This picture showsHolger Steeb

Prof. Dr.-Ing.

Holger Steeb

Head of Institute
Institute of Applied Mechanics (CE)
Chair of Continuum Mechanics

Contact

+49 711 685-66029
+49 711 685-66347

Website

Pfaffenwaldring 7
70569 Stuttgart
Germany
Room: Sekretariat

Office Hours

on demand

Publications in peer-reviewed journals:
  1. 2021

    1. Schmidt, P., & Steeb, H. (2021). Investigation of heterogeneous fracture aperture distributions in a hydro mechanical setting using hybrid-dimensional interface elements. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000030
    2. Krach, D., & Steeb, H. (2021). Simulation of weak-inertia single-phase flow in porous materials using Smoothed Particle Hydrodynamics. PAMM, 20(1), Article 1. https://doi.org/10.1002/pamm.202000289
  2. 2020

    1. Ruf, M., & Steeb, H. (2020). micro-XRCT data set of open-pored asphalt concrete. DaRUS. https://doi.org/10.18419/DARUS-639
    2. Ruf, M., & Steeb, H. (2020). micro-XRCT data set of Carrara marble with artificially created crack network: slow cooling down from 600°C. DaRUS. https://doi.org/10.18419/DARUS-754
    3. Ruf, M., & Steeb, H. (2020). micro-XRCT data set of an in-situ flow experiment with an X-ray transparent flow cell. DaRUS. https://doi.org/10.18419/DARUS-691
    4. Ruf, M., & Steeb, H. (2020). micro-XRCT data set of Carrara marble with artificially created crack network: fast cooling down from 600°C. DaRUS. https://doi.org/10.18419/DARUS-682
    5. Kijanski, N., Krach, D., & Steeb, H. (2020). An SPH Approach for Non-Spherical Particles Immersed in Newtonian Fluids. Materials, 13(10), 2324. https://doi.org/10.3390/ma13102324
    6. Hermann, S., Schneider, M., Flemisch, B., Frey, S., Iglezakis, D., Ruf, M., Schembera, B., Seeland, A., & Steeb, H. (2020). Datenmanagement im SFB 1313. https://doi.org/10.17192/BFDM.2020.1.8085
    7. Kocur, G. K., Harmanci, Y. E., Chatzi, E., Steeb, H., & Markert, B. (2020). Automated identification of the coefficient of restitution via bouncing ball measurement. Archive of Applied Mechanics. https://doi.org/10.1007/s00419-020-01751-x
    8. Hasan, S., Niasar, V., Karadimitriou, N. K., Godinho, J. R. A., Vo, N. T., An, S., Rabbani, A., & Steeb, H. (2020). Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography. Proceedings of the National Academy of Sciences, September 22, 2020. https://doi.org/10.1073/pnas.2011716117
    9. Lissa, S., Ruf, M., Steeb, H., & Quintal, B. (2020). Effects of crack roughness on attenuation caused by squirt flow in Carrara marble. SEG Technical Program Expanded Abstracts 2020. https://doi.org/10.1190/segam2020-3427789.1
    10. Sauerwein, M., & Steeb, H. (2020). Modeling of dynamic hydrogel swelling within the pore space of a porous medium. International Journal of Engineering Science, 155, 103353. https://doi.org/10.1016/j.ijengsci.2020.103353
    11. Ruf, M., & Steeb, H. (2020). An open, modular, and flexible micro X-ray computed tomography system for research. Review of Scientific Instruments, 91(11), 113102. https://doi.org/10.1063/5.0019541
    12. Schepp, L. L., Ahrens, B., Balcewicz, M., Duda, M., Nehler, M., Osorno, M., Uribe, D., Steeb, H., Nigon, B., Stöckhert, F., Swanson, D. A., Siegert, M., Gurris, M., Saenger, E. H., & Ruf, M. (2020). Digital rock physics and laboratory considerations on a high-porosity volcanic rock: micro-XRCT data sets. DaRUS. https://doi.org/10.18419/DARUS-680
  3. 2019

