Prof. Dr.-Ing. Dipl.-Math. techn.

Felix Fritzen

Institute of Applied Mechanics (CE)
Data Analytics in Engineering

Contact

+49 711 685-66283
+49 711 685-66347

Website
Business card (VCF)

Pfaffenwaldring 7
70569 Stuttgart
Germany
Room: 3.137 (PWR 9)

Office Hours

on demand

Subject

The Heisenberg professorship for Data Analytics in Engineering is embedded into the Cluster of Excellence Data-Integrated Simulation Science (SimTech, EXC-2075 - DFG project number 390740016).

Scientific research topics include, but are not limited to:

  • data-driven surrogate models
  • uncertainty quantification for mechanical problems
  • image-based surrogate models
  • computational mechanics of materials
  • development of nonlinear model order reduction methods
  • high performance simulation of multiscale problems
  • microstructure modeling
  • material modeling
  1. 2020

    1. Fernández, M., Rezaei, S., Mianroodi, J. R., Fritzen, F., & Reese, S. (2020). Application of artificial neural networks for the prediction of interface mechanics: a study on grain boundary constitutive behavior. Advanced Modeling and Simulation in Engineering Sciences, 7(1), 27. https://doi.org/10.1186/s40323-019-0138-7
  2. 2019

    1. Kunc, O., & Fritzen, F. (2019a). Efficient assembly of linearized equations in nonlinear homogenization. Proceedings in Applied Mathematics and Mechanics, 4. https://doi.org/10.1002/pamm.201900322
    2. Kunc, O., & Fritzen, F. (2019c). Generation of energy-minimizing point sets on spheres and their application in mesh-free interpolation and differentiation. Advances in Computational Mathematics, 45(5–6), 3012–3065. https://doi.org/10.1007/s10444-019-09726-5
    3. Fernández, M., & Fritzen, F. (2019). Construction of a class of sharp Löwner majorants for a set of symmetric matrices. https://doi.org/10.13140/RG.2.2.20086.55361
    4. Fritzen, F., Mauricio, F., & Larsson, F. (2019). On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials, 6(75), 1–18. https://doi.org/10.3389/fmats.2019.00075
    5. Fritzen, F., & Ryckelynck, D. (Eds.). (2019). Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics (By F. Fritzen & D. Ryckelynck). https://doi.org/10.3390/books978-3-03921-410-5
    6. Lißner, J., & Fritzen, F. (2019). Data-driven microstructure property relations. Mathematical and Computational Applications, 24(2), 1–27. https://doi.org/10.3390/mca24020057
    7. Kunc, O., & Fritzen, F. (2019b). Finite strain homogenization using a reduced basis and efficient sampling. Mathematical and Computational Applications, 24(2), 1--27. https://doi.org/10.3390/mca24020056
  3. 2018

    1. Wingender, D., Fritzen, F., & Jänicke, R. (2018). Reduced order modeling of viscoelastic properties of asphalt concrete. PAMM, 18(e201800240), 1–2. https://doi.org/10.1002/pamm.201800240
    2. Fritzen, F., & Kunc, O. (2018). Two-stage data-driven homogenization for nonlinear solids using a reduced order model. European Journal of Mechanics A / Solids, 69, 201–220. https://doi.org/10.1016/j.euromechsol.2017.11.007
    3. Leuschner, M., & Fritzen, F. (2018). Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems. Computational Mechanics, 62(3), 359–392. https://doi.org/10.1007/s00466-017-1501-5
    4. Fritzen, F., Haasdonk, B., Schöps, S., & Ryckelynck, D. (2018). An Algorithmic Comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a Nonlinear Thermal Problem. Mathematical and Computational Applications, 23(8), 1–25. https://doi.org/10.3390/mca23010008
    5. Fritzen, F., & Hassani, M. (2018). Space-time model order reduction for nonlinear viscoelastic systems subjected to long-term loading. Meccanica, 53(6), 1333-- 1355. https://doi.org/10.1007/s11012-017-0734-x
    6. Covezzi, F., de Miranda, S., Fritzen, F., Marfia, S., & Sacco, E. (2018). Comparison of reduced order homogenization techniques: pRBMOR, NUTFA and MxTFA. Meccanica, 53, 1291–1312. https://doi.org/10.1007/s11012-017-0814-y
  4. 2017

