functions. PAMM, 15, 459 – 460. https://doi.org/10.1002/pamm.201510220
  7. 2014

    1. Böhlke, T., & Lobos, M. (2014). Representation of Hashin–Shtrikman bounds of cubic crystal aggregates in terms of texture coefficients with application in materials design. Acta Materialia, 67, 324--334. https://doi.org/10.1016/j.actamat.2013.11.003
    2. Fidlin, A., & Lobos, M. (2014). On the limiting of vibration amplitudes by a sequential friction-spring element. Journal of Sound and Vibration, 333(23), 5970--5979. https://doi.org/10.1016/j.jsv.2014.05.013
    3. Lobos, M., & Böhlke, T. (2014). Bounds and an isotropically self‐consistent singular approximation of the linear elastic properties of cubic crystal aggregates for application in materials design. PAMM, 14, 533–534. https://doi.org/10.1002/pamm.201410254

https://orcid.org/0000-0003-1840-1243

To the top of the page