Prof. Dr.-Ing.

Holger Steeb

Institute of Applied Mechanics (CE)
Continuum Mechanics

Contact

+49 711 685-66029
+49 711 685-66347

Website

Pfaffenwaldring 7
70569 Stuttgart
Germany
Room: Secretariat

Office Hours

on demand

Publications in peer-reviewed journals:
  1. 2019

    1. Karadimitriou, N. K., Mahani, H., Steeb, H., & Niasar, V. (2019). Nonmonotonic Effects of Salinity on Wettability Alteration and Two-Phase Flow Dynamics in PDMS Micromodels. Water Resources Research, 55(11), 9826--9837. https://doi.org/10.1029/2018wr024252
    2. Quintal, B., Caspari, E., Holliger, K., & Steeb, H. (2019). Numerically quantifying energy loss caused by squirt flow. Geophysical Prospecting, 67(8), 2196–2212. https://doi.org/10.1111/1365-2478.12832
    3. Steeb, Holger, & Renner, J. (2019). Mechanics of Poro-Elastic Media: A Review with Emphasis on Foundational State Variables. Transport in Porous Media, 120(2), 437–461. https://doi.org/10.1007/s11242-019-01319-6
    4. Schmidt, P., & Steeb, H. (2019). Numerical aspects of hydro-mechanical coupling of fluid-filled fractures using hybrid-dimensional element formulations and non-conformal meshes. GEM - International Journal on Geomathematics, 10(1), 14. https://doi.org/10.1007/s13137-019-0127-5
    5. Zhang, H., Frey, S., Steeb, H., Uribe, D., Ertl, T., & Wang, W. (2019). Visualization of Bubble Formation in Porous Media. IEEE Transactions on Visualization and Computer Graphics, 25(1), 1060–1069. https://doi.org/10.1109/TVCG.2018.2864506
  2. 2018

    1. Ghobadi, E., Marquardt, A., Zirdehi, E. M., Neuking, K., Varnik, F., Eggeler, G., & Steeb, H. (2018). The Influence of Water and Solvent Uptake on Functional Properties of Shape-Memory Polymers. International Journal of Polymer Science, 2018, 7819353. Retrieved from https://doi.org/10.1155/2018/7819353
    2. Ghobadi, E., Elsayed, M., Krause-Rehberg, R., & Steeb, H. (2018). Demonstrating the Influence of Physical Aging on the Functional Properties of Shape-Memory Polymers. Polymers, 10(2), 107. https://doi.org/10.3390/polym10020107
    3. Sauerwein, M., & Steeb, H. (2018). A modified effective stress principle for chemical active multiphase materials with internal mass exchange. Geomechanics for Energy and the Environment, 15, 19--34. https://doi.org/10.1016/j.gete.2018.02.001
    4. Schneider, M., Hofmann, T., Andrä, H., Lechner, P., Ettemeyer, F., Volk, W., & Steeb, H. (2018). Modelling the microstructure and computing effective elastic properties of sand core materials. International Journal of Solids and Structures, 143, 1--17. https://doi.org/10.1016/j.ijsolstr.2018.02.008
  3. 2017

    1. Lavasan, A. A., Zhao, C., Barciaga, T., Schaufler, A., Steeb, H., & Schanz, T. (2017). Numerical investigation of tunneling in saturated soil: the role of construction and operation periods. Acta Geotechnica. https://doi.org/10.1007/s11440-017-0595-4
    2. Gueven, I., Frijters, S., Harting, J., Luding, S., & Steeb, H. (2017). Hydraulic properties of porous sintered glass bead systems. Granular Matter, 19(2), 28. https://doi.org/10.1007/s10035-017-0705-x
    3. Markauskas, D., Kruggel-Emden, H., Sivanesapillai, R., & Steeb, H. (2017). Comparative study on mesh-based and mesh-less coupled CFD-DEM methods to model particle-laden flow. Powder Technology, 305, 78--88. https://doi.org/10.1016/j.powtec.2016.09.052
    4. Güven, I., Luding, S., & Steeb, H. (2017). Incoherent Waves in Fluid-Saturated Sintered Granular Systems: Scattering Phenomena. Journal of Vibration and Acoustics, 140(1), 011018. https://doi.org/10.1115/1.4037701
  4. 2016