    1. Karadimitriou, N. K., Mahani, H., Steeb, H., & Niasar, V. (2019). Nonmonotonic Effects of Salinity on Wettability Alteration and Two-Phase Flow Dynamics in PDMS Micromodels. Water Resources Research, 55(11), 9826--9837. https://doi.org/10.1029/2018wr024252
    2. Quintal, B., Caspari, E., Holliger, K., & Steeb, H. (2019). Numerically quantifying energy loss caused by squirt flow. Geophysical Prospecting, 67(8), 2196–2212. https://doi.org/10.1111/1365-2478.12832
    3. Steeb, H., & Renner, J. (2019). Mechanics of Poro-Elastic Media: A Review with Emphasis on Foundational State Variables. Transport in Porous Media, 120(2), 437–461. https://doi.org/10.1007/s11242-019-01319-6
    4. Schmidt, P., & Steeb, H. (2019). Numerical aspects of hydro-mechanical coupling of fluid-filled fractures using hybrid-dimensional element formulations and non-conformal meshes. GEM - International Journal on Geomathematics, 10(1), 14. https://doi.org/10.1007/s13137-019-0127-5
    5. Zhang, H., Frey, S., Steeb, H., Uribe, D., Ertl, T., & Wang, W. (2019). Visualization of Bubble Formation in Porous Media. IEEE Transactions on Visualization and Computer Graphics, 25(1), 1060–1069. https://doi.org/10.1109/TVCG.2018.2864506
  4. 2018

    1. Ghobadi, E., Marquardt, A., Zirdehi, E. M., Neuking, K., Varnik, F., Eggeler, G., & Steeb, H. (2018). The Influence of Water and Solvent Uptake on Functional Properties of Shape-Memory Polymers. International Journal of Polymer Science, 2018, 7819353. https://doi.org/10.1155/2018/7819353
    2. Ghobadi, E., Elsayed, M., Krause-Rehberg, R., & Steeb, H. (2018). Demonstrating the Influence of Physical Aging on the Functional Properties of Shape-Memory Polymers. Polymers, 10(2), 107. https://doi.org/10.3390/polym10020107
    3. Sauerwein, M., & Steeb, H. (2018). A modified effective stress principle for chemical active multiphase materials with internal mass exchange. Geomechanics for Energy and the Environment, 15, 19--34. https://doi.org/10.1016/j.gete.2018.02.001
    4. Schneider, M., Hofmann, T., Andrä, H., Lechner, P., Ettemeyer, F., Volk, W., & Steeb, H. (2018). Modelling the microstructure and computing effective elastic properties of sand core materials. International Journal of Solids and Structures, 143, 1--17. https://doi.org/10.1016/j.ijsolstr.2018.02.008
  5. 2017

    1. Lavasan, A. A., Zhao, C., Barciaga, T., Schaufler, A., Steeb, H., & Schanz, T. (2017). Numerical investigation of tunneling in saturated soil: the role of construction and operation periods. Acta Geotechnica. https://doi.org/10.1007/s11440-017-0595-4
    2. Gueven, I., Frijters, S., Harting, J., Luding, S., & Steeb, H. (2017). Hydraulic properties of porous sintered glass bead systems. Granular Matter, 19(2), 28. https://doi.org/10.1007/s10035-017-0705-x
    3. Markauskas, D., Kruggel-Emden, H., Sivanesapillai, R., & Steeb, H. (2017). Comparative study on mesh-based and mesh-less coupled CFD-DEM methods to model particle-laden flow. Powder Technology, 305, 78--88. https://doi.org/10.1016/j.powtec.2016.09.052
    4. Güven, I., Luding, S., & Steeb, H. (2017). Incoherent Waves in Fluid-Saturated Sintered Granular Systems: Scattering Phenomena. Journal of Vibration and Acoustics, 140(1), 011018. https://doi.org/10.1115/1.4037701
  6. 2016