    1. Leuschner, M., & Fritzen, F. (2017). Reduced order homogenization for viscoplastic composite materials including dissipative imperfect interfaces. Mechanics of Materials, 104, 121–138. https://doi.org/10.1016/j.mechmat.2016.10.008
    2. Xia, L., Fritzen, F., & Breitkopf, P. (2017). Evolutionary topology optimization of elastoplastic structures. Structural and Multidisciplinary Optimization, 55(2), 569–581. https://doi.org/10.1007/s00158-016-1523-1
  5. 2016

    1. Fritzen, F., Xia, L., Leuschner, M., & Breitkopf, P. (2016). Topology optimization of multiscale elastoviscoplastic structures. International Journal for Numerical Methods in Engineering, 106(6), 430--453. https://doi.org/10.1002/nme.5122
    2. Fritzen, F., & Hodapp, M. (2016). The Finite Element Square Reduced (FE2R) method with GPU acceleration: towards three-dimensional two-scale simulations. International Journal for Numerical Methods in Engineering, 107(10), 853--881. https://doi.org/10.1002/nme.5188
  6. 2015

    1. Fritzen, F., Marfia, S., & Sepe, V. (2015). Reduced order modeling in nonlinear homogenization: A comparative study. Computers & Structures, 157, 114--131. https://doi.org/10.1016/j.compstruc.2015.05.012
    2. Leuschner, M., Fritzen, F., van Dommelen, J. A. W., & Hoefnagels, J. P. M. (2015). Potential-based constitutive models for cohesive interfaces: Theory, implementation and examples. Composites Part B: Engineering, 68, 38--50. https://doi.org/10.1016/j.compositesb.2014.08.024
    3. Fritzen, F., & Leuschner, M. (2015). Nonlinear reduced order homogenization of materials including cohesive interfaces. Computational Mechanics, 56(1), 131--151. https://doi.org/10.1007/s00466-015-1163-0
  7. 2014

    1. Fritzen, F., & Kochmann, D. (2014). Material instability-induced extreme damping in composites: a computational study. International Journal of Solids and Structures, 51(23--24), 4101--4112. https://doi.org/10.1016/j.ijsolstr.2014.07.028
    2. Fritzen, F., Hodapp, M., & Leuschner, M. (2014). GPU accelerated computational homogenization based on a variational approach in a reduced basis framework. Computer Methods in Applied Mechanics and Engineering, 278, 186--217. https://doi.org/10.1016/j.cma.2014.05.006
  8. 2013

    1. Fritzen, F., & Leuschner, M. (2013). Reduced basis hybrid computational homogenization based on a mixed incremental formulation. Computer Methods in Applied Mechanics and Engineering, 260, 143--154. https://doi.org/10.1016/j.cma.2013.03.007
    2. Fritzen, F., Forest, S., Kondo, D., & Böhlke, T. (2013). Computational homogenization of porous materials of Green type. Computational Mechanics, 52(1), 121--134. https://doi.org/10.1007/s00466-012-0801-z
    3. Fritzen, F., & Böhlke, T. (2013). Reduced basis homogenization of viscoelastic composites. Composites Science and Technology, 76(4), 84--91. https://doi.org/10.1016/j.compscitech.2012.12.012
  9. 2012

    1. Fritzen, F., Forest, S., Böhlke, T., Kondo, D., & Kanit, T. (2012). Computational homogenization of elasto-plastic porous metals. International Journal of Plasticity, 29, 102--119. https://doi.org/10.1016/j.ijplas.2011.08.005
  10. 2011