    1. Sivanesapillai, Rakulan, Falkner, N., Hartmaier, A., & Steeb, H. (2016). A CSF-SPH method for simulating drainage and imbibition at pore-scale resolution while tracking interfacial areas. Advances in Water Resources, 95, 212--234. https://doi.org/10.1016/j.advwatres.2015.08.012
    2. Jänicke, R., Larsson, F., Runesson, K., & Steeb, H. (2016). Numerical identification of a viscoelastic substitute model for heterogeneous poroelastic media by a reduced order homogenization approach. Computer Methods in Applied Mechanics and Engineering, 298, 108--120. https://doi.org/10.1016/j.cma.2015.09.024
    3. Kurzeja, P., Steeb, H., Strutz, M. A., & Renner, J. (2016). Oscillatory fluid flow in deformable tubes: Implications for pore-scale hydromechanics from comparing experimental observations with theoretical predictions. The Journal of the Acoustical Society of America, 140(6), 4378--4395. https://doi.org/10.1121/1.4971365
    4. Saenger, Erik H., Lebedev, M., Uribe, D., Osorno, M., Vialle, S., Duda, M., … Steeb, H. (2016). Analysis of high-resolution X-ray computed tomography images of Bentheim sandstone under elevated confining pressures. Geophysical Prospecting, 64(4), 848--859. https://doi.org/10.1111/1365-2478.12400
    5. Schüler, Thorsten, Jänicke, R., & Steeb, H. (2016). Nonlinear modeling and computational homogenization of asphalt concrete on the basis of XRCT scans. Construction and Building Materials, 109, 96--108. https://doi.org/10.1016/j.conbuildmat.2016.02.012
    6. Ghobadi, E., Sivanesapillai, R., Musialak, J., & Steeb, H. (2016). Modeling Based Characterization of Thermorheological Properties of Polyurethane ESTANE. International Journal of Polymer Science, 2016, 7514974. Retrieved from http://dx.doi.org/10.1155/2016/7514974
    7. Saenger, Erik H., Vialle, S., Lebedev, M., Uribe, D., Osorno, M., Duda, M., & Steeb, H. (2016). Digital carbonate rock physics. Solid Earth, 7(4), 1185–1197. https://doi.org/10.5194/se-7-1185-2016
  5. 2015

    1. Jänicke, R., Quintal, B., & Steeb, H. (2015). Numerical homogenization of mesoscopic loss in poroelastic media. European Journal of Mechanics - A/Solids, 49, 382--395. https://doi.org/10.1016/j.euromechsol.2014.08.011
    2. Vinci, Carlo, Steeb, H., & Renner, J. (2015). The imprint of hydro-mechanics of fractures in periodic pumping tests. Geophysical Journal International, 202(3), 1613–1626. https://doi.org/10.1093/gji/ggv247
    3. Rubino, J. G., Quintal, B., Müller, T. M., Guarracino, L., Jänicke, R., Steeb, H., & Holliger, K. (2015). Energy dissipation of P- and S-waves in fluid-saturated rocks: An overview focusing on hydraulically connected fractures. Journal of Earth Science, 26(6), 785--790. https://doi.org/10.1007/s12583-015-0613-0
    4. Osorno, M., Uribe, D., Ruiz, O. E., & Steeb, H. (2015). Finite difference calculations of permeability in large domains in a wide porosity range. Archive of Applied Mechanics, 85(8), 1043--1054. https://doi.org/10.1007/s00419-015-1025-4
  6. 2014