    1. Sivanesapillai, R., Falkner, N., Hartmaier, A., & Steeb, H. (2016). A CSF-SPH method for simulating drainage and imbibition at pore-scale resolution while tracking interfacial areas. Advances in Water Resources, 95, 212--234. https://doi.org/10.1016/j.advwatres.2015.08.012
    2. Jänicke, R., Larsson, F., Runesson, K., & Steeb, H. (2016). Numerical identification of a viscoelastic substitute model for heterogeneous poroelastic media by a reduced order homogenization approach. Computer Methods in Applied Mechanics and Engineering, 298, 108--120. https://doi.org/10.1016/j.cma.2015.09.024
    3. Kurzeja, P., Steeb, H., Strutz, M. A., & Renner, J. (2016). Oscillatory fluid flow in deformable tubes: Implications for pore-scale hydromechanics from comparing experimental observations with theoretical predictions. The Journal of the Acoustical Society of America, 140(6), 4378--4395. https://doi.org/10.1121/1.4971365
    4. Saenger, E. H., Lebedev, M., Uribe, D., Osorno, M., Vialle, S., Duda, M., Iglauer, S., & Steeb, H. (2016). Analysis of high-resolution X-ray computed tomography images of Bentheim sandstone under elevated confining pressures. Geophysical Prospecting, 64(4), 848--859. https://doi.org/10.1111/1365-2478.12400
    5. Schüler, T., Jänicke, R., & Steeb, H. (2016). Nonlinear modeling and computational homogenization of asphalt concrete on the basis of XRCT scans. Construction and Building Materials, 109, 96--108. https://doi.org/10.1016/j.conbuildmat.2016.02.012
    6. Ghobadi, E., Sivanesapillai, R., Musialak, J., & Steeb, H. (2016). Modeling Based Characterization of Thermorheological Properties of Polyurethane ESTANE. International Journal of Polymer Science, 2016, 7514974. http://dx.doi.org/10.1155/2016/7514974
    7. Saenger, E. H., Vialle, S., Lebedev, M., Uribe, D., Osorno, M., Duda, M., & Steeb, H. (2016). Digital carbonate rock physics. Solid Earth, 7(4), 1185–1197. https://doi.org/10.5194/se-7-1185-2016
  7. 2015

    1. Jänicke, R., Quintal, B., & Steeb, H. (2015). Numerical homogenization of mesoscopic loss in poroelastic media. European Journal of Mechanics - A/Solids, 49, 382--395. https://doi.org/10.1016/j.euromechsol.2014.08.011
    2. Vinci, C., Steeb, H., & Renner, J. (2015). The imprint of hydro-mechanics of fractures in periodic pumping tests. Geophysical Journal International, 202(3), 1613–1626. https://doi.org/10.1093/gji/ggv247
    3. Rubino, J. G., Quintal, B., Müller, T. M., Guarracino, L., Jänicke, R., Steeb, H., & Holliger, K. (2015). Energy dissipation of P- and S-waves in fluid-saturated rocks: An overview focusing on hydraulically connected fractures. Journal of Earth Science, 26(6), 785--790. https://doi.org/10.1007/s12583-015-0613-0
    4. Osorno, M., Uribe, D., Ruiz, O. E., & Steeb, H. (2015). Finite difference calculations of permeability in large domains in a wide porosity range. Archive of Applied Mechanics, 85(8), 1043--1054. https://doi.org/10.1007/s00419-015-1025-4
  8. 2014