    1. Fritzen, F., & Böhlke, T. (2011a). Homogenized elasto-plastic response of high volume fraction metal ceramic composites based on nonuniform transformation fields. In Verbundwerkstoffe Und Werkstoffverbunde. Verbundwerkstoffe und Werkstoffverbunde (pp. 606--615). Bernhard Wielage.
    2. Wippler, J., Fünfschilling, S., Fritzen, F., Böhlke, T., & Hoffmann, M. J. (2011). Homogenization of the thermoelastic properties of silicon nitride. Acta Materialia, 59(15), 6029--6038. https://doi.org/10.1016/j.actamat.2011.06.011
    3. Fritzen, F., & Böhlke, T. (2011d). Periodic three-dimensional mesh generation for particle reinforced composites with application to metal matrix composites. International Journal of Solids and Structures, 48(5), 706--718. https://doi.org/10.1016/j.ijsolstr.2010.11.010
    4. Fritzen, F. (2011). Microstructural modeling and computational homogenization of the physically linear and nonlinear constitutive behavior of micro-heterogeneous materials. In Schriftenreihe Kontinuumsmechanik im Maschinenbau, Band 1. https://doi.org/10.5445/KSP/1000023534
    5. Fritzen, F., & Böhlke, T. (2011c). Nonuniform transformation field analysis of materials with morphological anisotropy. Composites Science and Technology, 71(4), 433--442. https://doi.org/10.1016/j.compscitech.2010.12.013
    6. Brylka, B., Fritzen, F., Böhlke, T., & Weidenmann, K. (2011). Influence of micro-structure on fibre push-out tests. PAMM, 11(1), 141--142. https://doi.org/10.1002/pamm.201110062
    7. Fritzen, F., & Böhlke, T. (2011b). Nonlinear homogenization using the nonuniform transformation field analysis. PAMM, 11(1), 519--522. https://doi.org/10.1002/pamm.201110250
  11. 2010

    1. Fritzen, F., & Böhlke, T. (2010a). Influence of the type of boundary conditions on the numerical properties of unit cell problems. Technische Mechanik, 30(4), 354--363.
    2. Fritzen, F., & Böhlke, T. (2010b). Three-dimensional finite element implementation of the nonuniform transformation field analysis. International Journal for Numerical Methods in Engineering, 84(7), 803--829. https://doi.org/10.1002/nme.2920
    3. Jöchen, K., Böhlke, T., & Fritzen, F. (2010). Influence of the crystallographic and the morphological texture on the elastic properties of fcc crystal aggregates. Solid State Phenomena, 160, 83--86. https://doi.org/10.4028/www.scientific.net/SSP.160.83
    4. Brylka, B., Fritzen, F., Böhlke, T., & Weidenmann, K. (2010). Study of Experimental Methods for Interface Problems Based on Virtual Testing. PAMM, 10(1), 109--110. https://doi.org/10.1002/pamm.201010047
  12. 2009

    1. Fritzen, F., & Böhlke, T. (2009a). Analytical inversion of the Jacobian for a class of generalized standard materials. PAMM, 9(1), 407--408. https://doi.org/10.1002/pamm.200910177
    2. Böhlke, T., Fritzen, F., Jöchen, K., & Tsotsova, R. (2009). Numerical methods for the quantification of the mechanical properties of crystal aggregates with morphologic and crystallographic texture. International Journal for Material Forming, 2, 915--917. https://doi.org/10.1007/s12289-009-0470-4
    3. Fritzen, F., & Böhlke, T. (2009c). Homogenization Of Three-Dimensional Micro-Heterogeneous Materials Using Nonuniform Transformation Fields. In J. Ambrosio (Ed.), Proceedings of 7th EUROMECH Solid Mechanics Conference, Lisbon, Portugal (By J. Ambrosio).
    4. Fritzen, F., Böhlke, T., & Schnack, E. (2009). Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations. Computational Mechanics, 43(5), 701--713. https://doi.org/10.1007/s00466-008-0339-2
    5. Fritzen, F., & Böhlke, T. (2009b). Homogenization of the physically nonlinear properties of three-dimensional metal matrix composites using the nonuniform transformation field analysis. Proceedings of the 17th International Conference on Composite Materials, Edinburgh, UK, 10.
  13. 2008