    1. Renner, J., & Steeb, H. (2014). Modeling of Fluid Transport in Geothermal Research. In W. Freeden, M. Z. Nashed, & T. Sonar (Eds.), Handbook of Geomathematics (pp. 1443–1505; By W. Freeden, M. Z. Nashed, & T. Sonar). https://doi.org/10.1007/978-3-642-27793-1_81-2
    2. Kazakeviciute-Makovska, R., Aydin, A. O., & Steeb, H. (2014). Characterization of shape memory polymer Estane (TM) by means of dynamic mechanical thermal analysis technique. Smart Materials Research, 250258. https://doi.org/10.1155/2014/250258
    3. Vinci, C., Renner, J., & Steeb, H. (2014a). A hybrid-dimensional approach for an efficient numerical modeling of the hydro-mechanics of fractures. Water Resources Research, 50(2), 1616--1635. https://doi.org/10.1002/2013WR014154
    4. Steeb, Holger, Kurzeja, P. S., & Schmalholz, S. M. (2014). Wave propagation in unsaturated porous media. Acta Mechanica, 225(8), 2435--2448. https://doi.org/10.1007/s00707-014-1135-z
    5. Fusseis, F., Steeb, H., Xiao, X., Zhu, W., Butler, I. B., Elphick, S., & Mäder, U. (2014). A low-cost X-ray-transparent experimental cell for synchrotron-based X-ray microtomography studies under geological reservoir conditions. Journal of Synchrotron Radiation, 21(1), 251--253. https://doi.org/10.1107/S1600577513026969
    6. Kurzeja, P. S., & Steeb, H. (2014b). Variational formulation of oscillating fluid clusters and oscillator-like classification. II. Numerical study of pinned liquid clusters. Physics of Fluids, 26(4), 042107. https://doi.org/10.1063/1.4871489
    7. Kurzeja, P. S., & Steeb, H. (2014a). Variational formulation of oscillating fluid clusters and oscillator-like classification. I. Theory. Physics of Fluids, 26(4), 042106. https://doi.org/10.1063/1.4871486
    8. Quintal, B., Jänicke, R., Rubino, J. G., Steeb, H., & Holliger, K. (2014). Sensitivity of S-wave attenuation to the connectivity of fractures in fluid-saturated rocks. GEOPHYSICS, 79(5), WB15--WB24. https://doi.org/10.1190/geo2013-0409.1
    9. Kazakeviciute-Makovska, R., Heuchel, M., Kratz, K., & Steeb, H. (2014). Universal relations in linear thermoelastic theories of thermally-responsive shape memory polymers. International Journal of Engineering Science, 82, 140--158. https://doi.org/10.1016/j.ijengsci.2014.05.009
    10. Sivanesapillai, R., Steeb, H., & Hartmaier, A. (2014). Transition of effective hydraulic properties from low to high Reynolds number flow in porous media. Geophysical Research Letters, 41(14), 4920--4928. https://doi.org/10.1002/2014GL060232
    11. Vinci, C., Renner, J., & Steeb, H. (2014b). On attenuation of seismic waves associated with flow in fractures. Geophysical Research Letters, 41(21), 7515--7523. https://doi.org/10.1002/2014GL061634
  7. 2013

    1. Jeong, J., Sardini, P., Ramézani, H., Siitari-Kauppi, M., & Steeb, H. (2013). Modeling of the induced chemo-mechanical stress through porous cement mortar subjected to CO2: Enhanced micro-dilatation theory and 14C-PMMA method. Computational Materials Science, 69, 466--480. https://doi.org/10.1016/j.commatsci.2012.11.031
    2. Steeb, Holger, Singh, J., & Tomar, S. K. (2013). Time harmonic waves in thermoelastic material with microtemperatures. Mechanics Research Communications, 48, 8--18. https://doi.org/10.1016/j.mechrescom.2012.11.006
    3. Schaufler, A., Becker, C., & Steeb, H. (2013). Infiltration processes in cohesionless soils. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 93(2–3), 138--146. https://doi.org/10.1002/zamm.201200047
    4. Schüler, T., Manke, R., Jänicke, R., Radenberg, M., & Steeb, H. (2013). Multi-scale modelling of elastic/viscoelastic compounds. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 93(2–3), 126--137. https://doi.org/10.1002/zamm.201200055
    5. Tomar, S., Bhagwan, J., & Steeb, H. (2013). Time harmonic waves in a thermo-viscoelastic material with voids. Journal of Vibration and Control, 20(8), 1119--1136. https://doi.org/10.1177/1077546312470479
    6. Kazakevičiūtė-Makovska, R., Mogharebi, S., Steeb, H., Eggeler, G., & Neuking, K. (2013). A Critical Assessment of Experimental Methods for Determining the Dynamic Mechanical Characteristics of Shape Memory Polymers. Advanced Engineering Materials, 15(8), 732--739. https://doi.org/10.1002/adem.201200341
    7. Mogharebi, S., Kazakeviciute-Makovska, R., Steeb, H., Eggeler, G., & Neuking, K. (2013). On the cyclic material stability of shape memory polymer. Materialwissenschaft Und Werkstofftechnik, 44(6), 521--526. https://doi.org/10.1002/mawe.201300023
    8. Müller, P., Kazakeviciute-Makovska, R., & Steeb, H. (2013). On strain measurements in soft (rubbery) and stiff (glassy) polymeric materials. Kautschuk Gummi Kunststoffe: KGK, 4–13, 48–54.
  8. 2012