    1. Renner, J., & Steeb, H. (2014). Modeling of Fluid Transport in Geothermal Research. In W. Freeden, M. Z. Nashed, & T. Sonar (Eds.), Handbook of Geomathematics (pp. 1443–1505). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27793-1_81-2
    2. Kazakeviciute-Makovska, R., Aydin, A. O., & Steeb, H. (2014). Characterization of shape memory polymer Estane (TM) by means of dynamic mechanical thermal analysis technique. Smart Materials Research, 250258. https://doi.org/10.1155/2014/250258
    3. Vinci, C., Renner, J., & Steeb, H. (2014). A hybrid-dimensional approach for an efficient numerical modeling of the hydro-mechanics of fractures. Water Resources Research, 50(2), 1616--1635. https://doi.org/10.1002/2013WR014154
    4. Steeb, H., Kurzeja, P. S., & Schmalholz, S. M. (2014). Wave propagation in unsaturated porous media. Acta Mechanica, 225(8), 2435--2448. https://doi.org/10.1007/s00707-014-1135-z
    5. Fusseis, F., Steeb, H., Xiao, X., Zhu, W., Butler, I. B., Elphick, S., & Mäder, U. (2014). A low-cost X-ray-transparent experimental cell for synchrotron-based X-ray microtomography studies under geological reservoir conditions. Journal of Synchrotron Radiation, 21(1), 251--253. https://doi.org/10.1107/S1600577513026969
    6. Kurzeja, P. S., & Steeb, H. (2014). Variational formulation of oscillating fluid clusters and oscillator-like classification. II. Numerical study of pinned liquid clusters. Physics of Fluids, 26(4), 042107. https://doi.org/10.1063/1.4871489
    7. Kurzeja, P. S., & Steeb, H. (2014). Variational formulation of oscillating fluid clusters and oscillator-like classification. I. Theory. Physics of Fluids, 26(4), 042106. https://doi.org/10.1063/1.4871486
    8. Quintal, B., Jänicke, R., Rubino, J. G., Steeb, H., & Holliger, K. (2014). Sensitivity of S-wave attenuation to the connectivity of fractures in fluid-saturated rocks. GEOPHYSICS, 79(5), WB15--WB24. https://doi.org/10.1190/geo2013-0409.1
    9. Kazakeviciute-Makovska, R., Heuchel, M., Kratz, K., & Steeb, H. (2014). Universal relations in linear thermoelastic theories of thermally-responsive shape memory polymers. International Journal of Engineering Science, 82, 140--158. https://doi.org/10.1016/j.ijengsci.2014.05.009
    10. Sivanesapillai, R., Steeb, H., & Hartmaier, A. (2014). Transition of effective hydraulic properties from low to high Reynolds number flow in porous media. Geophysical Research Letters, 41(14), 4920--4928. https://doi.org/10.1002/2014GL060232
    11. Vinci, C., Renner, J., & Steeb, H. (2014). On attenuation of seismic waves associated with flow in fractures. Geophysical Research Letters, 41(21), 7515--7523. https://doi.org/10.1002/2014GL061634
  9. 2013

    1. Jeong, J., Sardini, P., Ramézani, H., Siitari-Kauppi, M., & Steeb, H. (2013). Modeling of the induced chemo-mechanical stress through porous cement mortar subjected to CO2: Enhanced micro-dilatation theory and 14C-PMMA method. Computational Materials Science, 69, 466--480. https://doi.org/10.1016/j.commatsci.2012.11.031
    2. Steeb, H., Singh, J., & Tomar, S. K. (2013). Time harmonic waves in thermoelastic material with microtemperatures. Mechanics Research Communications, 48, 8--18. https://doi.org/10.1016/j.mechrescom.2012.11.006
    3. Schaufler, A., Becker, C., & Steeb, H. (2013). Infiltration processes in cohesionless soils. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 93(2–3), 138--146. https://doi.org/10.1002/zamm.201200047
    4. Schüler, T., Manke, R., Jänicke, R., Radenberg, M., & Steeb, H. (2013). Multi-scale modelling of elastic/viscoelastic compounds. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 93(2–3), 126--137. https://doi.org/10.1002/zamm.201200055
    5. Tomar, S., Bhagwan, J., & Steeb, H. (2013). Time harmonic waves in a thermo-viscoelastic material with voids. Journal of Vibration and Control, 20(8), 1119--1136. https://doi.org/10.1177/1077546312470479
    6. Kazakevičiūtė-Makovska, R., Mogharebi, S., Steeb, H., Eggeler, G., & Neuking, K. (2013). A Critical Assessment of Experimental Methods for Determining the Dynamic Mechanical Characteristics of Shape Memory Polymers. Advanced Engineering Materials, 15(8), 732--739. https://doi.org/10.1002/adem.201200341
    7. Mogharebi, S., Kazakeviciute-Makovska, R., Steeb, H., Eggeler, G., & Neuking, K. (2013). On the cyclic material stability of shape memory polymer. Materialwissenschaft Und Werkstofftechnik, 44(6), 521--526. https://doi.org/10.1002/mawe.201300023
    8. Müller, P., Kazakeviciute-Makovska, R., & Steeb, H. (2013). On strain measurements in soft (rubbery) and stiff (glassy) polymeric materials. Kautschuk Gummi Kunststoffe: KGK, 4–13, 48–54.
  10. 2012