    1. Jöchen, K., Böhlke, T., & Fritzen, F. (2008). On estimates for the effective shear modulus of cubic crystal aggregates. PAMM, 8, 10551--10552. https://doi.org/10.1002/pamm.200810551
    2. Fritzen, F., Böhlke, T., & Schnack, E. (2008). Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations. PAMM, 8(4), 10545--10546. https://doi.org/10.1002/pamm.200810545
  14. 2007

    1. Piat, R., Fritzen, F., Roser, M., & Schnack, E. (2007). Numerische Modellierung des Rissfortschritts in porösen CVI-CFC Verbundwerkstoffen. MP Materialprüfung, 49(4), 170--176.
    2. Fritzen, F., Böhlke, T., & Schnack, E. (2007). Modeling of latent energy storage effects in thermoplasticity of metals. PAMM, 7, 4080017--4080018. https://doi.org/10.1002/pamm.200700449

Winter term
Data processing for engineers and scientists (see C@MPUS, module 100040) - since 2019

Summer term
Introduction to model order reduction of mechanical systems (see C@MPUS, module 67150) - since 2015
SimTech-Seminar (BSc.) (see C@MPUS, module 40640) - starting 2020.

Previous academic positions

since 01.2020
Heisenberg Professor (W3) for Data Analytics in Engineering, Institute of Applied Mechanics (CE), University of Stuttgart (www)

03.2015 - 01.2020
head of DFG Emmy Noether group EMMA - Efficient Methods for Mechanical Analysis - project number 257987586, grant DFG FR2702/6, Institute of Applied Mechanics (CE), University of Stuttgart (www)

01-02.2014
research stay at the Kochmann research group at California Institute of Technology (CALTECH), USA

03.2012 - 02.2015
head of KIT Young Investigator Group Computer Aided Material Modeling (YIG CAMM) in the scope of the Excellence Initiative

06-10.2010 and 02-04.2012
research stays at Centre des Matériaux, Mines ParisTech, Evry, France

05.2011 - 02.2012
Postdoctoral researcher at the Institute of Engineering Mechanics, Continuum Mechanics of KIT

Academic training

09.2006 - 05.2011
Phd.  at KIT, thesis title: Microstructural modelling and homogenization of the physically linear and nonlinear constitutive behaviour of micro-heterogenous materials - degree: Dr.-Ing. (summa cum laude/with distinction)
reviewers: Prof. T. Böhlke (KIT), Prof. S. Forest (Ecole des Marines, Paris), Prof. M.Geers (TU Eindhoven)

04.2004 - 03.2007
study of Mathematics of Technology at KIT - degree: Dipl.-Math.techn. (1,5)

10.2001 - 08.2006
study of Mechanical Engineering at KIT - degree: Dipl.-Ing. (with distinction 1,0)

2014 nomination for and participation at the Global Young Scentist Summit (GYSS@one-north), Singapore

2012
nomination for the ECCOMAS Phd Award, participation at the YIC Phd Olympiad 2012 in Aveiro (Portugal)

2012-2014
nomination as GAMM Junior; spokesperson 2012

2012
KIT Phd. Award "Materie und Materialien"

2006
Carl-Benz-Award, Mechanical Engineering, KIT

0000-0003-4926-0068 (open in new window)

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC-2075 - project number 390740016. (link)

The Heisenberg Professorship for Data Analytics in Engineering is funded by the German Research Foundation (DFG) - project number 406068690, grant FR2702/8. (link)

The Emmy Noether group EMMA - Efficient Methods for Mechanical Analysis is funded by the German Research Foundation (DFG) - project number 257987586, grant FR2702/6. (link)

Information regarding previous projects and related funding by DFG is available on GEPRIS. (link)

To the top of the page