    1. Gueven, I., Kurzeja, P., Luding, S., & Steeb, H. (2012). Experimental evaluation of phase velocities and tortuosity in fluid saturated highly porous media. PAMM, 12(1), 401--402. https://doi.org/10.1002/pamm.201210189
    2. Jänicke, Ralf, & Steeb, H. (2012b). Wave propagation in periodic microstructures by homogenisation of extended continua. Computational Materials Science, 52(1), 209--211. https://doi.org/10.1016/j.commatsci.2011.04.011
    3. Ramézani, H., Steeb, H., & Jeong, J. (2012). Analytical and numerical studies on Penalized Micro-Dilatation (PMD) theory: Macro-micro link concept. European Journal of Mechanics - A/Solids, 34, 130--148. https://doi.org/10.1016/j.euromechsol.2011.11.002
    4. Kazakeviciute-Makovska, Rasa, Steeb, H., & Aydin, A. Ö. (2012). On the evolution law for the frozen fraction in linear theories of shape memory polymers. Archive of Applied Mechanics, 82(8), 1103--1115. https://doi.org/10.1007/s00419-012-0615-7
    5. Jänicke, Ralf, & Steeb, H. (2012a). Minimal loading conditions for higher-order numerical homogenisation schemes. Archive of Applied Mechanics, 82(8), 1075--1088. https://doi.org/10.1007/s00419-012-0614-8
    6. Quintal, B., Steeb, H., Frehner, M., Schmalholz, S. M., & Saenger, E. H. (2012). Pore fluid effects on S-wave attenuation caused by wave-induced fluid flow. Geophysics, 77(3), L13--L23. https://doi.org/10.1190/geo2011-0233.1
    7. Steeb, Holger, Kurzeja, P. S., Frehner, M., & Schmalholz, S. M. (2012). Phase Velocity Dispersion and Attenuation of Seismic Waves due to Trapped Fluids in Residual Saturated Porous Media. Vadose Zone Journal, 11(3), 0. https://doi.org/10.2136/vzj2011.0121
    8. Saenger, E.H., Uribe, D., Jänicke, R., Ruiz, O., & Steeb, H. (2012). Digital material laboratory: Wave propagation effects in open-cell aluminium foams. International Journal of Engineering Science, 58, 115--123. https://doi.org/10.1016/j.ijengsci.2012.03.030
    9. Kurzeja, P. S., & Steeb, H. (2012). About the transition frequency in Biot’s theory. The Journal of the Acoustical Society of America, 131(6), EL454--EL460. https://doi.org/10.1121/1.4710834
  9. 2011