    1. Gueven, I., Kurzeja, P., Luding, S., & Steeb, H. (2012). Experimental evaluation of phase velocities and tortuosity in fluid saturated highly porous media. PAMM, 12(1), 401--402. https://doi.org/10.1002/pamm.201210189
    2. Jänicke, R., & Steeb, H. (2012). Wave propagation in periodic microstructures by homogenisation of extended continua. Computational Materials Science, 52(1), 209--211. https://doi.org/10.1016/j.commatsci.2011.04.011
    3. Ramézani, H., Steeb, H., & Jeong, J. (2012). Analytical and numerical studies on Penalized Micro-Dilatation (PMD) theory: Macro-micro link concept. European Journal of Mechanics - A/Solids, 34, 130--148. https://doi.org/10.1016/j.euromechsol.2011.11.002
    4. Kazakeviciute-Makovska, R., Steeb, H., & Aydin, A. Ö. (2012). On the evolution law for the frozen fraction in linear theories of shape memory polymers. Archive of Applied Mechanics, 82(8), 1103--1115. https://doi.org/10.1007/s00419-012-0615-7
    5. Jänicke, R., & Steeb, H. (2012). Minimal loading conditions for higher-order numerical homogenisation schemes. Archive of Applied Mechanics, 82(8), 1075--1088. https://doi.org/10.1007/s00419-012-0614-8
    6. Quintal, B., Steeb, H., Frehner, M., Schmalholz, S. M., & Saenger, E. H. (2012). Pore fluid effects on S-wave attenuation caused by wave-induced fluid flow. Geophysics, 77(3), L13--L23. https://doi.org/10.1190/geo2011-0233.1
    7. Steeb, H., Kurzeja, P. S., Frehner, M., & Schmalholz, S. M. (2012). Phase Velocity Dispersion and Attenuation of Seismic Waves due to Trapped Fluids in Residual Saturated Porous Media. Vadose Zone Journal, 11(3), 0. https://doi.org/10.2136/vzj2011.0121
    8. Saenger, E. H., Uribe, D., Jänicke, R., Ruiz, O., & Steeb, H. (2012). Digital material laboratory: Wave propagation effects in open-cell aluminium foams. International Journal of Engineering Science, 58, 115--123. https://doi.org/10.1016/j.ijengsci.2012.03.030
    9. Kurzeja, P. S., & Steeb, H. (2012). About the transition frequency in Biot’s theory. The Journal of the Acoustical Society of America, 131(6), EL454--EL460. https://doi.org/10.1121/1.4710834
  11. 2011

    1. Quintal, B., Steeb, H., Frehner, M., & Schmalholz, S. M. (2011). Quasi-static finite element modeling of seismic attenuation and dispersion due to wave-induced fluid flow in poroelastic media. Journal of Geophysical Research: Solid Earth, 116(B1), n/a--n/a. https://doi.org/10.1029/2010JB007475
    2. Kazakeviciute-Makovska, R., & Steeb, H. (2011). On recoverable strain-stress relationships in shape memory polymer nanocomposites. Kautschuk Gummi Kunststoffe: KGK, 611, 24–28.
    3. Kazakeviciute-Makovska, R., & Steeb, H. (2011). Superelasticity and Self-Healing of Proteinaceous Biomaterials. Procedia Engineering, 10, 2597--2602. https://doi.org/10.1016/j.proeng.2011.04.432
    4. Saenger, E. H., Enzmann, F., Keehm, Y., & Steeb, H. (2011). Digital rock physics: Effect of fluid viscosity on effective elastic properties. Journal of Applied Geophysics, 74(4), 236--241. https://doi.org/10.1016/j.jappgeo.2011.06.001
  12. 2010

