Dr.-Ing.

Mauricio Fernández

PostDoc
Institute of Applied Mechanics (CE)
Data Analytics in Engineering

Contact

+49 711 685-66341

Website

Pfaffenwaldring 7
70569 Stuttgart
Deutschland
Room: 3.137

  1. 2020

    1. Fernández, M., Rezaei, S., Mianroodi, J. R., Fritzen, F., & Reese, S. (2020). Application of artificial neural networks for the prediction of interface mechanics: a study on grain boundary constitutive behavior. Advanced Modeling and Simulation in Engineering Sciences, 7(1). https://doi.org/10.1186/s40323-019-0138-7
  2. 2019

    1. Fernández, M., & Fritzen, F. (2019). Construction of a class of sharp Löwner majorants for a set of symmetric matrices. https://doi.org/10.13140/RG.2.2.20086.55361
    2. Fritzen, F., Fernández, M., & Larsson, F. (2019). On-the-Fly Adaptivity for Nonlinear Twoscale Simulations Using Artificial Neural Networks and Reduced Order Modeling. Frontiers in Materials, 6. https://doi.org/10.3389/fmats.2019.00075
    3. Lobos Fernández, M., & Böhlke, T. (2019). Representation of Hashin--Shtrikman Bounds in Terms of Texture Coefficients for Arbitrarily Anisotropic Polycrystalline Materials. Journal of Elasticity, 134(1), 1--38. https://doi.org/10.1007/s10659-018-9679-0
    4. Fernández, M. (2019). On the Orientation Average Based on Central Orientation Density Functions for Polycrystalline Materials. Journal of Elasticity. https://doi.org/10.1007/s10659-019-09754-8
    5. Fernández, M., & Böhlke, T. (2019). Hashin-Shtrikman bounds with eigenfields in terms of texture coefficients for polycrystalline materials. Acta Materialia, 165, 686--697. https://doi.org/10.1016/j.actamat.2018.05.073
  3. 2018

    1. Lobos Fernández, M. (2018). Homogenization and materials design of mechanical properties of textured materials based on zeroth-, first- and second-order bounds of linear behavior (Karlsruhe Institute of Technology (KIT)). https://doi.org/10.5445/KSP/1000080683
  4. 2017

    1. Lobos, M., Yuzbasioglu, T., & Böhlke, T. (2017). Homogenization and Materials Design of Anisotropic Multiphase Linear Elastic Materials Using Central Model Functions. Journal of Elasticity, 128(1), 17--60. https://doi.org/10.1007/s10659-016-9615-0
  5. 2016

    1. Lobos, M., & Böhlke, T. (2016). On optimal zeroth-order bounds of linear elastic properties of multiphase materials and application in materials design. International Journal of Solids and Structures, 84, 40--48. https://doi.org/10.1016/j.ijsolstr.2015.12.015
    2. Noels, L., Wu, L., Adam, L., Seyfarth, J., Soni, G., Segurado, J., … Broeckmann, C. (2016). Handbook of Software Solutions for ICME (By G. J. Schmitz & U. Prahl; G. J. Schmitz & U. Prahl, Eds.). https://doi.org/10.1002/9783527693566.ch6
  6. 2015

    1. Lobos, M., & Böhlke, T. (2015). Materials design for the anisotropic linear elastic properties of textured cubic crystal aggregates using zeroth-, first- and second-order bounds. International Journal of Mechanics and Materials in Design, 11(1), 59--78. https://doi.org/10.1007/s10999-014-9272-z
    2. Lobos, M., Yuzbasioglu, T., & Böhlke, T. (2015). Materials design of elastic properties of multiphase polycrystalline composites using model functions. PAMM, 15, 459 – 460. https://doi.org/10.1002/pamm.201510220
  7. 2014

    1. Böhlke, T., & Lobos, M. (2014). Representation of Hashin–Shtrikman bounds of cubic crystal aggregates in terms of texture coefficients with application in materials design. Acta Materialia, 67, 324--334. https://doi.org/10.1016/j.actamat.2013.11.003
    2. Fidlin, A., & Lobos, M. (2014). On the limiting of vibration amplitudes by a sequential friction-spring element. Journal of Sound and Vibration, 333(23), 5970--5979. https://doi.org/10.1016/j.jsv.2014.05.013
    3. Lobos, M., & Böhlke, T. (2014). Bounds and an isotropically self‐consistent singular approximation of the linear elastic properties of cubic crystal aggregates for application in materials design. PAMM, 14, 533–534. https://doi.org/10.1002/pamm.201410254

https://orcid.org/0000-0003-1840-1243

To the top of the page