    1. Quintal, B., Steeb, H., Frehner, M., & Schmalholz, S. M. (2011). Quasi-static finite element modeling of seismic attenuation and dispersion due to wave-induced fluid flow in poroelastic media. Journal of Geophysical Research: Solid Earth, 116(B1), n/a--n/a. https://doi.org/10.1029/2010JB007475
    2. Kazakeviciute-Makovska, R., & Steeb, H. (2011a). On recoverable strain-stress relationships in shape memory polymer nanocomposites. Kautschuk Gummi Kunststoffe: KGK, 611, 24–28.
    3. Kazakeviciute-Makovska, R., & Steeb, H. (2011b). Superelasticity and Self-Healing of Proteinaceous Biomaterials. Procedia Engineering, 10, 2597--2602. https://doi.org/10.1016/j.proeng.2011.04.432
    4. Saenger, Erik H., Enzmann, F., Keehm, Y., & Steeb, H. (2011). Digital rock physics: Effect of fluid viscosity on effective elastic properties. Journal of Applied Geophysics, 74(4), 236--241. https://doi.org/10.1016/j.jappgeo.2011.06.001
  10. 2010

    1. Steeb, Holger. (2010a). Ultrasound propagation in cancellous bone. Archive of Applied Mechanics, 80(5), 489--502. https://doi.org/10.1007/s00419-009-0385-z
    2. Steeb, Holger. (2010b). Internal erosion in gas-flow weak conditions. In J. Goddard, P. Giovine, & J. T. Jenkins (Eds.), AIP Conference Proceedings (pp. 115–134; By J. Goddard, P. Giovine, & J. T. Jenkins). https://doi.org/10.1063/1.3435382
  11. 2009

    1. Chen, Z., Steeb, H., & Diebels, S. (2009). A EVI-space-time Galerkin method for dynamics at finite deformation in porous media. Computational Mechanics, 43(5), 585--601. https://doi.org/10.1007/s00466-008-0332-9
    2. Sehlhorst, H. G., Jänicke, R., Düster, A., Rank, E., Steeb, H., & Diebels, S. (2009). Numerical investigations of foam-like materials by nested high-order finite element methods. Computational Mechanics, 45(1), 45--59. https://doi.org/10.1007/s00466-009-0414-3
  12. 2008

    1. Chen, Z., Steeb, H., & Diebels, S. (2008b). A new hybrid velocity integration method applied to elastic wave propagation. International Journal for Numerical Methods in Engineering, 74(1), 56--79. https://doi.org/10.1002/nme.2167
    2. Ebinger, T., Steeb, H., & Diebels, S. (2008). Kinematically extended continuum theories: Correlation between microscopical deformation and macroscopical strain measures. Technische Mechanik, 28, 64–86.
    3. Johlitz, M., Steeb, H., Diebels, S., Basal, J., & Possart, W. (2008). Experimental and numerical investigation of size effects in polyurethane adhesive sealings. Technische Mechanik, 28, 3–12.
    4. Chen, Z., Steeb, H., & Diebels, S. (2008a). A space-time discontinuous Galerkin method applied to single-phase flow in porous media. Computational Geosciences, 12(4), 525--539. https://doi.org/10.1007/s10596-008-9092-z
    5. Frehner, M., Schmalholz, S. M., Saenger, E. H., & Steeb, H. (2008). Comparison of finite difference and finite element methods for simulating two-dimensional scattering of elastic waves. Physics of the Earth and Planetary Interiors, 171(1–4), 112--121. https://doi.org/10.1016/j.pepi.2008.07.003
    6. Johlitz, Michael, Diebels, S., Batal, J., Steeb, H., & Possart, W. (2008). Size effects in polyurethane bonds: experiments, modelling and parameter identification. Journal of Materials Science, 43(14), 4768. https://doi.org/10.1007/s10853-008-2674-2
    7. Johlitz, Michael, Steeb, H., Jänicke, R., & Diebels, S. (2008). Effective properties and size effects in filled polymers. GAMM-Mitteilungen, 31(2), 210--224. https://doi.org/10.1002/gamm.200890012
  13. 2007