    1. Steeb, H. (2010). Ultrasound propagation in cancellous bone. Archive of Applied Mechanics, 80(5), 489--502. https://doi.org/10.1007/s00419-009-0385-z
    2. Steeb, H. (2010). Internal erosion in gas-flow weak conditions. In J. Goddard, P. Giovine, & J. T. Jenkins (Eds.), AIP Conference Proceedings (Vol. 1227, pp. 115–134). AIP Publishing. https://doi.org/10.1063/1.3435382
  13. 2009

    1. Chen, Z., Steeb, H., & Diebels, S. (2009). A EVI-space-time Galerkin method for dynamics at finite deformation in porous media. Computational Mechanics, 43(5), 585--601. https://doi.org/10.1007/s00466-008-0332-9
    2. Sehlhorst, H. G., Jänicke, R., Düster, A., Rank, E., Steeb, H., & Diebels, S. (2009). Numerical investigations of foam-like materials by nested high-order finite element methods. Computational Mechanics, 45(1), 45--59. https://doi.org/10.1007/s00466-009-0414-3
  14. 2008

    1. Chen, Z., Steeb, H., & Diebels, S. (2008). A new hybrid velocity integration method applied to elastic wave propagation. International Journal for Numerical Methods in Engineering, 74(1), 56--79. https://doi.org/10.1002/nme.2167
    2. Ebinger, T., Steeb, H., & Diebels, S. (2008). Kinematically extended continuum theories: Correlation between microscopical deformation and macroscopical strain measures. Technische Mechanik, 28, 64–86.
    3. Johlitz, M., Steeb, H., Diebels, S., Basal, J., & Possart, W. (2008). Experimental and numerical investigation of size effects in polyurethane adhesive sealings. Technische Mechanik, 28, 3–12.
    4. Chen, Z., Steeb, H., & Diebels, S. (2008). A space-time discontinuous Galerkin method applied to single-phase flow in porous media. Computational Geosciences, 12(4), 525--539. https://doi.org/10.1007/s10596-008-9092-z
    5. Frehner, M., Schmalholz, S. M., Saenger, E. H., & Steeb, H. (2008). Comparison of finite difference and finite element methods for simulating two-dimensional scattering of elastic waves. Physics of the Earth and Planetary Interiors, 171(1–4), 112--121. https://doi.org/10.1016/j.pepi.2008.07.003
    6. Johlitz, M., Diebels, S., Batal, J., Steeb, H., & Possart, W. (2008). Size effects in polyurethane bonds: experiments, modelling and parameter identification. Journal of Materials Science, 43(14), 4768. https://doi.org/10.1007/s10853-008-2674-2
    7. Johlitz, M., Steeb, H., Jänicke, R., & Diebels, S. (2008). Effective properties and size effects in filled polymers. GAMM-Mitteilungen, 31(2), 210--224. https://doi.org/10.1002/gamm.200890012
  15. 2007

    1. Ebinger, T., Diebels, S., & Steeb, H. (2007). Numerical Homogenization Techniques Applied to Growth and Remodelling Phenomena. Computational Mechanics, 39(6), 815--830. https://doi.org/10.1007/s00466-006-0071-8
    2. Diebels, S., Johlitz, M., Steeb, H., Chatzouridou, A., Batal, J., & Possart, W. (2007). A continuum-based model capturing size effects in polymer bonds. Journal of Physics: Conference Series, 62(1), 34. http://stacks.iop.org/1742-6596/62/i=1/a=003
    3. Steeb, H., Diebels, S., & Vardoulakis, I. (2007). Modeling Internal Erosion in Porous Media. Computer Applications In Geotechnical Engineering. https://doi.org/10.1061/40901(220)16
    4. Johlitz, M., Steeb, H., Diebels, S., Chatzouridou, A., Batal, J., & Possart, W. (2007). Experimental and theoretical investigation of nonlinear viscoelastic polyurethane systems. Journal of Materials Science, 42(23), 9894. https://doi.org/10.1007/s10853-006-1479-4
  16. 2006