    1. Ebinger, T., Diebels, S., & Steeb, H. (2007). Numerical Homogenization Techniques Applied to Growth and Remodelling Phenomena. Computational Mechanics, 39(6), 815--830. https://doi.org/10.1007/s00466-006-0071-8
    2. Diebels, S, Johlitz, M., Steeb, H., Chatzouridou, A., Batal, J., & Possart, W. (2007). A continuum-based model capturing size effects in polymer bonds. Journal of Physics: Conference Series, 62(1), 34. Retrieved from http://stacks.iop.org/1742-6596/62/i=1/a=003
    3. Steeb, Holger, Diebels, S., & Vardoulakis, I. (2007). Modeling Internal Erosion in Porous Media. Computer Applications In Geotechnical Engineering. https://doi.org/10.1061/40901(220)16
    4. Johlitz, Michael, Steeb, H., Diebels, S., Chatzouridou, A., Batal, J., & Possart, W. (2007). Experimental and theoretical investigation of nonlinear viscoelastic polyurethane systems. Journal of Materials Science, 42(23), 9894. https://doi.org/10.1007/s10853-006-1479-4
  14. 2006

    1. Chen, Z., Steeb, H., & Diebels, S. (2006). A time-discontinuous Galerkin method for the dynamical analysis of porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 30(11), 1113--1134. https://doi.org/10.1002/nag.516
  15. 2005

    1. Ebinger, T., Steeb, H., & Diebels, S. (2005a). Modeling macroscopic extended continua with the aid of numerical homogenization schemes. Computational Materials Science, 32(3–4), 337--347. https://doi.org/10.1016/j.commatsci.2004.09.034
    2. Ebinger, T., Steeb, H., & Diebels, S. (2005b). Modeling and homogenization of foams. Comp. Assisted Mechanics and Engineering Sciences, 12, 49–63.
    3. Diebels, Stefan, Ebinger, T., & Steeb, H. (2005). An anisotropic damage model of foams on the basis of a micromechanical description. Journal of Materials Science, 40(22), 5919--5924. https://doi.org/10.1007/s10853-005-5043-4
  16. 2004

    1. Steeb, Holger, & Diebels, S. (2004). Modeling thin films applying an extended continuum theory based on a scalar-valued order parameter. International Journal of Solids and Structures, 41(18–19), 5071--5085. https://doi.org/10.1016/j.ijsolstr.2004.03.013
  17. 2003

    1. Diebels, S., & Steeb, H. (2003). Stress and couple stress in foams. Computational Materials Science, 28(3–4), 714–722. https://doi.org/10.1016/j.commatsci.2003.08.025
    2. Steeb, H., & Diebels, S. (2003). A thermodynamic-consistent model describing growth and remodeling phenomena. Computational Materials Science, 28(3–4), 597--607. https://doi.org/10.1016/j.commatsci.2003.08.016
  18. 2002

    1. Diebels, S., & Steeb, H. (2002). The size effect in foams and its theoretical and numerical investigation. Proceedings of the Royal Society A, 458(2028), 2869–2883. https://doi.org/10.1098/rspa.2002.0991

In the winter term WS 19/20 I am teaching the following courses

  • Technische Mechanik I (TM I)
  • Höhere Mechanik I (HM I)
  • Mechanik inkompressibler Fluide (MiF)
  • Continuum Mechanics (C1) - COMMAS

Please have a further look in  ILIAS for content information of the courses (lecture notes, summaries etc) and in  C@MPUS for organizational issues (like exam registration).

1990-1995 Graduation in Civil Engineering (Dipl.-Ing.), University of Stuttgart
1996-2001 Teaching assistant, Institute of Structural Mechanics, University of Stuttgart
June 2002  Doctoral degree (Dr.-Ing.), University of Stuttgart
2001-2002 Researcher (SFB 404), Institute of Mechanics, University of Stuttgart
2002-2008 Researcher & Lecturer, Chair of Applied Mechanics, Saarland University, Saarbrücken
4/2004-8/2004 
Post-Doc Fellow (through EU-RTN), Faculty of Applied Mathematics and Physics,
NTUA Athens, Greece
2008 Habilitation in Mechanics (Venia Legendi in Mechanics), Saarland University, Saarbrücken
since 5/2008 Assistant Professor (now Guest Professor), Multi-Scale Mechanics, University of Twente, Enschede, The Netherlands
2009-9/2015 Full Professor (W3) for Continuum Mechanics at the Institute for Computational Engineering, Ruhr-University Bochum
since 10/2015 Full Professor (W3) for Continuum Mechanics at the Institute of Applied Mechanics (CE), University of Stuttgart
 
To the top of the page