    1. Chen, Z., Steeb, H., & Diebels, S. (2006). A time-discontinuous Galerkin method for the dynamical analysis of porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 30(11), 1113--1134. https://doi.org/10.1002/nag.516
  17. 2005

    1. Ebinger, T., Steeb, H., & Diebels, S. (2005). Modeling macroscopic extended continua with the aid of numerical homogenization schemes. Computational Materials Science, 32(3–4), 337--347. https://doi.org/10.1016/j.commatsci.2004.09.034
    2. Ebinger, T., Steeb, H., & Diebels, S. (2005). Modeling and homogenization of foams. Comp. Assisted Mechanics and Engineering Sciences, 12, 49–63.
    3. Diebels, S., Ebinger, T., & Steeb, H. (2005). An anisotropic damage model of foams on the basis of a micromechanical description. Journal of Materials Science, 40(22), 5919--5924. https://doi.org/10.1007/s10853-005-5043-4
  18. 2004

    1. Steeb, H., & Diebels, S. (2004). Modeling thin films applying an extended continuum theory based on a scalar-valued order parameter. International Journal of Solids and Structures, 41(18–19), 5071--5085. https://doi.org/10.1016/j.ijsolstr.2004.03.013
  19. 2003

    1. Diebels, S., & Steeb, H. (2003). Stress and couple stress in foams. Computational Materials Science, 28(3–4), 714–722. https://doi.org/10.1016/j.commatsci.2003.08.025
    2. Steeb, H., & Diebels, S. (2003). A thermodynamic-consistent model describing growth and remodeling phenomena. Computational Materials Science, 28(3–4), 597--607. https://doi.org/10.1016/j.commatsci.2003.08.016
  20. 2002

    1. Diebels, S., & Steeb, H. (2002). The size effect in foams and its theoretical and numerical investigation. Proceedings of the Royal Society A, 458(2028), 2869–2883. https://doi.org/10.1098/rspa.2002.0991

In the winter term WS 19/20 I am teaching the following courses

  • Technische Mechanik I (TM I)
  • Höhere Mechanik I (HM I)
  • Mechanik inkompressibler Fluide (MiF)
  • Continuum Mechanics (C1) - COMMAS

Please have a further look in  ILIAS for content information of the courses (lecture notes, summaries etc) and in  C@MPUS for organizational issues (like exam registration).

1990-1995 Graduation in Civil Engineering (Dipl.-Ing.), University of Stuttgart
1996-2001 Teaching assistant, Institute of Structural Mechanics, University of Stuttgart
June 2002  Doctoral degree (Dr.-Ing.), University of Stuttgart
2001-2002 Researcher (SFB 404), Institute of Mechanics, University of Stuttgart
2002-2008 Researcher & Lecturer, Chair of Applied Mechanics, Saarland University, Saarbrücken
4/2004-8/2004 
Post-Doc Fellow (through EU-RTN), Faculty of Applied Mathematics and Physics,
NTUA Athens, Greece
2008 Habilitation in Mechanics (Venia Legendi in Mechanics), Saarland University, Saarbrücken
since 5/2008 Assistant Professor (now Guest Professor), Multi-Scale Mechanics, University of Twente, Enschede, The Netherlands
2009-9/2015 Full Professor (W3) for Continuum Mechanics at the Institute for Computational Engineering, Ruhr-University Bochum
since 10/2015 Full Professor (W3) for Continuum Mechanics at the Institute of Applied Mechanics (CE), University of Stuttgart
 
To the top of the page